ref: 11e25b5aa51c9072800581b6c4d7050fd7b06b19
dir: /DoConfig/fltk/src/fl_draw_image.cxx/
// // "$Id$" // // Image drawing routines for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2010 by Bill Spitzak and others. // // This library is free software. Distribution and use rights are outlined in // the file "COPYING" which should have been included with this file. If this // file is missing or damaged, see the license at: // // http://www.fltk.org/COPYING.php // // Please report all bugs and problems on the following page: // // http://www.fltk.org/str.php // // I hope a simple and portable method of drawing color and monochrome // images. To keep this simple, only a single storage type is // supported: 8 bit unsigned data, byte order RGB, and pixels are // stored packed into rows with the origin at the top-left. It is // possible to alter the size of pixels with the "delta" argument, to // add alpha or other information per pixel. It is also possible to // change the origin and direction of the image data by messing with // the "delta" and "linedelta", making them negative, though this may // defeat some of the shortcuts in translating the image for X. #ifdef WIN32 # include "fl_draw_image_win32.cxx" #elif defined(__APPLE__) # include "fl_draw_image_mac.cxx" #else // A list of assumptions made about the X display: // bits_per_pixel must be one of 8, 16, 24, 32. // scanline_pad must be a power of 2 and greater or equal to 8. // PsuedoColor visuals must have 8 bits_per_pixel (although the depth // may be less than 8). This is the only limitation that affects any // modern X displays, you can't use 12 or 16 bit colormaps. // The mask bits in TrueColor visuals for each color are // contiguous and have at least one bit of each color. This // is not checked for. // For 24 and 32 bit visuals there must be at least 8 bits of each color. //////////////////////////////////////////////////////////////// # include <FL/Fl.H> # include <FL/fl_draw.H> # include <FL/x.H> # include "Fl_XColor.H" # include "flstring.h" static XImage xi; // template used to pass info to X static int bytes_per_pixel; static int scanline_add; static int scanline_mask; static void (*converter)(const uchar *from, uchar *to, int w, int delta); static void (*mono_converter)(const uchar *from, uchar *to, int w, int delta); static int dir; // direction-alternator static int ri,gi,bi; // saved error-diffusion value # if USE_COLORMAP //////////////////////////////////////////////////////////////// // 8-bit converter with error diffusion static void color8_converter(const uchar *from, uchar *to, int w, int delta) { int r=ri, g=gi, b=bi; int d, td; if (dir) { dir = 0; from = from+(w-1)*delta; to = to+(w-1); d = -delta; td = -1; } else { dir = 1; d = delta; td = 1; } for (; w--; from += d, to += td) { r += from[0]; if (r < 0) r = 0; else if (r>255) r = 255; g += from[1]; if (g < 0) g = 0; else if (g>255) g = 255; b += from[2]; if (b < 0) b = 0; else if (b>255) b = 255; Fl_Color i = fl_color_cube(r*FL_NUM_RED/256,g*FL_NUM_GREEN/256,b*FL_NUM_BLUE/256); Fl_XColor& xmap = fl_xmap[0][i]; if (!xmap.mapped) {if (!fl_redmask) fl_xpixel(r,g,b); else fl_xpixel(i);} r -= xmap.r; g -= xmap.g; b -= xmap.b; *to = uchar(xmap.pixel); } ri = r; gi = g; bi = b; } static void mono8_converter(const uchar *from, uchar *to, int w, int delta) { int r=ri, g=gi, b=bi; int d, td; if (dir) { dir = 0; from = from+(w-1)*delta; to = to+(w-1); d = -delta; td = -1; } else { dir = 1; d = delta; td = 1; } for (; w--; from += d, to += td) { r += from[0]; if (r < 0) r = 0; else if (r>255) r = 255; g += from[0]; if (g < 0) g = 0; else if (g>255) g = 255; b += from[0]; if (b < 0) b = 0; else if (b>255) b = 255; Fl_Color i = fl_color_cube(r*FL_NUM_RED/256,g*FL_NUM_GREEN/256,b*FL_NUM_BLUE/256); Fl_XColor& xmap = fl_xmap[0][i]; if (!xmap.mapped) {if (!fl_redmask) fl_xpixel(r,g,b); else fl_xpixel(i);} r -= xmap.r; g -= xmap.g; b -= xmap.b; *to = uchar(xmap.pixel); } ri = r; gi = g; bi = b; } # endif //////////////////////////////////////////////////////////////// // 16 bit TrueColor converters with error diffusion // Cray computers have no 16-bit type, so we use character pointers // (which may be slow) # ifdef U16 # define OUTTYPE U16 # define OUTSIZE 1 # define OUTASSIGN(v) *t = v # else # define OUTTYPE uchar # define OUTSIZE 2 # define OUTASSIGN(v) int tt=v; t[0] = uchar(tt>>8); t[1] = uchar(tt) # endif static void color16_converter(const uchar *from, uchar *to, int w, int delta) { OUTTYPE *t = (OUTTYPE *)to; int d, td; if (dir) { dir = 0; from = from+(w-1)*delta; t = t+(w-1)*OUTSIZE; d = -delta; td = -OUTSIZE; } else { dir = 1; d = delta; td = OUTSIZE; } int r=ri, g=gi, b=bi; for (; w--; from += d, t += td) { r = (r&~fl_redmask) +from[0]; if (r>255) r = 255; g = (g&~fl_greenmask)+from[1]; if (g>255) g = 255; b = (b&~fl_bluemask) +from[2]; if (b>255) b = 255; OUTASSIGN(( ((r&fl_redmask)<<fl_redshift)+ ((g&fl_greenmask)<<fl_greenshift)+ ((b&fl_bluemask)<<fl_blueshift) ) >> fl_extrashift); } ri = r; gi = g; bi = b; } static void mono16_converter(const uchar *from,uchar *to,int w, int delta) { OUTTYPE *t = (OUTTYPE *)to; int d, td; if (dir) { dir = 0; from = from+(w-1)*delta; t = t+(w-1)*OUTSIZE; d = -delta; td = -OUTSIZE; } else { dir = 1; d = delta; td = OUTSIZE; } uchar mask = fl_redmask & fl_greenmask & fl_bluemask; int r=ri; for (; w--; from += d, t += td) { r = (r&~mask) + *from; if (r > 255) r = 255; uchar m = r&mask; OUTASSIGN(( (m<<fl_redshift)+ (m<<fl_greenshift)+ (m<<fl_blueshift) ) >> fl_extrashift); } ri = r; } // special-case the 5r6g5b layout used by XFree86: static void c565_converter(const uchar *from, uchar *to, int w, int delta) { OUTTYPE *t = (OUTTYPE *)to; int d, td; if (dir) { dir = 0; from = from+(w-1)*delta; t = t+(w-1)*OUTSIZE; d = -delta; td = -OUTSIZE; } else { dir = 1; d = delta; td = OUTSIZE; } int r=ri, g=gi, b=bi; for (; w--; from += d, t += td) { r = (r&7)+from[0]; if (r>255) r = 255; g = (g&3)+from[1]; if (g>255) g = 255; b = (b&7)+from[2]; if (b>255) b = 255; OUTASSIGN(((r&0xf8)<<8) + ((g&0xfc)<<3) + (b>>3)); } ri = r; gi = g; bi = b; } static void m565_converter(const uchar *from,uchar *to,int w, int delta) { OUTTYPE *t = (OUTTYPE *)to; int d, td; if (dir) { dir = 0; from = from+(w-1)*delta; t = t+(w-1)*OUTSIZE; d = -delta; td = -OUTSIZE; } else { dir = 1; d = delta; td = OUTSIZE; } int r=ri; for (; w--; from += d, t += td) { r = (r&7) + *from; if (r > 255) r = 255; OUTASSIGN((r>>3) * 0x841); } ri = r; } //////////////////////////////////////////////////////////////// // 24bit TrueColor converters: static void rgb_converter(const uchar *from, uchar *to, int w, int delta) { int d = delta-3; for (; w--; from += d) { *to++ = *from++; *to++ = *from++; *to++ = *from++; } } static void bgr_converter(const uchar *from, uchar *to, int w, int delta) { for (; w--; from += delta) { uchar r = from[0]; uchar g = from[1]; *to++ = from[2]; *to++ = g; *to++ = r; } } static void rrr_converter(const uchar *from, uchar *to, int w, int delta) { for (; w--; from += delta) { *to++ = *from; *to++ = *from; *to++ = *from; } } //////////////////////////////////////////////////////////////// // 32bit TrueColor converters on a 32 or 64-bit machine: # ifdef U64 # define STORETYPE U64 # if WORDS_BIGENDIAN # define INNARDS32(f) \ U64 *t = (U64*)to; \ int w1 = w/2; \ for (; w1--; from += delta) {U64 i = f; from += delta; *t++ = (i<<32)|(f);} \ if (w&1) *t++ = (U64)(f)<<32; # else # define INNARDS32(f) \ U64 *t = (U64*)to; \ int w1 = w/2; \ for (; w1--; from += delta) {U64 i = f; from += delta; *t++ = ((U64)(f)<<32)|i;} \ if (w&1) *t++ = (U64)(f); # endif # else # define STORETYPE U32 # define INNARDS32(f) \ U32 *t = (U32*)to; for (; w--; from += delta) *t++ = f # endif static void rgbx_converter(const uchar *from, uchar *to, int w, int delta) { INNARDS32((unsigned(from[0])<<24)+(from[1]<<16)+(from[2]<<8)); } static void xbgr_converter(const uchar *from, uchar *to, int w, int delta) { INNARDS32((from[0])+(from[1]<<8)+(from[2]<<16)); } static void xrgb_converter(const uchar *from, uchar *to, int w, int delta) { INNARDS32((from[0]<<16)+(from[1]<<8)+(from[2])); } static void argb_premul_converter(const uchar *from, uchar *to, int w, int delta) { INNARDS32((unsigned(from[3]) << 24) + (((from[0] * from[3]) / 255) << 16) + (((from[1] * from[3]) / 255) << 8) + ((from[2] * from[3]) / 255)); } static void bgrx_converter(const uchar *from, uchar *to, int w, int delta) { INNARDS32((from[0]<<8)+(from[1]<<16)+(unsigned(from[2])<<24)); } static void rrrx_converter(const uchar *from, uchar *to, int w, int delta) { INNARDS32(unsigned(*from) * 0x1010100U); } static void xrrr_converter(const uchar *from, uchar *to, int w, int delta) { INNARDS32(*from * 0x10101U); } static void color32_converter(const uchar *from, uchar *to, int w, int delta) { INNARDS32( (from[0]<<fl_redshift)+(from[1]<<fl_greenshift)+(from[2]<<fl_blueshift)); } static void mono32_converter(const uchar *from,uchar *to,int w, int delta) { INNARDS32( (*from << fl_redshift)+(*from << fl_greenshift)+(*from << fl_blueshift)); } //////////////////////////////////////////////////////////////// static void figure_out_visual() { fl_xpixel(FL_BLACK); // setup fl_redmask, etc, in fl_color.cxx fl_xpixel(FL_WHITE); // also make sure white is allocated static XPixmapFormatValues *pfvlist; static int FL_NUM_pfv; if (!pfvlist) pfvlist = XListPixmapFormats(fl_display,&FL_NUM_pfv); XPixmapFormatValues *pfv; for (pfv = pfvlist; pfv < pfvlist+FL_NUM_pfv; pfv++) if (pfv->depth == fl_visual->depth) break; xi.format = ZPixmap; xi.byte_order = ImageByteOrder(fl_display); //i.bitmap_unit = 8; //i.bitmap_bit_order = MSBFirst; //i.bitmap_pad = 8; xi.depth = fl_visual->depth; xi.bits_per_pixel = pfv->bits_per_pixel; if (xi.bits_per_pixel & 7) bytes_per_pixel = 0; // produce fatal error else bytes_per_pixel = xi.bits_per_pixel/8; unsigned int n = pfv->scanline_pad/8; if (pfv->scanline_pad & 7 || (n&(n-1))) Fl::fatal("Can't do scanline_pad of %d",pfv->scanline_pad); if (n < sizeof(STORETYPE)) n = sizeof(STORETYPE); scanline_add = n-1; scanline_mask = -n; # if USE_COLORMAP if (bytes_per_pixel == 1) { converter = color8_converter; mono_converter = mono8_converter; return; } if (!fl_visual->red_mask) Fl::fatal("Can't do %d bits_per_pixel colormap",xi.bits_per_pixel); # endif // otherwise it is a TrueColor visual: int rs = fl_redshift; int gs = fl_greenshift; int bs = fl_blueshift; switch (bytes_per_pixel) { case 2: // All 16-bit TrueColor visuals are supported on any machine with // 24 or more bits per integer. # ifdef U16 xi.byte_order = WORDS_BIGENDIAN; # else xi.byte_order = 1; # endif if (rs == 11 && gs == 6 && bs == 0 && fl_extrashift == 3) { converter = c565_converter; mono_converter = m565_converter; } else { converter = color16_converter; mono_converter = mono16_converter; } break; case 3: if (xi.byte_order) {rs = 16-rs; gs = 16-gs; bs = 16-bs;} if (rs == 0 && gs == 8 && bs == 16) { converter = rgb_converter; mono_converter = rrr_converter; } else if (rs == 16 && gs == 8 && bs == 0) { converter = bgr_converter; mono_converter = rrr_converter; } else { Fl::fatal("Can't do arbitrary 24bit color"); } break; case 4: if ((xi.byte_order!=0) != WORDS_BIGENDIAN) {rs = 24-rs; gs = 24-gs; bs = 24-bs;} if (rs == 0 && gs == 8 && bs == 16) { converter = xbgr_converter; mono_converter = xrrr_converter; } else if (rs == 24 && gs == 16 && bs == 8) { converter = rgbx_converter; mono_converter = rrrx_converter; } else if (rs == 8 && gs == 16 && bs == 24) { converter = bgrx_converter; mono_converter = rrrx_converter; } else if (rs == 16 && gs == 8 && bs == 0) { converter = xrgb_converter; mono_converter = xrrr_converter; } else { xi.byte_order = WORDS_BIGENDIAN; converter = color32_converter; mono_converter = mono32_converter; } break; default: Fl::fatal("Can't do %d bits_per_pixel",xi.bits_per_pixel); } } # define MAXBUFFER 0x40000 // 256k static void innards(const uchar *buf, int X, int Y, int W, int H, int delta, int linedelta, int mono, Fl_Draw_Image_Cb cb, void* userdata, const bool alpha) { if (!linedelta) linedelta = W*abs(delta); int dx, dy, w, h; fl_clip_box(X,Y,W,H,dx,dy,w,h); if (w<=0 || h<=0) return; dx -= X; dy -= Y; if (!bytes_per_pixel) figure_out_visual(); const unsigned oldbpp = bytes_per_pixel; const GC oldgc = fl_gc; static GC gc32 = None; xi.width = w; xi.height = h; void (*conv)(const uchar *from, uchar *to, int w, int delta) = converter; if (mono) conv = mono_converter; if (alpha) { // This flag states the destination format is ARGB32 (big-endian), pre-multiplied. bytes_per_pixel = 4; conv = argb_premul_converter; xi.depth = 32; xi.bits_per_pixel = 32; // Do we need a new GC? if (fl_visual->depth != 32) { if (gc32 == None) gc32 = XCreateGC(fl_display, fl_window, 0, NULL); fl_gc = gc32; } } // See if the data is already in the right format. Unfortunately // some 32-bit x servers (XFree86) care about the unknown 8 bits // and they must be zero. I can't confirm this for user-supplied // data, so the 32-bit shortcut is disabled... // This can set bytes_per_line negative if image is bottom-to-top // I tested it on Linux, but it may fail on other Xlib implementations: if (buf && ( # if 0 // set this to 1 to allow 32-bit shortcut delta == 4 && # if WORDS_BIGENDIAN conv == rgbx_converter # else conv == xbgr_converter # endif || # endif conv == rgb_converter && delta==3 ) && !(linedelta&scanline_add)) { xi.data = (char *)(buf+delta*dx+linedelta*dy); xi.bytes_per_line = linedelta; } else { int linesize = ((w*bytes_per_pixel+scanline_add)&scanline_mask)/sizeof(STORETYPE); int blocking = h; static STORETYPE *buffer; // our storage, always word aligned static long buffer_size; {int size = linesize*h; if (size > MAXBUFFER) { size = MAXBUFFER; blocking = MAXBUFFER/linesize; } if (size > buffer_size) { delete[] buffer; buffer_size = size; buffer = new STORETYPE[size]; }} xi.data = (char *)buffer; xi.bytes_per_line = linesize*sizeof(STORETYPE); if (buf) { buf += delta*dx+linedelta*dy; for (int j=0; j<h; ) { STORETYPE *to = buffer; int k; for (k = 0; j<h && k<blocking; k++, j++) { conv(buf, (uchar*)to, w, delta); buf += linedelta; to += linesize; } XPutImage(fl_display,fl_window,fl_gc, &xi, 0, 0, X+dx, Y+dy+j-k, w, k); } } else { STORETYPE* linebuf = new STORETYPE[(W*delta+(sizeof(STORETYPE)-1))/sizeof(STORETYPE)]; for (int j=0; j<h; ) { STORETYPE *to = buffer; int k; for (k = 0; j<h && k<blocking; k++, j++) { cb(userdata, dx, dy+j, w, (uchar*)linebuf); conv((uchar*)linebuf, (uchar*)to, w, delta); to += linesize; } XPutImage(fl_display,fl_window,fl_gc, &xi, 0, 0, X+dx, Y+dy+j-k, w, k); } delete[] linebuf; } } if (alpha) { bytes_per_pixel = oldbpp; xi.depth = fl_visual->depth; xi.bits_per_pixel = oldbpp * 8; if (fl_visual->depth != 32) { fl_gc = oldgc; } } } void Fl_Xlib_Graphics_Driver::draw_image(const uchar* buf, int x, int y, int w, int h, int d, int l){ const bool alpha = !!(abs(d) & FL_IMAGE_WITH_ALPHA); if (alpha) d ^= FL_IMAGE_WITH_ALPHA; const int mono = (d>-3 && d<3); innards(buf,x,y,w,h,d,l,mono,0,0,alpha); } void Fl_Xlib_Graphics_Driver::draw_image(Fl_Draw_Image_Cb cb, void* data, int x, int y, int w, int h,int d) { const bool alpha = !!(abs(d) & FL_IMAGE_WITH_ALPHA); if (alpha) d ^= FL_IMAGE_WITH_ALPHA; const int mono = (d>-3 && d<3); innards(0,x,y,w,h,d,0,mono,cb,data,alpha); } void Fl_Xlib_Graphics_Driver::draw_image_mono(const uchar* buf, int x, int y, int w, int h, int d, int l){ innards(buf,x,y,w,h,d,l,1,0,0,0); } void Fl_Xlib_Graphics_Driver::draw_image_mono(Fl_Draw_Image_Cb cb, void* data, int x, int y, int w, int h,int d) { innards(0,x,y,w,h,d,0,1,cb,data,0); } void fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b) { if (fl_visual->depth > 16) { fl_color(r,g,b); fl_rectf(x,y,w,h); } else { uchar c[3]; c[0] = r; c[1] = g; c[2] = b; innards(c,x,y,w,h,0,0,0,0,0,0); } } #endif // // End of "$Id$". //