ref: 11e25b5aa51c9072800581b6c4d7050fd7b06b19
dir: /DoConfig/fltk/src/fl_read_image.cxx/
// // "$Id$" // // X11 image reading routines for the Fast Light Tool Kit (FLTK). // // Copyright 1998-2014 by Bill Spitzak and others. // // This library is free software. Distribution and use rights are outlined in // the file "COPYING" which should have been included with this file. If this // file is missing or damaged, see the license at: // // http://www.fltk.org/COPYING.php // // Please report all bugs and problems on the following page: // // http://www.fltk.org/str.php // #include <FL/x.H> #include <FL/Fl.H> #include <FL/fl_draw.H> #include "flstring.h" #ifdef DEBUG # include <stdio.h> #endif // DEBUG #if defined(__APPLE__) # include "fl_read_image_mac.cxx" #else # include <FL/Fl_RGB_Image.H> # include <FL/Fl_Window.H> # include <FL/Fl_Plugin.H> # include <FL/Fl_Device.H> static uchar *read_win_rectangle(uchar *p, int X, int Y, int w, int h, int alpha); static void write_image_inside(Fl_RGB_Image *to, Fl_RGB_Image *from, int to_x, int to_y) /* Copy the image "from" inside image "to" with its top-left angle at coordinates to_x, to_y. Also, exchange top and bottom of "from". Image depth can differ between "to" and "from". */ { int to_ld = (to->ld() == 0? to->w() * to->d() : to->ld()); int from_ld = (from->ld() == 0? from->w() * from->d() : from->ld()); uchar *tobytes = (uchar*)to->array + to_y * to_ld + to_x * to->d(); const uchar *frombytes = from->array + (from->h() - 1) * from_ld; for (int i = from->h() - 1; i >= 0; i--) { if (from->d() == to->d()) memcpy(tobytes, frombytes, from->w() * from->d()); else { for (int j = 0; j < from->w(); j++) { memcpy(tobytes + j * to->d(), frombytes + j * from->d(), from->d()); } } tobytes += to_ld; frombytes -= from_ld; } } /* Captures rectangle x,y,w,h from a mapped window or GL window. All sub-GL-windows that intersect x,y,w,h, and their subwindows, are also captured. Arguments when this function is initially called: g: a window or GL window p: as in fl_read_image() x,y,w,h: a rectangle in window g's coordinates alpha: as in fl_read_image() full_img: NULL Arguments when this function recursively calls itself: g: an Fl_Group p: as above x,y,w,h: a rectangle in g's coordinates if g is a window, or in g's parent window coords if g is a group alpha: as above full_img: NULL, or a previously captured image that encompasses the x,y,w,h rectangle and that will be partially overwritten with the new capture Return value: An Fl_RGB_Image* of depth 4 if alpha>0 or 3 if alpha = 0 containing the captured pixels. */ static Fl_RGB_Image *traverse_to_gl_subwindows(Fl_Group *g, uchar *p, int x, int y, int w, int h, int alpha, Fl_RGB_Image *full_img) { if ( g->as_gl_window() ) { Fl_Plugin_Manager pm("fltk:device"); Fl_Device_Plugin *pi = (Fl_Device_Plugin*)pm.plugin("opengl.device.fltk.org"); if (!pi) return full_img; Fl_RGB_Image *img = pi->rectangle_capture(g, x, y, w, h); // bottom to top image if (full_img) full_img = img; // top and bottom will be exchanged later else { // exchange top and bottom to get a proper FLTK image uchar *data = ( p ? p : new uchar[img->w() * img->h() * (alpha?4:3)] ); full_img = new Fl_RGB_Image(data, img->w(), img->h(), alpha?4:3); if (!p) full_img->alloc_array = 1; if (alpha) memset(data, alpha, img->w() * img->h() * 4); write_image_inside(full_img, img, 0, 0); delete img; } } else if ( g->as_window() && (!full_img || (g->window() && g->window()->as_gl_window())) ) { // the starting window or one inside a GL window if (full_img) g->as_window()->make_current(); uchar *image_data; int alloc_img = (full_img != NULL || p == NULL); // false means use p, don't alloc new memory for image #ifdef __APPLE_CC__ // on Darwin + X11, read_win_rectangle() sometimes returns NULL when there are subwindows do image_data = read_win_rectangle( (alloc_img ? NULL : p), x, y, w, h, alpha); while (!image_data); #else image_data = read_win_rectangle( (alloc_img ? NULL : p), x, y, w, h, alpha); #endif full_img = new Fl_RGB_Image(image_data, w, h, alpha?4:3); if (alloc_img) full_img->alloc_array = 1; } int n = g->children(); for (int i = 0; i < n; i++) { Fl_Widget *c = g->child(i); if ( !c->visible() || !c->as_group()) continue; if ( c->as_window() ) { int origin_x = x; // compute intersection of x,y,w,h and the c window if (x < c->x()) origin_x = c->x(); int origin_y = y; if (y < c->y()) origin_y = c->y(); int width = c->w(); if (origin_x + width > c->x() + c->w()) width = c->x() + c->w() - origin_x; if (origin_x + width > x + w) width = x + w - origin_x; int height = c->w(); if (origin_y + height > c->y() + c->h()) height = c->y() + c->h() - origin_y; if (origin_y + height > y + h) height = y + h - origin_y; if (width > 0 && height > 0) { Fl_RGB_Image *img = traverse_to_gl_subwindows(c->as_window(), p, origin_x - c->x(), origin_y - c->y(), width, height, alpha, full_img); if (img == full_img) continue; int top; if (c->as_gl_window()) { top = origin_y - y; } else { top = full_img->h() - (origin_y - y + img->h()); } write_image_inside(full_img, img, origin_x - x, top); delete img; } } else traverse_to_gl_subwindows(c->as_group(), p, x, y, w, h, alpha, full_img); } return full_img; } // // 'fl_read_image()' - Read an image from the current window or off-screen buffer // this is the version for X11 and WIN32. The mac version is in fl_read_image_mac.cxx uchar * // O - Pixel buffer or NULL if failed fl_read_image(uchar *p, // I - Pixel buffer or NULL to allocate int X, // I - Left position int Y, // I - Top position int w, // I - Width of area to read // negative allows capture of window title bar and frame (X11 only) int h, // I - Height of area to read int alpha)// I - Alpha value for image (0 for none) { if (w < 0 || fl_find(fl_window) == 0) { // read from off_screen buffer or title bar and frame return read_win_rectangle(p, X, Y, w, h, alpha); // this function has an X11 and a WIN32 version } Fl_RGB_Image *img = traverse_to_gl_subwindows(Fl_Window::current(), p, X, Y, w, h, alpha, NULL); uchar *image_data = (uchar*)img->array; img->alloc_array = 0; delete img; return image_data; } #ifdef WIN32 # include "fl_read_image_win32.cxx" // gives the WIN32 version of read_win_rectangle() #else # include <X11/Xutil.h> # ifdef __sgi # include <X11/extensions/readdisplay.h> # else # include <stdlib.h> # endif // __sgi // Defined in fl_color.cxx extern uchar fl_redmask, fl_greenmask, fl_bluemask; extern int fl_redshift, fl_greenshift, fl_blueshift, fl_extrashift; // // 'fl_subimage_offsets()' - Calculate subimage offsets for an axis static inline int fl_subimage_offsets(int a, int aw, int b, int bw, int &obw) { int off; int ob; if (b >= a) { ob = b; off = 0; } else { ob = a; off = a - b; } bw -= off; if (ob + bw <= a + aw) { obw = bw; } else { obw = (a + aw) - ob; } return off; } // this handler will catch and ignore exceptions during XGetImage // to avoid an application crash extern "C" { static int xgetimageerrhandler(Display *display, XErrorEvent *error) { return 0; } } static uchar *read_win_rectangle(uchar *p, int X, int Y, int w, int h, int alpha) { XImage *image; // Captured image int i, maxindex; // Looping vars int x, y; // Current X & Y in image int d; // Depth of image unsigned char *line, // Array to hold image row *line_ptr; // Pointer to current line image unsigned char *pixel; // Current color value XColor colors[4096]; // Colors from the colormap... unsigned char cvals[4096][3]; // Color values from the colormap... unsigned index_mask, index_shift, red_mask, red_shift, green_mask, green_shift, blue_mask, blue_shift; // // Under X11 we have the option of the XGetImage() interface or SGI's // ReadDisplay extension which does all of the really hard work for // us... // int allow_outside = w < 0; // negative w allows negative X or Y, that is, window frame if (w < 0) w = - w; # ifdef __sgi if (XReadDisplayQueryExtension(fl_display, &i, &i)) { image = XReadDisplay(fl_display, fl_window, X, Y, w, h, 0, NULL); } else # else image = 0; # endif // __sgi if (!image) { // fetch absolute coordinates int dx, dy, sx, sy, sw, sh; Window child_win; Fl_Window *win; if (allow_outside) win = (Fl_Window*)1; else win = fl_find(fl_window); if (win) { XTranslateCoordinates(fl_display, fl_window, RootWindow(fl_display, fl_screen), X, Y, &dx, &dy, &child_win); // screen dimensions Fl::screen_xywh(sx, sy, sw, sh, fl_screen); } if (!win || (dx >= sx && dy >= sy && dx + w <= sx+sw && dy + h <= sy+sh)) { // the image is fully contained, we can use the traditional method // however, if the window is obscured etc. the function will still fail. Make sure we // catch the error and continue, otherwise an exception will be thrown. XErrorHandler old_handler = XSetErrorHandler(xgetimageerrhandler); image = XGetImage(fl_display, fl_window, X, Y, w, h, AllPlanes, ZPixmap); XSetErrorHandler(old_handler); } else { // image is crossing borders, determine visible region int nw, nh, noffx, noffy; noffx = fl_subimage_offsets(sx, sw, dx, w, nw); noffy = fl_subimage_offsets(sy, sh, dy, h, nh); if (nw <= 0 || nh <= 0) return 0; // allocate the image int bpp = fl_visual->depth + ((fl_visual->depth / 8) % 2) * 8; char* buf = (char*)malloc(bpp / 8 * w * h); image = XCreateImage(fl_display, fl_visual->visual, fl_visual->depth, ZPixmap, 0, buf, w, h, bpp, 0); if (!image) { if (buf) free(buf); return 0; } XErrorHandler old_handler = XSetErrorHandler(xgetimageerrhandler); XImage *subimg = XGetSubImage(fl_display, fl_window, X + noffx, Y + noffy, nw, nh, AllPlanes, ZPixmap, image, noffx, noffy); XSetErrorHandler(old_handler); if (!subimg) { XDestroyImage(image); return 0; } } } if (!image) return 0; #ifdef DEBUG printf("width = %d\n", image->width); printf("height = %d\n", image->height); printf("xoffset = %d\n", image->xoffset); printf("format = %d\n", image->format); printf("data = %p\n", image->data); printf("byte_order = %d\n", image->byte_order); printf("bitmap_unit = %d\n", image->bitmap_unit); printf("bitmap_bit_order = %d\n", image->bitmap_bit_order); printf("bitmap_pad = %d\n", image->bitmap_pad); printf("depth = %d\n", image->depth); printf("bytes_per_line = %d\n", image->bytes_per_line); printf("bits_per_pixel = %d\n", image->bits_per_pixel); printf("red_mask = %08x\n", image->red_mask); printf("green_mask = %08x\n", image->green_mask); printf("blue_mask = %08x\n", image->blue_mask); printf("map_entries = %d\n", fl_visual->visual->map_entries); #endif // DEBUG d = alpha ? 4 : 3; // Allocate the image data array as needed... if (!p) p = new uchar[w * h * d]; // Initialize the default colors/alpha in the whole image... memset(p, alpha, w * h * d); // Check that we have valid mask/shift values... if (!image->red_mask && image->bits_per_pixel > 12) { // Greater than 12 bits must be TrueColor... image->red_mask = fl_visual->visual->red_mask; image->green_mask = fl_visual->visual->green_mask; image->blue_mask = fl_visual->visual->blue_mask; #ifdef DEBUG puts("\n---- UPDATED ----"); printf("fl_redmask = %08x\n", fl_redmask); printf("fl_redshift = %d\n", fl_redshift); printf("fl_greenmask = %08x\n", fl_greenmask); printf("fl_greenshift = %d\n", fl_greenshift); printf("fl_bluemask = %08x\n", fl_bluemask); printf("fl_blueshift = %d\n", fl_blueshift); printf("red_mask = %08x\n", image->red_mask); printf("green_mask = %08x\n", image->green_mask); printf("blue_mask = %08x\n", image->blue_mask); #endif // DEBUG } // Check if we have colormap image... if (!image->red_mask) { // Get the colormap entries for this window... maxindex = fl_visual->visual->map_entries; for (i = 0; i < maxindex; i ++) colors[i].pixel = i; XQueryColors(fl_display, fl_colormap, colors, maxindex); for (i = 0; i < maxindex; i ++) { cvals[i][0] = colors[i].red >> 8; cvals[i][1] = colors[i].green >> 8; cvals[i][2] = colors[i].blue >> 8; } // Read the pixels and output an RGB image... for (y = 0; y < image->height; y ++) { pixel = (unsigned char *)(image->data + y * image->bytes_per_line); line = p + y * w * d; switch (image->bits_per_pixel) { case 1 : for (x = image->width, line_ptr = line, index_mask = 128; x > 0; x --, line_ptr += d) { if (*pixel & index_mask) { line_ptr[0] = cvals[1][0]; line_ptr[1] = cvals[1][1]; line_ptr[2] = cvals[1][2]; } else { line_ptr[0] = cvals[0][0]; line_ptr[1] = cvals[0][1]; line_ptr[2] = cvals[0][2]; } if (index_mask > 1) { index_mask >>= 1; } else { index_mask = 128; pixel ++; } } break; case 2 : for (x = image->width, line_ptr = line, index_shift = 6; x > 0; x --, line_ptr += d) { i = (*pixel >> index_shift) & 3; line_ptr[0] = cvals[i][0]; line_ptr[1] = cvals[i][1]; line_ptr[2] = cvals[i][2]; if (index_shift > 0) { index_mask >>= 2; index_shift -= 2; } else { index_mask = 192; index_shift = 6; pixel ++; } } break; case 4 : for (x = image->width, line_ptr = line, index_shift = 4; x > 0; x --, line_ptr += d) { if (index_shift == 4) i = (*pixel >> 4) & 15; else i = *pixel & 15; line_ptr[0] = cvals[i][0]; line_ptr[1] = cvals[i][1]; line_ptr[2] = cvals[i][2]; if (index_shift > 0) { index_shift = 0; } else { index_shift = 4; pixel ++; } } break; case 8 : for (x = image->width, line_ptr = line; x > 0; x --, line_ptr += d, pixel ++) { line_ptr[0] = cvals[*pixel][0]; line_ptr[1] = cvals[*pixel][1]; line_ptr[2] = cvals[*pixel][2]; } break; case 12 : for (x = image->width, line_ptr = line, index_shift = 0; x > 0; x --, line_ptr += d) { if (index_shift == 0) { i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095; } else { i = ((pixel[1] << 8) | pixel[2]) & 4095; } line_ptr[0] = cvals[i][0]; line_ptr[1] = cvals[i][1]; line_ptr[2] = cvals[i][2]; if (index_shift == 0) { index_shift = 4; } else { index_shift = 0; pixel += 3; } } break; } } } else { // RGB(A) image, so figure out the shifts & masks... red_mask = image->red_mask; red_shift = 0; while ((red_mask & 1) == 0) { red_mask >>= 1; red_shift ++; } green_mask = image->green_mask; green_shift = 0; while ((green_mask & 1) == 0) { green_mask >>= 1; green_shift ++; } blue_mask = image->blue_mask; blue_shift = 0; while ((blue_mask & 1) == 0) { blue_mask >>= 1; blue_shift ++; } // Read the pixels and output an RGB image... for (y = 0; y < image->height; y ++) { pixel = (unsigned char *)(image->data + y * image->bytes_per_line); line = p + y * w * d; switch (image->bits_per_pixel) { case 8 : for (x = image->width, line_ptr = line; x > 0; x --, line_ptr += d, pixel ++) { i = *pixel; line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask; line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask; line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask; } break; case 12 : for (x = image->width, line_ptr = line, index_shift = 0; x > 0; x --, line_ptr += d) { if (index_shift == 0) { i = ((pixel[0] << 4) | (pixel[1] >> 4)) & 4095; } else { i = ((pixel[1] << 8) | pixel[2]) & 4095; } line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask; line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask; line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask; if (index_shift == 0) { index_shift = 4; } else { index_shift = 0; pixel += 3; } } break; case 16 : if (image->byte_order == LSBFirst) { // Little-endian... for (x = image->width, line_ptr = line; x > 0; x --, line_ptr += d, pixel += 2) { i = (pixel[1] << 8) | pixel[0]; line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask; line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask; line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask; } } else { // Big-endian... for (x = image->width, line_ptr = line; x > 0; x --, line_ptr += d, pixel += 2) { i = (pixel[0] << 8) | pixel[1]; line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask; line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask; line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask; } } break; case 24 : if (image->byte_order == LSBFirst) { // Little-endian... for (x = image->width, line_ptr = line; x > 0; x --, line_ptr += d, pixel += 3) { i = (((pixel[2] << 8) | pixel[1]) << 8) | pixel[0]; line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask; line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask; line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask; } } else { // Big-endian... for (x = image->width, line_ptr = line; x > 0; x --, line_ptr += d, pixel += 3) { i = (((pixel[0] << 8) | pixel[1]) << 8) | pixel[2]; line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask; line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask; line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask; } } break; case 32 : if (image->byte_order == LSBFirst) { // Little-endian... for (x = image->width, line_ptr = line; x > 0; x --, line_ptr += d, pixel += 4) { i = (((((pixel[3] << 8) | pixel[2]) << 8) | pixel[1]) << 8) | pixel[0]; line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask; line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask; line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask; } } else { // Big-endian... for (x = image->width, line_ptr = line; x > 0; x --, line_ptr += d, pixel += 4) { i = (((((pixel[0] << 8) | pixel[1]) << 8) | pixel[2]) << 8) | pixel[3]; line_ptr[0] = 255 * ((i >> red_shift) & red_mask) / red_mask; line_ptr[1] = 255 * ((i >> green_shift) & green_mask) / green_mask; line_ptr[2] = 255 * ((i >> blue_shift) & blue_mask) / blue_mask; } } break; } } } // Destroy the X image we've read and return the RGB(A) image... XDestroyImage(image); return p; } #endif // !WIN32 #endif // !__APPLE__ // // End of "$Id$". //