ref: ee3113147b03ae312f3899e78865fb98116d73ab
dir: /src/sha1.c/
/* sha1.c - SHA1 hash function * Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc. * * Please see below for more legal information! * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. */ /* Test vectors: * * "abc" * A999 3E36 4706 816A BA3E 2571 7850 C26C 9CD0 D89D * * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" * 8498 3E44 1C3B D26E BAAE 4AA1 F951 29E5 E546 70F1 */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include "i_swap.h" #include "sha1.h" void SHA1_Init(sha1_context_t *hd) { hd->h0 = 0x67452301; hd->h1 = 0xefcdab89; hd->h2 = 0x98badcfe; hd->h3 = 0x10325476; hd->h4 = 0xc3d2e1f0; hd->nblocks = 0; hd->count = 0; } /**************** * Transform the message X which consists of 16 32-bit-words */ static void Transform(sha1_context_t *hd, byte *data) { uint32_t a,b,c,d,e,tm; uint32_t x[16]; /* get values from the chaining vars */ a = hd->h0; b = hd->h1; c = hd->h2; d = hd->h3; e = hd->h4; #ifdef SYS_BIG_ENDIAN memcpy(x, data, 64); #else { int i; byte *p2; for(i=0, p2=(byte*)x; i < 16; i++, p2 += 4 ) { p2[3] = *data++; p2[2] = *data++; p2[1] = *data++; p2[0] = *data++; } } #endif #define K1 0x5A827999L #define K2 0x6ED9EBA1L #define K3 0x8F1BBCDCL #define K4 0xCA62C1D6L #define F1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) #define F2(x,y,z) ( x ^ y ^ z ) #define F3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) #define F4(x,y,z) ( x ^ y ^ z ) #define rol(x,n) ( ((x) << (n)) | ((x) >> (32-(n))) ) #define M(i) ( tm = x[i&0x0f] ^ x[(i-14)&0x0f] \ ^ x[(i-8)&0x0f] ^ x[(i-3)&0x0f] \ , (x[i&0x0f] = rol(tm,1)) ) #define R(a,b,c,d,e,f,k,m) do { e += rol( a, 5 ) \ + f( b, c, d ) \ + k \ + m; \ b = rol( b, 30 ); \ } while(0) R( a, b, c, d, e, F1, K1, x[ 0] ); R( e, a, b, c, d, F1, K1, x[ 1] ); R( d, e, a, b, c, F1, K1, x[ 2] ); R( c, d, e, a, b, F1, K1, x[ 3] ); R( b, c, d, e, a, F1, K1, x[ 4] ); R( a, b, c, d, e, F1, K1, x[ 5] ); R( e, a, b, c, d, F1, K1, x[ 6] ); R( d, e, a, b, c, F1, K1, x[ 7] ); R( c, d, e, a, b, F1, K1, x[ 8] ); R( b, c, d, e, a, F1, K1, x[ 9] ); R( a, b, c, d, e, F1, K1, x[10] ); R( e, a, b, c, d, F1, K1, x[11] ); R( d, e, a, b, c, F1, K1, x[12] ); R( c, d, e, a, b, F1, K1, x[13] ); R( b, c, d, e, a, F1, K1, x[14] ); R( a, b, c, d, e, F1, K1, x[15] ); R( e, a, b, c, d, F1, K1, M(16) ); R( d, e, a, b, c, F1, K1, M(17) ); R( c, d, e, a, b, F1, K1, M(18) ); R( b, c, d, e, a, F1, K1, M(19) ); R( a, b, c, d, e, F2, K2, M(20) ); R( e, a, b, c, d, F2, K2, M(21) ); R( d, e, a, b, c, F2, K2, M(22) ); R( c, d, e, a, b, F2, K2, M(23) ); R( b, c, d, e, a, F2, K2, M(24) ); R( a, b, c, d, e, F2, K2, M(25) ); R( e, a, b, c, d, F2, K2, M(26) ); R( d, e, a, b, c, F2, K2, M(27) ); R( c, d, e, a, b, F2, K2, M(28) ); R( b, c, d, e, a, F2, K2, M(29) ); R( a, b, c, d, e, F2, K2, M(30) ); R( e, a, b, c, d, F2, K2, M(31) ); R( d, e, a, b, c, F2, K2, M(32) ); R( c, d, e, a, b, F2, K2, M(33) ); R( b, c, d, e, a, F2, K2, M(34) ); R( a, b, c, d, e, F2, K2, M(35) ); R( e, a, b, c, d, F2, K2, M(36) ); R( d, e, a, b, c, F2, K2, M(37) ); R( c, d, e, a, b, F2, K2, M(38) ); R( b, c, d, e, a, F2, K2, M(39) ); R( a, b, c, d, e, F3, K3, M(40) ); R( e, a, b, c, d, F3, K3, M(41) ); R( d, e, a, b, c, F3, K3, M(42) ); R( c, d, e, a, b, F3, K3, M(43) ); R( b, c, d, e, a, F3, K3, M(44) ); R( a, b, c, d, e, F3, K3, M(45) ); R( e, a, b, c, d, F3, K3, M(46) ); R( d, e, a, b, c, F3, K3, M(47) ); R( c, d, e, a, b, F3, K3, M(48) ); R( b, c, d, e, a, F3, K3, M(49) ); R( a, b, c, d, e, F3, K3, M(50) ); R( e, a, b, c, d, F3, K3, M(51) ); R( d, e, a, b, c, F3, K3, M(52) ); R( c, d, e, a, b, F3, K3, M(53) ); R( b, c, d, e, a, F3, K3, M(54) ); R( a, b, c, d, e, F3, K3, M(55) ); R( e, a, b, c, d, F3, K3, M(56) ); R( d, e, a, b, c, F3, K3, M(57) ); R( c, d, e, a, b, F3, K3, M(58) ); R( b, c, d, e, a, F3, K3, M(59) ); R( a, b, c, d, e, F4, K4, M(60) ); R( e, a, b, c, d, F4, K4, M(61) ); R( d, e, a, b, c, F4, K4, M(62) ); R( c, d, e, a, b, F4, K4, M(63) ); R( b, c, d, e, a, F4, K4, M(64) ); R( a, b, c, d, e, F4, K4, M(65) ); R( e, a, b, c, d, F4, K4, M(66) ); R( d, e, a, b, c, F4, K4, M(67) ); R( c, d, e, a, b, F4, K4, M(68) ); R( b, c, d, e, a, F4, K4, M(69) ); R( a, b, c, d, e, F4, K4, M(70) ); R( e, a, b, c, d, F4, K4, M(71) ); R( d, e, a, b, c, F4, K4, M(72) ); R( c, d, e, a, b, F4, K4, M(73) ); R( b, c, d, e, a, F4, K4, M(74) ); R( a, b, c, d, e, F4, K4, M(75) ); R( e, a, b, c, d, F4, K4, M(76) ); R( d, e, a, b, c, F4, K4, M(77) ); R( c, d, e, a, b, F4, K4, M(78) ); R( b, c, d, e, a, F4, K4, M(79) ); /* update chainig vars */ hd->h0 += a; hd->h1 += b; hd->h2 += c; hd->h3 += d; hd->h4 += e; } /* Update the message digest with the contents * of INBUF with length INLEN. */ void SHA1_Update(sha1_context_t *hd, byte *inbuf, size_t inlen) { if (hd->count == 64) { /* flush the buffer */ Transform(hd, hd->buf); hd->count = 0; hd->nblocks++; } if (!inbuf) return; if (hd->count) { for (; inlen && hd->count < 64; inlen--) hd->buf[hd->count++] = *inbuf++; SHA1_Update(hd, NULL, 0); if (!inlen) return; } while (inlen >= 64) { Transform(hd, inbuf); hd->count = 0; hd->nblocks++; inlen -= 64; inbuf += 64; } for (; inlen && hd->count < 64; inlen--) hd->buf[hd->count++] = *inbuf++; } /* The routine final terminates the computation and * returns the digest. * The handle is prepared for a new cycle, but adding bytes to the * handle will the destroy the returned buffer. * Returns: 20 bytes representing the digest. */ void SHA1_Final(sha1_digest_t digest, sha1_context_t *hd) { uint32_t t, msb, lsb; byte *p; SHA1_Update(hd, NULL, 0); /* flush */; t = hd->nblocks; /* multiply by 64 to make a byte count */ lsb = t << 6; msb = t >> 26; /* add the count */ t = lsb; if ((lsb += hd->count) < t) msb++; /* multiply by 8 to make a bit count */ t = lsb; lsb <<= 3; msb <<= 3; msb |= t >> 29; if (hd->count < 56) { /* enough room */ hd->buf[hd->count++] = 0x80; /* pad */ while (hd->count < 56) hd->buf[hd->count++] = 0; /* pad */ } else { /* need one extra block */ hd->buf[hd->count++] = 0x80; /* pad character */ while (hd->count < 64) hd->buf[hd->count++] = 0; SHA1_Update(hd, NULL, 0); /* flush */; memset(hd->buf, 0, 56 ); /* fill next block with zeroes */ } /* append the 64 bit count */ hd->buf[56] = msb >> 24; hd->buf[57] = msb >> 16; hd->buf[58] = msb >> 8; hd->buf[59] = msb ; hd->buf[60] = lsb >> 24; hd->buf[61] = lsb >> 16; hd->buf[62] = lsb >> 8; hd->buf[63] = lsb ; Transform(hd, hd->buf); p = hd->buf; #ifdef SYS_BIG_ENDIAN #define X(a) do { *(uint32_t*)p = hd->h##a ; p += 4; } while(0) #else /* little endian */ #define X(a) do { *p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \ *p++ = hd->h##a >> 8; *p++ = hd->h##a; } while(0) #endif X(0); X(1); X(2); X(3); X(4); #undef X memcpy(digest, hd->buf, sizeof(sha1_digest_t)); } void SHA1_UpdateInt32(sha1_context_t *context, unsigned int val) { byte buf[4]; buf[0] = (val >> 24) & 0xff; buf[1] = (val >> 16) & 0xff; buf[2] = (val >> 8) & 0xff; buf[3] = val & 0xff; SHA1_Update(context, buf, 4); } void SHA1_UpdateString(sha1_context_t *context, char *str) { SHA1_Update(context, (byte *) str, strlen(str) + 1); }