ref: 0a94c0f99d6c34b30d2ac6fd7d5e516bd14dffb5
dir: /src/hexen/r_main.c/
// Emacs style mode select -*- C++ -*-
//-----------------------------------------------------------------------------
//
// Copyright(C) 1993-1996 Id Software, Inc.
// Copyright(C) 1993-2008 Raven Software
// Copyright(C) 2008 Simon Howard
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
// 02111-1307, USA.
//
//-----------------------------------------------------------------------------
#include <math.h>
#include "m_random.h"
#include "h2def.h"
#include "m_bbox.h"
#include "r_local.h"
int viewangleoffset;
// haleyjd: removed WATCOMC
int validcount = 1; // increment every time a check is made
lighttable_t *fixedcolormap;
extern lighttable_t **walllights;
int centerx, centery;
fixed_t centerxfrac, centeryfrac;
fixed_t projection;
int framecount; // just for profiling purposes
int sscount, linecount, loopcount;
fixed_t viewx, viewy, viewz;
angle_t viewangle;
fixed_t viewcos, viewsin;
player_t *viewplayer;
int detailshift; // 0 = high, 1 = low
//
// precalculated math tables
//
angle_t clipangle;
// The viewangletox[viewangle + FINEANGLES/4] lookup maps the visible view
// angles to screen X coordinates, flattening the arc to a flat projection
// plane. There will be many angles mapped to the same X.
int viewangletox[FINEANGLES / 2];
// The xtoviewangleangle[] table maps a screen pixel to the lowest viewangle
// that maps back to x ranges from clipangle to -clipangle
angle_t xtoviewangle[SCREENWIDTH + 1];
lighttable_t *scalelight[LIGHTLEVELS][MAXLIGHTSCALE];
lighttable_t *scalelightfixed[MAXLIGHTSCALE];
lighttable_t *zlight[LIGHTLEVELS][MAXLIGHTZ];
int extralight; // bumped light from gun blasts
void (*colfunc) (void);
void (*basecolfunc) (void);
void (*tlcolfunc) (void);
void (*transcolfunc) (void);
void (*spanfunc) (void);
/*
===================
=
= R_AddPointToBox
=
===================
*/
/*
void R_AddPointToBox (int x, int y, fixed_t *box)
{
if (x< box[BOXLEFT])
box[BOXLEFT] = x;
if (x> box[BOXRIGHT])
box[BOXRIGHT] = x;
if (y< box[BOXBOTTOM])
box[BOXBOTTOM] = y;
if (y> box[BOXTOP])
box[BOXTOP] = y;
}
*/
/*
===============================================================================
=
= R_PointOnSide
=
= Returns side 0 (front) or 1 (back)
===============================================================================
*/
int R_PointOnSide(fixed_t x, fixed_t y, node_t * node)
{
fixed_t dx, dy;
fixed_t left, right;
if (!node->dx)
{
if (x <= node->x)
return node->dy > 0;
return node->dy < 0;
}
if (!node->dy)
{
if (y <= node->y)
return node->dx < 0;
return node->dx > 0;
}
dx = (x - node->x);
dy = (y - node->y);
// try to quickly decide by looking at sign bits
if ((node->dy ^ node->dx ^ dx ^ dy) & 0x80000000)
{
if ((node->dy ^ dx) & 0x80000000)
return 1; // (left is negative)
return 0;
}
left = FixedMul(node->dy >> FRACBITS, dx);
right = FixedMul(dy, node->dx >> FRACBITS);
if (right < left)
return 0; // front side
return 1; // back side
}
int R_PointOnSegSide(fixed_t x, fixed_t y, seg_t * line)
{
fixed_t lx, ly;
fixed_t ldx, ldy;
fixed_t dx, dy;
fixed_t left, right;
lx = line->v1->x;
ly = line->v1->y;
ldx = line->v2->x - lx;
ldy = line->v2->y - ly;
if (!ldx)
{
if (x <= lx)
return ldy > 0;
return ldy < 0;
}
if (!ldy)
{
if (y <= ly)
return ldx < 0;
return ldx > 0;
}
dx = (x - lx);
dy = (y - ly);
// try to quickly decide by looking at sign bits
if ((ldy ^ ldx ^ dx ^ dy) & 0x80000000)
{
if ((ldy ^ dx) & 0x80000000)
return 1; // (left is negative)
return 0;
}
left = FixedMul(ldy >> FRACBITS, dx);
right = FixedMul(dy, ldx >> FRACBITS);
if (right < left)
return 0; // front side
return 1; // back side
}
/*
===============================================================================
=
= R_PointToAngle
=
===============================================================================
*/
#define DBITS (FRACBITS-SLOPEBITS)
angle_t R_PointToAngle(fixed_t x, fixed_t y)
{
x -= viewx;
y -= viewy;
if ((!x) && (!y))
return 0;
if (x >= 0)
{ // x >=0
if (y >= 0)
{ // y>= 0
if (x > y)
return tantoangle[SlopeDiv(y, x)]; // octant 0
else
return ANG90 - 1 - tantoangle[SlopeDiv(x, y)]; // octant 1
}
else
{ // y<0
y = -y;
if (x > y)
return -tantoangle[SlopeDiv(y, x)]; // octant 8
else
return ANG270 + tantoangle[SlopeDiv(x, y)]; // octant 7
}
}
else
{ // x<0
x = -x;
if (y >= 0)
{ // y>= 0
if (x > y)
return ANG180 - 1 - tantoangle[SlopeDiv(y, x)]; // octant 3
else
return ANG90 + tantoangle[SlopeDiv(x, y)]; // octant 2
}
else
{ // y<0
y = -y;
if (x > y)
return ANG180 + tantoangle[SlopeDiv(y, x)]; // octant 4
else
return ANG270 - 1 - tantoangle[SlopeDiv(x, y)]; // octant 5
}
}
return 0;
}
angle_t R_PointToAngle2(fixed_t x1, fixed_t y1, fixed_t x2, fixed_t y2)
{
viewx = x1;
viewy = y1;
return R_PointToAngle(x2, y2);
}
fixed_t R_PointToDist(fixed_t x, fixed_t y)
{
int angle;
fixed_t dx, dy, temp;
fixed_t dist;
dx = abs(x - viewx);
dy = abs(y - viewy);
if (dy > dx)
{
temp = dx;
dx = dy;
dy = temp;
}
angle =
(tantoangle[FixedDiv(dy, dx) >> DBITS] + ANG90) >> ANGLETOFINESHIFT;
dist = FixedDiv(dx, finesine[angle]); // use as cosine
return dist;
}
/*
=================
=
= R_InitPointToAngle
=
=================
*/
void R_InitPointToAngle(void)
{
// now getting from tables.c
#if 0
int i;
long t;
float f;
//
// slope (tangent) to angle lookup
//
for (i = 0; i <= SLOPERANGE; i++)
{
f = atan((float) i / SLOPERANGE) / (3.141592657 * 2);
t = 0xffffffff * f;
tantoangle[i] = t;
}
#endif
}
//=============================================================================
/*
================
=
= R_ScaleFromGlobalAngle
=
= Returns the texture mapping scale for the current line at the given angle
= rw_distance must be calculated first
================
*/
fixed_t R_ScaleFromGlobalAngle(angle_t visangle)
{
fixed_t scale;
int anglea, angleb;
int sinea, sineb;
fixed_t num, den;
#if 0
{
fixed_t dist, z;
fixed_t sinv, cosv;
sinv = finesine[(visangle - rw_normalangle) >> ANGLETOFINESHIFT];
dist = FixedDiv(rw_distance, sinv);
cosv = finecosine[(viewangle - visangle) >> ANGLETOFINESHIFT];
z = abs(FixedMul(dist, cosv));
scale = FixedDiv(projection, z);
return scale;
}
#endif
anglea = ANG90 + (visangle - viewangle);
angleb = ANG90 + (visangle - rw_normalangle);
// bothe sines are allways positive
sinea = finesine[anglea >> ANGLETOFINESHIFT];
sineb = finesine[angleb >> ANGLETOFINESHIFT];
num = FixedMul(projection, sineb) << detailshift;
den = FixedMul(rw_distance, sinea);
if (den > num >> 16)
{
scale = FixedDiv(num, den);
if (scale > 64 * FRACUNIT)
scale = 64 * FRACUNIT;
else if (scale < 256)
scale = 256;
}
else
scale = 64 * FRACUNIT;
return scale;
}
/*
=================
=
= R_InitTables
=
=================
*/
void R_InitTables(void)
{
// now getting from tables.c
#if 0
int i;
float a, fv;
int t;
//
// viewangle tangent table
//
for (i = 0; i < FINEANGLES / 2; i++)
{
a = (i - FINEANGLES / 4 + 0.5) * PI * 2 / FINEANGLES;
fv = FRACUNIT * tan(a);
t = fv;
finetangent[i] = t;
}
//
// finesine table
//
for (i = 0; i < 5 * FINEANGLES / 4; i++)
{
// OPTIMIZE: mirror...
a = (i + 0.5) * PI * 2 / FINEANGLES;
t = FRACUNIT * sin(a);
finesine[i] = t;
}
#endif
}
/*
=================
=
= R_InitTextureMapping
=
=================
*/
void R_InitTextureMapping(void)
{
int i;
int x;
int t;
fixed_t focallength;
//
// use tangent table to generate viewangletox
// viewangletox will give the next greatest x after the view angle
//
// calc focallength so FIELDOFVIEW angles covers SCREENWIDTH
focallength =
FixedDiv(centerxfrac, finetangent[FINEANGLES / 4 + FIELDOFVIEW / 2]);
for (i = 0; i < FINEANGLES / 2; i++)
{
if (finetangent[i] > FRACUNIT * 2)
t = -1;
else if (finetangent[i] < -FRACUNIT * 2)
t = viewwidth + 1;
else
{
t = FixedMul(finetangent[i], focallength);
t = (centerxfrac - t + FRACUNIT - 1) >> FRACBITS;
if (t < -1)
t = -1;
else if (t > viewwidth + 1)
t = viewwidth + 1;
}
viewangletox[i] = t;
}
//
// scan viewangletox[] to generate xtoviewangleangle[]
//
// xtoviewangle will give the smallest view angle that maps to x
for (x = 0; x <= viewwidth; x++)
{
i = 0;
while (viewangletox[i] > x)
i++;
xtoviewangle[x] = (i << ANGLETOFINESHIFT) - ANG90;
}
//
// take out the fencepost cases from viewangletox
//
for (i = 0; i < FINEANGLES / 2; i++)
{
t = FixedMul(finetangent[i], focallength);
t = centerx - t;
if (viewangletox[i] == -1)
viewangletox[i] = 0;
else if (viewangletox[i] == viewwidth + 1)
viewangletox[i] = viewwidth;
}
clipangle = xtoviewangle[0];
}
//=============================================================================
/*
====================
=
= R_InitLightTables
=
= Only inits the zlight table, because the scalelight table changes
= with view size
=
====================
*/
#define DISTMAP 2
void R_InitLightTables(void)
{
int i, j, level, startmap;
int scale;
//
// Calculate the light levels to use for each level / distance combination
//
for (i = 0; i < LIGHTLEVELS; i++)
{
startmap = ((LIGHTLEVELS - 1 - i) * 2) * NUMCOLORMAPS / LIGHTLEVELS;
for (j = 0; j < MAXLIGHTZ; j++)
{
scale =
FixedDiv((SCREENWIDTH / 2 * FRACUNIT),
(j + 1) << LIGHTZSHIFT);
scale >>= LIGHTSCALESHIFT;
level = startmap - scale / DISTMAP;
if (level < 0)
level = 0;
if (level >= NUMCOLORMAPS)
level = NUMCOLORMAPS - 1;
zlight[i][j] = colormaps + level * 256;
}
}
}
/*
==============
=
= R_SetViewSize
=
= Don't really change anything here, because i might be in the middle of
= a refresh. The change will take effect next refresh.
=
==============
*/
boolean setsizeneeded;
int setblocks, setdetail;
void R_SetViewSize(int blocks, int detail)
{
setsizeneeded = true;
setblocks = blocks;
setdetail = detail;
}
/*
==============
=
= R_ExecuteSetViewSize
=
==============
*/
void R_ExecuteSetViewSize(void)
{
fixed_t cosadj, dy;
int i, j, level, startmap;
setsizeneeded = false;
if (setblocks == 11)
{
scaledviewwidth = SCREENWIDTH;
viewheight = SCREENHEIGHT;
}
else
{
scaledviewwidth = setblocks * 32;
viewheight = (setblocks * 161 / 10);
}
detailshift = setdetail;
viewwidth = scaledviewwidth >> detailshift;
centery = viewheight / 2;
centerx = viewwidth / 2;
centerxfrac = centerx << FRACBITS;
centeryfrac = centery << FRACBITS;
projection = centerxfrac;
if (!detailshift)
{
colfunc = basecolfunc = R_DrawColumn;
tlcolfunc = R_DrawTLColumn;
transcolfunc = R_DrawTranslatedColumn;
spanfunc = R_DrawSpan;
}
else
{
colfunc = basecolfunc = R_DrawColumnLow;
tlcolfunc = R_DrawTLColumn;
transcolfunc = R_DrawTranslatedColumn;
spanfunc = R_DrawSpanLow;
}
R_InitBuffer(scaledviewwidth, viewheight);
R_InitTextureMapping();
//
// psprite scales
//
pspritescale = FRACUNIT * viewwidth / SCREENWIDTH;
pspriteiscale = FRACUNIT * SCREENWIDTH / viewwidth;
//
// thing clipping
//
for (i = 0; i < viewwidth; i++)
screenheightarray[i] = viewheight;
//
// planes
//
for (i = 0; i < viewheight; i++)
{
dy = ((i - viewheight / 2) << FRACBITS) + FRACUNIT / 2;
dy = abs(dy);
yslope[i] = FixedDiv((viewwidth << detailshift) / 2 * FRACUNIT, dy);
}
for (i = 0; i < viewwidth; i++)
{
cosadj = abs(finecosine[xtoviewangle[i] >> ANGLETOFINESHIFT]);
distscale[i] = FixedDiv(FRACUNIT, cosadj);
}
//
// Calculate the light levels to use for each level / scale combination
//
for (i = 0; i < LIGHTLEVELS; i++)
{
startmap = ((LIGHTLEVELS - 1 - i) * 2) * NUMCOLORMAPS / LIGHTLEVELS;
for (j = 0; j < MAXLIGHTSCALE; j++)
{
level =
startmap -
j * SCREENWIDTH / (viewwidth << detailshift) / DISTMAP;
if (level < 0)
level = 0;
if (level >= NUMCOLORMAPS)
level = NUMCOLORMAPS - 1;
scalelight[i][j] = colormaps + level * 256;
}
}
//
// draw the border
//
R_DrawViewBorder(); // erase old menu stuff
}
/*
==============
=
= R_Init
=
==============
*/
int detailLevel;
int screenblocks = 10;
void R_Init(void)
{
R_InitData();
R_InitPointToAngle();
R_InitTables();
// viewwidth / viewheight / detailLevel are set by the defaults
R_SetViewSize(screenblocks, detailLevel);
R_InitPlanes();
R_InitLightTables();
R_InitSkyMap();
R_InitTranslationTables();
framecount = 0;
}
/*
==============
=
= R_PointInSubsector
=
==============
*/
subsector_t *R_PointInSubsector(fixed_t x, fixed_t y)
{
node_t *node;
int side, nodenum;
if (!numnodes) // single subsector is a special case
return subsectors;
nodenum = numnodes - 1;
while (!(nodenum & NF_SUBSECTOR))
{
node = &nodes[nodenum];
side = R_PointOnSide(x, y, node);
nodenum = node->children[side];
}
return &subsectors[nodenum & ~NF_SUBSECTOR];
}
//----------------------------------------------------------------------------
//
// PROC R_SetupFrame
//
//----------------------------------------------------------------------------
void R_SetupFrame(player_t * player)
{
int i;
int tableAngle;
int tempCentery;
int intensity;
//drawbsp = 1;
viewplayer = player;
// haleyjd: removed WATCOMC
// haleyjd FIXME: viewangleoffset handling?
viewangle = player->mo->angle + viewangleoffset;
tableAngle = viewangle >> ANGLETOFINESHIFT;
viewx = player->mo->x;
viewy = player->mo->y;
if (localQuakeHappening[displayplayer] && !paused)
{
intensity = localQuakeHappening[displayplayer];
viewx += ((M_Random() % (intensity << 2))
- (intensity << 1)) << FRACBITS;
viewy += ((M_Random() % (intensity << 2))
- (intensity << 1)) << FRACBITS;
}
extralight = player->extralight;
viewz = player->viewz;
tempCentery = viewheight / 2 + (player->lookdir) * screenblocks / 10;
if (centery != tempCentery)
{
centery = tempCentery;
centeryfrac = centery << FRACBITS;
for (i = 0; i < viewheight; i++)
{
yslope[i] = FixedDiv((viewwidth << detailshift) / 2 * FRACUNIT,
abs(((i - centery) << FRACBITS) +
FRACUNIT / 2));
}
}
viewsin = finesine[tableAngle];
viewcos = finecosine[tableAngle];
sscount = 0;
if (player->fixedcolormap)
{
fixedcolormap = colormaps + player->fixedcolormap
* 256 * sizeof(lighttable_t);
walllights = scalelightfixed;
for (i = 0; i < MAXLIGHTSCALE; i++)
{
scalelightfixed[i] = fixedcolormap;
}
}
else
{
fixedcolormap = 0;
}
framecount++;
validcount++;
if (BorderNeedRefresh)
{
if (setblocks < 10)
{
R_DrawViewBorder();
}
BorderNeedRefresh = false;
BorderTopRefresh = false;
UpdateState |= I_FULLSCRN;
}
if (BorderTopRefresh)
{
if (setblocks < 10)
{
R_DrawTopBorder();
}
BorderTopRefresh = false;
UpdateState |= I_MESSAGES;
}
#if 0
{
static int frame;
memset(screen, frame, SCREENWIDTH * SCREENHEIGHT);
frame++;
}
#endif
}
/*
==============
=
= R_RenderView
=
==============
*/
void R_RenderPlayerView(player_t * player)
{
R_SetupFrame(player);
R_ClearClipSegs();
R_ClearDrawSegs();
R_ClearPlanes();
R_ClearSprites();
NetUpdate(); // check for new console commands
// Make displayed player invisible locally
if (localQuakeHappening[displayplayer] && gamestate == GS_LEVEL)
{
players[displayplayer].mo->flags2 |= MF2_DONTDRAW;
R_RenderBSPNode(numnodes - 1); // head node is the last node output
players[displayplayer].mo->flags2 &= ~MF2_DONTDRAW;
}
else
{
R_RenderBSPNode(numnodes - 1); // head node is the last node output
}
NetUpdate(); // check for new console commands
R_DrawPlanes();
NetUpdate(); // check for new console commands
R_DrawMasked();
NetUpdate(); // check for new console commands
}