ref: 422d7fbcf03c6abbfe3b8c013933d307a9f21e0b
dir: /opl/opl3.c/
// // Copyright (C) 2013-2018 Alexey Khokholov (Nuke.YKT) // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // // Nuked OPL3 emulator. // Thanks: // MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh): // Feedback and Rhythm part calculation information. // forums.submarine.org.uk(carbon14, opl3): // Tremolo and phase generator calculation information. // OPLx decapsulated(Matthew Gambrell, Olli Niemitalo): // OPL2 ROMs. // siliconpr0n.org(John McMaster, digshadow): // YMF262 and VRC VII decaps and die shots. // // version: 1.8 // #include <stdio.h> #include <stdlib.h> #include <string.h> #include "opl3.h" #define RSM_FRAC 10 // Channel types enum { ch_2op = 0, ch_4op = 1, ch_4op2 = 2, ch_drum = 3 }; // Envelope key types enum { egk_norm = 0x01, egk_drum = 0x02 }; // // logsin table // static const Bit16u logsinrom[256] = { 0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471, 0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365, 0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd, 0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261, 0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f, 0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd, 0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195, 0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166, 0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c, 0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118, 0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8, 0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db, 0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1, 0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9, 0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094, 0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081, 0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070, 0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060, 0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052, 0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045, 0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039, 0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f, 0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026, 0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e, 0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017, 0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011, 0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c, 0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007, 0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004, 0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002, 0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000 }; // // exp table // static const Bit16u exprom[256] = { 0x7fa, 0x7f5, 0x7ef, 0x7ea, 0x7e4, 0x7df, 0x7da, 0x7d4, 0x7cf, 0x7c9, 0x7c4, 0x7bf, 0x7b9, 0x7b4, 0x7ae, 0x7a9, 0x7a4, 0x79f, 0x799, 0x794, 0x78f, 0x78a, 0x784, 0x77f, 0x77a, 0x775, 0x770, 0x76a, 0x765, 0x760, 0x75b, 0x756, 0x751, 0x74c, 0x747, 0x742, 0x73d, 0x738, 0x733, 0x72e, 0x729, 0x724, 0x71f, 0x71a, 0x715, 0x710, 0x70b, 0x706, 0x702, 0x6fd, 0x6f8, 0x6f3, 0x6ee, 0x6e9, 0x6e5, 0x6e0, 0x6db, 0x6d6, 0x6d2, 0x6cd, 0x6c8, 0x6c4, 0x6bf, 0x6ba, 0x6b5, 0x6b1, 0x6ac, 0x6a8, 0x6a3, 0x69e, 0x69a, 0x695, 0x691, 0x68c, 0x688, 0x683, 0x67f, 0x67a, 0x676, 0x671, 0x66d, 0x668, 0x664, 0x65f, 0x65b, 0x657, 0x652, 0x64e, 0x649, 0x645, 0x641, 0x63c, 0x638, 0x634, 0x630, 0x62b, 0x627, 0x623, 0x61e, 0x61a, 0x616, 0x612, 0x60e, 0x609, 0x605, 0x601, 0x5fd, 0x5f9, 0x5f5, 0x5f0, 0x5ec, 0x5e8, 0x5e4, 0x5e0, 0x5dc, 0x5d8, 0x5d4, 0x5d0, 0x5cc, 0x5c8, 0x5c4, 0x5c0, 0x5bc, 0x5b8, 0x5b4, 0x5b0, 0x5ac, 0x5a8, 0x5a4, 0x5a0, 0x59c, 0x599, 0x595, 0x591, 0x58d, 0x589, 0x585, 0x581, 0x57e, 0x57a, 0x576, 0x572, 0x56f, 0x56b, 0x567, 0x563, 0x560, 0x55c, 0x558, 0x554, 0x551, 0x54d, 0x549, 0x546, 0x542, 0x53e, 0x53b, 0x537, 0x534, 0x530, 0x52c, 0x529, 0x525, 0x522, 0x51e, 0x51b, 0x517, 0x514, 0x510, 0x50c, 0x509, 0x506, 0x502, 0x4ff, 0x4fb, 0x4f8, 0x4f4, 0x4f1, 0x4ed, 0x4ea, 0x4e7, 0x4e3, 0x4e0, 0x4dc, 0x4d9, 0x4d6, 0x4d2, 0x4cf, 0x4cc, 0x4c8, 0x4c5, 0x4c2, 0x4be, 0x4bb, 0x4b8, 0x4b5, 0x4b1, 0x4ae, 0x4ab, 0x4a8, 0x4a4, 0x4a1, 0x49e, 0x49b, 0x498, 0x494, 0x491, 0x48e, 0x48b, 0x488, 0x485, 0x482, 0x47e, 0x47b, 0x478, 0x475, 0x472, 0x46f, 0x46c, 0x469, 0x466, 0x463, 0x460, 0x45d, 0x45a, 0x457, 0x454, 0x451, 0x44e, 0x44b, 0x448, 0x445, 0x442, 0x43f, 0x43c, 0x439, 0x436, 0x433, 0x430, 0x42d, 0x42a, 0x428, 0x425, 0x422, 0x41f, 0x41c, 0x419, 0x416, 0x414, 0x411, 0x40e, 0x40b, 0x408, 0x406, 0x403, 0x400 }; // // freq mult table multiplied by 2 // // 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15 // static const Bit8u mt[16] = { 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30 }; // // ksl table // static const Bit8u kslrom[16] = { 0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64 }; static const Bit8u kslshift[4] = { 8, 1, 2, 0 }; // // envelope generator constants // static const Bit8u eg_incstep[4][4] = { { 0, 0, 0, 0 }, { 1, 0, 0, 0 }, { 1, 0, 1, 0 }, { 1, 1, 1, 0 } }; // // address decoding // static const Bit8s ad_slot[0x20] = { 0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1, 12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; static const Bit8u ch_slot[18] = { 0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32 }; // // Envelope generator // typedef Bit16s(*envelope_sinfunc)(Bit16u phase, Bit16u envelope); typedef void(*envelope_genfunc)(opl3_slot *slott); static Bit16s OPL3_EnvelopeCalcExp(Bit32u level) { if (level > 0x1fff) { level = 0x1fff; } return (exprom[level & 0xff] << 1) >> (level >> 8); } static Bit16s OPL3_EnvelopeCalcSin0(Bit16u phase, Bit16u envelope) { Bit16u out = 0; Bit16u neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = 0xffff; } if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } static Bit16s OPL3_EnvelopeCalcSin1(Bit16u phase, Bit16u envelope) { Bit16u out = 0; phase &= 0x3ff; if (phase & 0x200) { out = 0x1000; } else if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } static Bit16s OPL3_EnvelopeCalcSin2(Bit16u phase, Bit16u envelope) { Bit16u out = 0; phase &= 0x3ff; if (phase & 0x100) { out = logsinrom[(phase & 0xff) ^ 0xff]; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } static Bit16s OPL3_EnvelopeCalcSin3(Bit16u phase, Bit16u envelope) { Bit16u out = 0; phase &= 0x3ff; if (phase & 0x100) { out = 0x1000; } else { out = logsinrom[phase & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } static Bit16s OPL3_EnvelopeCalcSin4(Bit16u phase, Bit16u envelope) { Bit16u out = 0; Bit16u neg = 0; phase &= 0x3ff; if ((phase & 0x300) == 0x100) { neg = 0xffff; } if (phase & 0x200) { out = 0x1000; } else if (phase & 0x80) { out = logsinrom[((phase ^ 0xff) << 1) & 0xff]; } else { out = logsinrom[(phase << 1) & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } static Bit16s OPL3_EnvelopeCalcSin5(Bit16u phase, Bit16u envelope) { Bit16u out = 0; phase &= 0x3ff; if (phase & 0x200) { out = 0x1000; } else if (phase & 0x80) { out = logsinrom[((phase ^ 0xff) << 1) & 0xff]; } else { out = logsinrom[(phase << 1) & 0xff]; } return OPL3_EnvelopeCalcExp(out + (envelope << 3)); } static Bit16s OPL3_EnvelopeCalcSin6(Bit16u phase, Bit16u envelope) { Bit16u neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = 0xffff; } return OPL3_EnvelopeCalcExp(envelope << 3) ^ neg; } static Bit16s OPL3_EnvelopeCalcSin7(Bit16u phase, Bit16u envelope) { Bit16u out = 0; Bit16u neg = 0; phase &= 0x3ff; if (phase & 0x200) { neg = 0xffff; phase = (phase & 0x1ff) ^ 0x1ff; } out = phase << 3; return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg; } static const envelope_sinfunc envelope_sin[8] = { OPL3_EnvelopeCalcSin0, OPL3_EnvelopeCalcSin1, OPL3_EnvelopeCalcSin2, OPL3_EnvelopeCalcSin3, OPL3_EnvelopeCalcSin4, OPL3_EnvelopeCalcSin5, OPL3_EnvelopeCalcSin6, OPL3_EnvelopeCalcSin7 }; enum envelope_gen_num { envelope_gen_num_attack = 0, envelope_gen_num_decay = 1, envelope_gen_num_sustain = 2, envelope_gen_num_release = 3 }; static void OPL3_EnvelopeUpdateKSL(opl3_slot *slot) { Bit16s ksl = (kslrom[slot->channel->f_num >> 6] << 2) - ((0x08 - slot->channel->block) << 5); if (ksl < 0) { ksl = 0; } slot->eg_ksl = (Bit8u)ksl; } static void OPL3_EnvelopeCalc(opl3_slot *slot) { Bit8u nonzero; Bit8u rate; Bit8u rate_hi; Bit8u rate_lo; Bit8u reg_rate = 0; Bit8u ks; Bit8u eg_shift, shift; Bit16u eg_rout; Bit16s eg_inc; Bit8u eg_off; Bit8u reset = 0; slot->eg_out = slot->eg_rout + (slot->reg_tl << 2) + (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem; if (slot->key && slot->eg_gen == envelope_gen_num_release) { reset = 1; reg_rate = slot->reg_ar; } else { switch (slot->eg_gen) { case envelope_gen_num_attack: reg_rate = slot->reg_ar; break; case envelope_gen_num_decay: reg_rate = slot->reg_dr; break; case envelope_gen_num_sustain: if (!slot->reg_type) { reg_rate = slot->reg_rr; } break; case envelope_gen_num_release: reg_rate = slot->reg_rr; break; } } slot->pg_reset = reset; ks = slot->channel->ksv >> ((slot->reg_ksr ^ 1) << 1); nonzero = (reg_rate != 0); rate = ks + (reg_rate << 2); rate_hi = rate >> 2; rate_lo = rate & 0x03; if (rate_hi & 0x10) { rate_hi = 0x0f; } eg_shift = rate_hi + slot->chip->eg_add; shift = 0; if (nonzero) { if (rate_hi < 12) { if (slot->chip->eg_state) { switch (eg_shift) { case 12: shift = 1; break; case 13: shift = (rate_lo >> 1) & 0x01; break; case 14: shift = rate_lo & 0x01; break; default: break; } } } else { shift = (rate_hi & 0x03) + eg_incstep[rate_lo][slot->chip->timer & 0x03]; if (shift & 0x04) { shift = 0x03; } if (!shift) { shift = slot->chip->eg_state; } } } eg_rout = slot->eg_rout; eg_inc = 0; eg_off = 0; // Instant attack if (reset && rate_hi == 0x0f) { eg_rout = 0x00; } // Envelope off if ((slot->eg_rout & 0x1f8) == 0x1f8) { eg_off = 1; } if (slot->eg_gen != envelope_gen_num_attack && !reset && eg_off) { eg_rout = 0x1ff; } switch (slot->eg_gen) { case envelope_gen_num_attack: if (!slot->eg_rout) { slot->eg_gen = envelope_gen_num_decay; } else if (slot->key && shift > 0 && rate_hi != 0x0f) { eg_inc = ((~slot->eg_rout) << shift) >> 4; } break; case envelope_gen_num_decay: if ((slot->eg_rout >> 4) == slot->reg_sl) { slot->eg_gen = envelope_gen_num_sustain; } else if (!eg_off && !reset && shift > 0) { eg_inc = 1 << (shift - 1); } break; case envelope_gen_num_sustain: case envelope_gen_num_release: if (!eg_off && !reset && shift > 0) { eg_inc = 1 << (shift - 1); } break; } slot->eg_rout = (eg_rout + eg_inc) & 0x1ff; // Key off if (reset) { slot->eg_gen = envelope_gen_num_attack; } if (!slot->key) { slot->eg_gen = envelope_gen_num_release; } } static void OPL3_EnvelopeKeyOn(opl3_slot *slot, Bit8u type) { slot->key |= type; } static void OPL3_EnvelopeKeyOff(opl3_slot *slot, Bit8u type) { slot->key &= ~type; } // // Phase Generator // static void OPL3_PhaseGenerate(opl3_slot *slot) { opl3_chip *chip; Bit16u f_num; Bit32u basefreq; Bit8u rm_xor, n_bit; Bit32u noise; Bit16u phase; chip = slot->chip; f_num = slot->channel->f_num; if (slot->reg_vib) { Bit8s range; Bit8u vibpos; range = (f_num >> 7) & 7; vibpos = slot->chip->vibpos; if (!(vibpos & 3)) { range = 0; } else if (vibpos & 1) { range >>= 1; } range >>= slot->chip->vibshift; if (vibpos & 4) { range = -range; } f_num += range; } basefreq = (f_num << slot->channel->block) >> 1; phase = (Bit16u)(slot->pg_phase >> 9); if (slot->pg_reset) { slot->pg_phase = 0; } slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1; // Rhythm mode noise = chip->noise; slot->pg_phase_out = phase; if (slot->slot_num == 13) // hh { chip->rm_hh_bit2 = (phase >> 2) & 1; chip->rm_hh_bit3 = (phase >> 3) & 1; chip->rm_hh_bit7 = (phase >> 7) & 1; chip->rm_hh_bit8 = (phase >> 8) & 1; } if (slot->slot_num == 17 && (chip->rhy & 0x20)) // tc { chip->rm_tc_bit3 = (phase >> 3) & 1; chip->rm_tc_bit5 = (phase >> 5) & 1; } if (chip->rhy & 0x20) { rm_xor = (chip->rm_hh_bit2 ^ chip->rm_hh_bit7) | (chip->rm_hh_bit3 ^ chip->rm_tc_bit5) | (chip->rm_tc_bit3 ^ chip->rm_tc_bit5); switch (slot->slot_num) { case 13: // hh slot->pg_phase_out = rm_xor << 9; if (rm_xor ^ (noise & 1)) { slot->pg_phase_out |= 0xd0; } else { slot->pg_phase_out |= 0x34; } break; case 16: // sd slot->pg_phase_out = (chip->rm_hh_bit8 << 9) | ((chip->rm_hh_bit8 ^ (noise & 1)) << 8); break; case 17: // tc slot->pg_phase_out = (rm_xor << 9) | 0x80; break; default: break; } } n_bit = ((noise >> 14) ^ noise) & 0x01; chip->noise = (noise >> 1) | (n_bit << 22); } // // Slot // static void OPL3_SlotWrite20(opl3_slot *slot, Bit8u data) { if ((data >> 7) & 0x01) { slot->trem = &slot->chip->tremolo; } else { slot->trem = (Bit8u*)&slot->chip->zeromod; } slot->reg_vib = (data >> 6) & 0x01; slot->reg_type = (data >> 5) & 0x01; slot->reg_ksr = (data >> 4) & 0x01; slot->reg_mult = data & 0x0f; } static void OPL3_SlotWrite40(opl3_slot *slot, Bit8u data) { slot->reg_ksl = (data >> 6) & 0x03; slot->reg_tl = data & 0x3f; OPL3_EnvelopeUpdateKSL(slot); } static void OPL3_SlotWrite60(opl3_slot *slot, Bit8u data) { slot->reg_ar = (data >> 4) & 0x0f; slot->reg_dr = data & 0x0f; } static void OPL3_SlotWrite80(opl3_slot *slot, Bit8u data) { slot->reg_sl = (data >> 4) & 0x0f; if (slot->reg_sl == 0x0f) { slot->reg_sl = 0x1f; } slot->reg_rr = data & 0x0f; } static void OPL3_SlotWriteE0(opl3_slot *slot, Bit8u data) { slot->reg_wf = data & 0x07; if (slot->chip->newm == 0x00) { slot->reg_wf &= 0x03; } } static void OPL3_SlotGenerate(opl3_slot *slot) { slot->out = envelope_sin[slot->reg_wf](slot->pg_phase_out + *slot->mod, slot->eg_out); } static void OPL3_SlotCalcFB(opl3_slot *slot) { if (slot->channel->fb != 0x00) { slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->channel->fb); } else { slot->fbmod = 0; } slot->prout = slot->out; } // // Channel // static void OPL3_ChannelSetupAlg(opl3_channel *channel); static void OPL3_ChannelUpdateRhythm(opl3_chip *chip, Bit8u data) { opl3_channel *channel6; opl3_channel *channel7; opl3_channel *channel8; Bit8u chnum; chip->rhy = data & 0x3f; if (chip->rhy & 0x20) { channel6 = &chip->channel[6]; channel7 = &chip->channel[7]; channel8 = &chip->channel[8]; channel6->out[0] = &channel6->slots[1]->out; channel6->out[1] = &channel6->slots[1]->out; channel6->out[2] = &chip->zeromod; channel6->out[3] = &chip->zeromod; channel7->out[0] = &channel7->slots[0]->out; channel7->out[1] = &channel7->slots[0]->out; channel7->out[2] = &channel7->slots[1]->out; channel7->out[3] = &channel7->slots[1]->out; channel8->out[0] = &channel8->slots[0]->out; channel8->out[1] = &channel8->slots[0]->out; channel8->out[2] = &channel8->slots[1]->out; channel8->out[3] = &channel8->slots[1]->out; for (chnum = 6; chnum < 9; chnum++) { chip->channel[chnum].chtype = ch_drum; } OPL3_ChannelSetupAlg(channel6); OPL3_ChannelSetupAlg(channel7); OPL3_ChannelSetupAlg(channel8); //hh if (chip->rhy & 0x01) { OPL3_EnvelopeKeyOn(channel7->slots[0], egk_drum); } else { OPL3_EnvelopeKeyOff(channel7->slots[0], egk_drum); } //tc if (chip->rhy & 0x02) { OPL3_EnvelopeKeyOn(channel8->slots[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel8->slots[1], egk_drum); } //tom if (chip->rhy & 0x04) { OPL3_EnvelopeKeyOn(channel8->slots[0], egk_drum); } else { OPL3_EnvelopeKeyOff(channel8->slots[0], egk_drum); } //sd if (chip->rhy & 0x08) { OPL3_EnvelopeKeyOn(channel7->slots[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel7->slots[1], egk_drum); } //bd if (chip->rhy & 0x10) { OPL3_EnvelopeKeyOn(channel6->slots[0], egk_drum); OPL3_EnvelopeKeyOn(channel6->slots[1], egk_drum); } else { OPL3_EnvelopeKeyOff(channel6->slots[0], egk_drum); OPL3_EnvelopeKeyOff(channel6->slots[1], egk_drum); } } else { for (chnum = 6; chnum < 9; chnum++) { chip->channel[chnum].chtype = ch_2op; OPL3_ChannelSetupAlg(&chip->channel[chnum]); OPL3_EnvelopeKeyOff(chip->channel[chnum].slots[0], egk_drum); OPL3_EnvelopeKeyOff(chip->channel[chnum].slots[1], egk_drum); } } } static void OPL3_ChannelWriteA0(opl3_channel *channel, Bit8u data) { if (channel->chip->newm && channel->chtype == ch_4op2) { return; } channel->f_num = (channel->f_num & 0x300) | data; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slots[0]); OPL3_EnvelopeUpdateKSL(channel->slots[1]); if (channel->chip->newm && channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]); } } static void OPL3_ChannelWriteB0(opl3_channel *channel, Bit8u data) { if (channel->chip->newm && channel->chtype == ch_4op2) { return; } channel->f_num = (channel->f_num & 0xff) | ((data & 0x03) << 8); channel->block = (data >> 2) & 0x07; channel->ksv = (channel->block << 1) | ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01); OPL3_EnvelopeUpdateKSL(channel->slots[0]); OPL3_EnvelopeUpdateKSL(channel->slots[1]); if (channel->chip->newm && channel->chtype == ch_4op) { channel->pair->f_num = channel->f_num; channel->pair->block = channel->block; channel->pair->ksv = channel->ksv; OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]); OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]); } } static void OPL3_ChannelSetupAlg(opl3_channel *channel) { if (channel->chtype == ch_drum) { if (channel->ch_num == 7 || channel->ch_num == 8) { channel->slots[0]->mod = &channel->chip->zeromod; channel->slots[1]->mod = &channel->chip->zeromod; return; } switch (channel->alg & 0x01) { case 0x00: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->slots[0]->out; break; case 0x01: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->chip->zeromod; break; } return; } if (channel->alg & 0x08) { return; } if (channel->alg & 0x04) { channel->pair->out[0] = &channel->chip->zeromod; channel->pair->out[1] = &channel->chip->zeromod; channel->pair->out[2] = &channel->chip->zeromod; channel->pair->out[3] = &channel->chip->zeromod; switch (channel->alg & 0x03) { case 0x00: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->pair->slots[0]->out; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->slots[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->pair->slots[0]->out; channel->slots[0]->mod = &channel->chip->zeromod; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->pair->slots[1]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x02: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->chip->zeromod; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->pair->slots[0]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x03: channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod; channel->pair->slots[1]->mod = &channel->chip->zeromod; channel->slots[0]->mod = &channel->pair->slots[1]->out; channel->slots[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->pair->slots[0]->out; channel->out[1] = &channel->slots[0]->out; channel->out[2] = &channel->slots[1]->out; channel->out[3] = &channel->chip->zeromod; break; } } else { switch (channel->alg & 0x01) { case 0x00: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->slots[0]->out; channel->out[0] = &channel->slots[1]->out; channel->out[1] = &channel->chip->zeromod; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; case 0x01: channel->slots[0]->mod = &channel->slots[0]->fbmod; channel->slots[1]->mod = &channel->chip->zeromod; channel->out[0] = &channel->slots[0]->out; channel->out[1] = &channel->slots[1]->out; channel->out[2] = &channel->chip->zeromod; channel->out[3] = &channel->chip->zeromod; break; } } } static void OPL3_ChannelWriteC0(opl3_channel *channel, Bit8u data) { channel->fb = (data & 0x0e) >> 1; channel->con = data & 0x01; channel->alg = channel->con; if (channel->chip->newm) { if (channel->chtype == ch_4op) { channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con); channel->alg = 0x08; OPL3_ChannelSetupAlg(channel->pair); } else if (channel->chtype == ch_4op2) { channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con); channel->pair->alg = 0x08; OPL3_ChannelSetupAlg(channel); } else { OPL3_ChannelSetupAlg(channel); } } else { OPL3_ChannelSetupAlg(channel); } if (channel->chip->newm) { channel->cha = ((data >> 4) & 0x01) ? ~0 : 0; channel->chb = ((data >> 5) & 0x01) ? ~0 : 0; } else { channel->cha = channel->chb = (Bit16u)~0; } } static void OPL3_ChannelKeyOn(opl3_channel *channel) { if (channel->chip->newm) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm); OPL3_EnvelopeKeyOn(channel->pair->slots[0], egk_norm); OPL3_EnvelopeKeyOn(channel->pair->slots[1], egk_norm); } else if (channel->chtype == ch_2op || channel->chtype == ch_drum) { OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm); } } else { OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm); } } static void OPL3_ChannelKeyOff(opl3_channel *channel) { if (channel->chip->newm) { if (channel->chtype == ch_4op) { OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm); OPL3_EnvelopeKeyOff(channel->pair->slots[0], egk_norm); OPL3_EnvelopeKeyOff(channel->pair->slots[1], egk_norm); } else if (channel->chtype == ch_2op || channel->chtype == ch_drum) { OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm); } } else { OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm); OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm); } } static void OPL3_ChannelSet4Op(opl3_chip *chip, Bit8u data) { Bit8u bit; Bit8u chnum; for (bit = 0; bit < 6; bit++) { chnum = bit; if (bit >= 3) { chnum += 9 - 3; } if ((data >> bit) & 0x01) { chip->channel[chnum].chtype = ch_4op; chip->channel[chnum + 3].chtype = ch_4op2; } else { chip->channel[chnum].chtype = ch_2op; chip->channel[chnum + 3].chtype = ch_2op; } } } static Bit16s OPL3_ClipSample(Bit32s sample) { if (sample > 32767) { sample = 32767; } else if (sample < -32768) { sample = -32768; } return (Bit16s)sample; } void OPL3_Generate(opl3_chip *chip, Bit16s *buf) { Bit8u ii; Bit8u jj; Bit16s accm; Bit8u shift = 0; buf[1] = OPL3_ClipSample(chip->mixbuff[1]); for (ii = 0; ii < 15; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_SlotGenerate(&chip->slot[ii]); } chip->mixbuff[0] = 0; for (ii = 0; ii < 18; ii++) { accm = 0; for (jj = 0; jj < 4; jj++) { accm += *chip->channel[ii].out[jj]; } chip->mixbuff[0] += (Bit16s)(accm & chip->channel[ii].cha); } for (ii = 15; ii < 18; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_SlotGenerate(&chip->slot[ii]); } buf[0] = OPL3_ClipSample(chip->mixbuff[0]); for (ii = 18; ii < 33; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_SlotGenerate(&chip->slot[ii]); } chip->mixbuff[1] = 0; for (ii = 0; ii < 18; ii++) { accm = 0; for (jj = 0; jj < 4; jj++) { accm += *chip->channel[ii].out[jj]; } chip->mixbuff[1] += (Bit16s)(accm & chip->channel[ii].chb); } for (ii = 33; ii < 36; ii++) { OPL3_SlotCalcFB(&chip->slot[ii]); OPL3_EnvelopeCalc(&chip->slot[ii]); OPL3_PhaseGenerate(&chip->slot[ii]); OPL3_SlotGenerate(&chip->slot[ii]); } if ((chip->timer & 0x3f) == 0x3f) { chip->tremolopos = (chip->tremolopos + 1) % 210; } if (chip->tremolopos < 105) { chip->tremolo = chip->tremolopos >> chip->tremoloshift; } else { chip->tremolo = (210 - chip->tremolopos) >> chip->tremoloshift; } if ((chip->timer & 0x3ff) == 0x3ff) { chip->vibpos = (chip->vibpos + 1) & 7; } chip->timer++; chip->eg_add = 0; if (chip->eg_timer) { while (shift < 36 && ((chip->eg_timer >> shift) & 1) == 0) { shift++; } if (shift > 12) { chip->eg_add = 0; } else { chip->eg_add = shift + 1; } } if (chip->eg_timerrem || chip->eg_state) { if (chip->eg_timer == 0xfffffffff) { chip->eg_timer = 0; chip->eg_timerrem = 1; } else { chip->eg_timer++; chip->eg_timerrem = 0; } } chip->eg_state ^= 1; while (chip->writebuf[chip->writebuf_cur].time <= chip->writebuf_samplecnt) { if (!(chip->writebuf[chip->writebuf_cur].reg & 0x200)) { break; } chip->writebuf[chip->writebuf_cur].reg &= 0x1ff; OPL3_WriteReg(chip, chip->writebuf[chip->writebuf_cur].reg, chip->writebuf[chip->writebuf_cur].data); chip->writebuf_cur = (chip->writebuf_cur + 1) % OPL_WRITEBUF_SIZE; } chip->writebuf_samplecnt++; } void OPL3_GenerateResampled(opl3_chip *chip, Bit16s *buf) { while (chip->samplecnt >= chip->rateratio) { chip->oldsamples[0] = chip->samples[0]; chip->oldsamples[1] = chip->samples[1]; OPL3_Generate(chip, chip->samples); chip->samplecnt -= chip->rateratio; } buf[0] = (Bit16s)((chip->oldsamples[0] * (chip->rateratio - chip->samplecnt) + chip->samples[0] * chip->samplecnt) / chip->rateratio); buf[1] = (Bit16s)((chip->oldsamples[1] * (chip->rateratio - chip->samplecnt) + chip->samples[1] * chip->samplecnt) / chip->rateratio); chip->samplecnt += 1 << RSM_FRAC; } void OPL3_Reset(opl3_chip *chip, Bit32u samplerate) { Bit8u slotnum; Bit8u channum; memset(chip, 0, sizeof(opl3_chip)); for (slotnum = 0; slotnum < 36; slotnum++) { chip->slot[slotnum].chip = chip; chip->slot[slotnum].mod = &chip->zeromod; chip->slot[slotnum].eg_rout = 0x1ff; chip->slot[slotnum].eg_out = 0x1ff; chip->slot[slotnum].eg_gen = envelope_gen_num_release; chip->slot[slotnum].trem = (Bit8u*)&chip->zeromod; chip->slot[slotnum].slot_num = slotnum; } for (channum = 0; channum < 18; channum++) { chip->channel[channum].slots[0] = &chip->slot[ch_slot[channum]]; chip->channel[channum].slots[1] = &chip->slot[ch_slot[channum] + 3]; chip->slot[ch_slot[channum]].channel = &chip->channel[channum]; chip->slot[ch_slot[channum] + 3].channel = &chip->channel[channum]; if ((channum % 9) < 3) { chip->channel[channum].pair = &chip->channel[channum + 3]; } else if ((channum % 9) < 6) { chip->channel[channum].pair = &chip->channel[channum - 3]; } chip->channel[channum].chip = chip; chip->channel[channum].out[0] = &chip->zeromod; chip->channel[channum].out[1] = &chip->zeromod; chip->channel[channum].out[2] = &chip->zeromod; chip->channel[channum].out[3] = &chip->zeromod; chip->channel[channum].chtype = ch_2op; chip->channel[channum].cha = 0xffff; chip->channel[channum].chb = 0xffff; chip->channel[channum].ch_num = channum; OPL3_ChannelSetupAlg(&chip->channel[channum]); } chip->noise = 1; chip->rateratio = (samplerate << RSM_FRAC) / 49716; chip->tremoloshift = 4; chip->vibshift = 1; } void OPL3_WriteReg(opl3_chip *chip, Bit16u reg, Bit8u v) { Bit8u high = (reg >> 8) & 0x01; Bit8u regm = reg & 0xff; switch (regm & 0xf0) { case 0x00: if (high) { switch (regm & 0x0f) { case 0x04: OPL3_ChannelSet4Op(chip, v); break; case 0x05: chip->newm = v & 0x01; break; } } else { switch (regm & 0x0f) { case 0x08: chip->nts = (v >> 6) & 0x01; break; } } break; case 0x20: case 0x30: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite20(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x40: case 0x50: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite40(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x60: case 0x70: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite60(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0x80: case 0x90: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWrite80(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0xe0: case 0xf0: if (ad_slot[regm & 0x1f] >= 0) { OPL3_SlotWriteE0(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v); } break; case 0xa0: if ((regm & 0x0f) < 9) { OPL3_ChannelWriteA0(&chip->channel[9 * high + (regm & 0x0f)], v); } break; case 0xb0: if (regm == 0xbd && !high) { chip->tremoloshift = (((v >> 7) ^ 1) << 1) + 2; chip->vibshift = ((v >> 6) & 0x01) ^ 1; OPL3_ChannelUpdateRhythm(chip, v); } else if ((regm & 0x0f) < 9) { OPL3_ChannelWriteB0(&chip->channel[9 * high + (regm & 0x0f)], v); if (v & 0x20) { OPL3_ChannelKeyOn(&chip->channel[9 * high + (regm & 0x0f)]); } else { OPL3_ChannelKeyOff(&chip->channel[9 * high + (regm & 0x0f)]); } } break; case 0xc0: if ((regm & 0x0f) < 9) { OPL3_ChannelWriteC0(&chip->channel[9 * high + (regm & 0x0f)], v); } break; } } void OPL3_WriteRegBuffered(opl3_chip *chip, Bit16u reg, Bit8u v) { Bit64u time1, time2; if (chip->writebuf[chip->writebuf_last].reg & 0x200) { OPL3_WriteReg(chip, chip->writebuf[chip->writebuf_last].reg & 0x1ff, chip->writebuf[chip->writebuf_last].data); chip->writebuf_cur = (chip->writebuf_last + 1) % OPL_WRITEBUF_SIZE; chip->writebuf_samplecnt = chip->writebuf[chip->writebuf_last].time; } chip->writebuf[chip->writebuf_last].reg = reg | 0x200; chip->writebuf[chip->writebuf_last].data = v; time1 = chip->writebuf_lasttime + OPL_WRITEBUF_DELAY; time2 = chip->writebuf_samplecnt; if (time1 < time2) { time1 = time2; } chip->writebuf[chip->writebuf_last].time = time1; chip->writebuf_lasttime = time1; chip->writebuf_last = (chip->writebuf_last + 1) % OPL_WRITEBUF_SIZE; } void OPL3_GenerateStream(opl3_chip *chip, Bit16s *sndptr, Bit32u numsamples) { Bit32u i; for(i = 0; i < numsamples; i++) { OPL3_GenerateResampled(chip, sndptr); sndptr += 2; } }