ref: 3e34136f699d679d217653faf1893621cc986ac8
dir: /DoConfig/fltk/jpeg/jdcolor.c/
/* * jdcolor.c * * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2011-2013 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains output colorspace conversion routines. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private subobject */ typedef struct { struct jpeg_color_deconverter pub; /* public fields */ /* Private state for YCbCr->RGB and BG_YCC->RGB conversion */ int * Cr_r_tab; /* => table for Cr to R conversion */ int * Cb_b_tab; /* => table for Cb to B conversion */ INT32 * Cr_g_tab; /* => table for Cr to G conversion */ INT32 * Cb_g_tab; /* => table for Cb to G conversion */ JSAMPLE * range_limit; /* pointer to normal sample range limit table, */ /* or extended sample range limit table for BG_YCC */ /* Private state for RGB->Y conversion */ INT32 * rgb_y_tab; /* => table for RGB to Y conversion */ } my_color_deconverter; typedef my_color_deconverter * my_cconvert_ptr; /*************** YCbCr -> RGB conversion: most common case **************/ /*************** BG_YCC -> RGB conversion: less common case **************/ /*************** RGB -> Y conversion: less common case **************/ /* * YCbCr is defined per Recommendation ITU-R BT.601-7 (03/2011), * previously known as Recommendation CCIR 601-1, except that Cb and Cr * are normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * sRGB (standard RGB color space) is defined per IEC 61966-2-1:1999. * sYCC (standard luma-chroma-chroma color space with extended gamut) * is defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex F. * bg-sRGB and bg-sYCC (big gamut standard color spaces) * are defined per IEC 61966-2-1:1999 Amendment A1:2003 Annex G. * Note that the derived conversion coefficients given in some of these * documents are imprecise. The general conversion equations are * * R = Y + K * (1 - Kr) * Cr * G = Y - K * (Kb * (1 - Kb) * Cb + Kr * (1 - Kr) * Cr) / (1 - Kr - Kb) * B = Y + K * (1 - Kb) * Cb * * Y = Kr * R + (1 - Kr - Kb) * G + Kb * B * * With Kr = 0.299 and Kb = 0.114 (derived according to SMPTE RP 177-1993 * from the 1953 FCC NTSC primaries and CIE Illuminant C), K = 2 for sYCC, * the conversion equations to be implemented are therefore * * R = Y + 1.402 * Cr * G = Y - 0.344136286 * Cb - 0.714136286 * Cr * B = Y + 1.772 * Cb * * Y = 0.299 * R + 0.587 * G + 0.114 * B * * where Cb and Cr represent the incoming values less CENTERJSAMPLE. * For bg-sYCC, with K = 4, the equations are * * R = Y + 2.804 * Cr * G = Y - 0.688272572 * Cb - 1.428272572 * Cr * B = Y + 3.544 * Cb * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * Notice that Y, being an integral input, does not contribute any fraction * so it need not participate in the rounding. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times Cb and Cr for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 9-bit to 12-bit samples it is still acceptable. It's not very * reasonable for 16-bit samples, but if you want lossless storage you * shouldn't be changing colorspace anyway. * The Cr=>R and Cb=>B values can be rounded to integers in advance; the * values for the G calculation are left scaled up, since we must add them * together before rounding. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) #define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) /* We allocate one big table for RGB->Y conversion and divide it up into * three parts, instead of doing three alloc_small requests. This lets us * use a single table base address, which can be held in a register in the * inner loops on many machines (more than can hold all three addresses, * anyway). */ #define R_Y_OFF 0 /* offset to R => Y section */ #define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ #define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ #define TABLE_SIZE (3*(MAXJSAMPLE+1)) /* * Initialize tables for YCbCr->RGB and BG_YCC->RGB colorspace conversion. */ LOCAL(void) build_ycc_rgb_table (j_decompress_ptr cinfo) /* Normal case, sYCC */ { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; int i; INT32 x; SHIFT_TEMPS cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); cconvert->range_limit = cinfo->sample_range_limit; for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ /* Cr=>R value is nearest int to 1.402 * x */ cconvert->Cr_r_tab[i] = (int) RIGHT_SHIFT(FIX(1.402) * x + ONE_HALF, SCALEBITS); /* Cb=>B value is nearest int to 1.772 * x */ cconvert->Cb_b_tab[i] = (int) RIGHT_SHIFT(FIX(1.772) * x + ONE_HALF, SCALEBITS); /* Cr=>G value is scaled-up -0.714136286 * x */ cconvert->Cr_g_tab[i] = (- FIX(0.714136286)) * x; /* Cb=>G value is scaled-up -0.344136286 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ cconvert->Cb_g_tab[i] = (- FIX(0.344136286)) * x + ONE_HALF; } } LOCAL(void) build_bg_ycc_rgb_table (j_decompress_ptr cinfo) /* Wide gamut case, bg-sYCC */ { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; int i; INT32 x; SHIFT_TEMPS cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(int)); cconvert->Cr_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); cconvert->Cb_g_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE+1) * SIZEOF(INT32)); cconvert->range_limit = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, 5 * (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ /* Cr=>R value is nearest int to 2.804 * x */ cconvert->Cr_r_tab[i] = (int) RIGHT_SHIFT(FIX(2.804) * x + ONE_HALF, SCALEBITS); /* Cb=>B value is nearest int to 3.544 * x */ cconvert->Cb_b_tab[i] = (int) RIGHT_SHIFT(FIX(3.544) * x + ONE_HALF, SCALEBITS); /* Cr=>G value is scaled-up -1.428272572 * x */ cconvert->Cr_g_tab[i] = (- FIX(1.428272572)) * x; /* Cb=>G value is scaled-up -0.688272572 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ cconvert->Cb_g_tab[i] = (- FIX(0.688272572)) * x + ONE_HALF; } /* Cb and Cr portions can extend to double range in wide gamut case, * so we prepare an appropriate extended range limit table. */ /* First segment of range limit table: limit[x] = 0 for x < 0 */ MEMZERO(cconvert->range_limit, 2 * (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); cconvert->range_limit += 2 * (MAXJSAMPLE+1); /* Main part of range limit table: limit[x] = x */ for (i = 0; i <= MAXJSAMPLE; i++) cconvert->range_limit[i] = (JSAMPLE) i; /* End of range limit table: limit[x] = MAXJSAMPLE for x > MAXJSAMPLE */ for (; i < 3 * (MAXJSAMPLE+1); i++) cconvert->range_limit[i] = MAXJSAMPLE; } /* * Convert some rows of samples to the output colorspace. * * Note that we change from noninterleaved, one-plane-per-component format * to interleaved-pixel format. The output buffer is therefore three times * as wide as the input buffer. * A starting row offset is provided only for the input buffer. The caller * can easily adjust the passed output_buf value to accommodate any row * offset required on that side. */ METHODDEF(void) ycc_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cconvert->range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; register INT32 * Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { y = GETJSAMPLE(inptr0[col]); cb = GETJSAMPLE(inptr1[col]); cr = GETJSAMPLE(inptr2[col]); /* Range-limiting is essential due to noise introduced by DCT losses, * for extended gamut (sYCC) and wide gamut (bg-sYCC) encodings. */ outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; outptr[RGB_GREEN] = range_limit[y + ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; outptr += RGB_PIXELSIZE; } } } /**************** Cases other than YCC -> RGB ****************/ /* * Initialize for RGB->grayscale colorspace conversion. */ LOCAL(void) build_rgb_y_table (j_decompress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; INT32 * rgb_y_tab; INT32 i; /* Allocate and fill in the conversion tables. */ cconvert->rgb_y_tab = rgb_y_tab = (INT32 *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, (TABLE_SIZE * SIZEOF(INT32))); for (i = 0; i <= MAXJSAMPLE; i++) { rgb_y_tab[i+R_Y_OFF] = FIX(0.299) * i; rgb_y_tab[i+G_Y_OFF] = FIX(0.587) * i; rgb_y_tab[i+B_Y_OFF] = FIX(0.114) * i + ONE_HALF; } } /* * Convert RGB to grayscale. */ METHODDEF(void) rgb_gray_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register INT32 * ctab = cconvert->rgb_y_tab; register int r, g, b; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { r = GETJSAMPLE(inptr0[col]); g = GETJSAMPLE(inptr1[col]); b = GETJSAMPLE(inptr2[col]); /* Y */ outptr[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); } } } /* * [R-G,G,B-G] to [R,G,B] conversion with modulo calculation * (inverse color transform). * This can be seen as an adaption of the general YCbCr->RGB * conversion equation with Kr = Kb = 0, while replacing the * normalization by modulo calculation. */ METHODDEF(void) rgb1_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register int r, g, b; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { r = GETJSAMPLE(inptr0[col]); g = GETJSAMPLE(inptr1[col]); b = GETJSAMPLE(inptr2[col]); /* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD * (modulo) operator is equivalent to the bitmask operator AND. */ outptr[RGB_RED] = (JSAMPLE) ((r + g - CENTERJSAMPLE) & MAXJSAMPLE); outptr[RGB_GREEN] = (JSAMPLE) g; outptr[RGB_BLUE] = (JSAMPLE) ((b + g - CENTERJSAMPLE) & MAXJSAMPLE); outptr += RGB_PIXELSIZE; } } } /* * [R-G,G,B-G] to grayscale conversion with modulo calculation * (inverse color transform). */ METHODDEF(void) rgb1_gray_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register INT32 * ctab = cconvert->rgb_y_tab; register int r, g, b; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { r = GETJSAMPLE(inptr0[col]); g = GETJSAMPLE(inptr1[col]); b = GETJSAMPLE(inptr2[col]); /* Assume that MAXJSAMPLE+1 is a power of 2, so that the MOD * (modulo) operator is equivalent to the bitmask operator AND. */ r = (r + g - CENTERJSAMPLE) & MAXJSAMPLE; b = (b + g - CENTERJSAMPLE) & MAXJSAMPLE; /* Y */ outptr[col] = (JSAMPLE) ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS); } } } /* * No colorspace change, but conversion from separate-planes * to interleaved representation. */ METHODDEF(void) rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { /* We can dispense with GETJSAMPLE() here */ outptr[RGB_RED] = inptr0[col]; outptr[RGB_GREEN] = inptr1[col]; outptr[RGB_BLUE] = inptr2[col]; outptr += RGB_PIXELSIZE; } } } /* * Color conversion for no colorspace change: just copy the data, * converting from separate-planes to interleaved representation. */ METHODDEF(void) null_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { int ci; register int nc = cinfo->num_components; register JSAMPROW outptr; register JSAMPROW inptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { for (ci = 0; ci < nc; ci++) { inptr = input_buf[ci][input_row]; outptr = output_buf[0] + ci; for (col = 0; col < num_cols; col++) { *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */ outptr += nc; } } input_row++; output_buf++; } } /* * Color conversion for grayscale: just copy the data. * This also works for YCC -> grayscale conversion, in which * we just copy the Y (luminance) component and ignore chrominance. */ METHODDEF(void) grayscale_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0, num_rows, cinfo->output_width); } /* * Convert grayscale to RGB: just duplicate the graylevel three times. * This is provided to support applications that don't want to cope * with grayscale as a separate case. */ METHODDEF(void) gray_rgb_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW outptr; register JSAMPROW inptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr = input_buf[0][input_row++]; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { /* We can dispense with GETJSAMPLE() here */ outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; outptr += RGB_PIXELSIZE; } } } /* * Adobe-style YCCK->CMYK conversion. * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same * conversion as above, while passing K (black) unchanged. * We assume build_ycc_rgb_table has been called. */ METHODDEF(void) ycck_cmyk_convert (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2, inptr3; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE * range_limit = cinfo->sample_range_limit; register int * Crrtab = cconvert->Cr_r_tab; register int * Cbbtab = cconvert->Cb_b_tab; register INT32 * Crgtab = cconvert->Cr_g_tab; register INT32 * Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; inptr3 = input_buf[3][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { y = GETJSAMPLE(inptr0[col]); cb = GETJSAMPLE(inptr1[col]); cr = GETJSAMPLE(inptr2[col]); /* Range-limiting is essential due to noise introduced by DCT losses, * and for extended gamut encodings (sYCC). */ outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)))]; outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ /* K passes through unchanged */ outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */ outptr += 4; } } } /* * Empty method for start_pass. */ METHODDEF(void) start_pass_dcolor (j_decompress_ptr cinfo) { /* no work needed */ } /* * Module initialization routine for output colorspace conversion. */ GLOBAL(void) jinit_color_deconverter (j_decompress_ptr cinfo) { my_cconvert_ptr cconvert; int ci; cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(my_color_deconverter)); cinfo->cconvert = &cconvert->pub; cconvert->pub.start_pass = start_pass_dcolor; /* Make sure num_components agrees with jpeg_color_space */ switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: if (cinfo->num_components != 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; case JCS_RGB: case JCS_YCbCr: case JCS_BG_RGB: case JCS_BG_YCC: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; case JCS_CMYK: case JCS_YCCK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; default: /* JCS_UNKNOWN can be anything */ if (cinfo->num_components < 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; } /* Support color transform only for RGB colorspaces */ if (cinfo->color_transform && cinfo->jpeg_color_space != JCS_RGB && cinfo->jpeg_color_space != JCS_BG_RGB) ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); /* Set out_color_components and conversion method based on requested space. * Also clear the component_needed flags for any unused components, * so that earlier pipeline stages can avoid useless computation. */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: case JCS_YCbCr: case JCS_BG_YCC: cconvert->pub.color_convert = grayscale_convert; /* For color->grayscale conversion, only the Y (0) component is needed */ for (ci = 1; ci < cinfo->num_components; ci++) cinfo->comp_info[ci].component_needed = FALSE; break; case JCS_RGB: switch (cinfo->color_transform) { case JCT_NONE: cconvert->pub.color_convert = rgb_gray_convert; break; case JCT_SUBTRACT_GREEN: cconvert->pub.color_convert = rgb1_gray_convert; break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } build_rgb_y_table(cinfo); break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } break; case JCS_RGB: cinfo->out_color_components = RGB_PIXELSIZE; switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: cconvert->pub.color_convert = gray_rgb_convert; break; case JCS_YCbCr: cconvert->pub.color_convert = ycc_rgb_convert; build_ycc_rgb_table(cinfo); break; case JCS_BG_YCC: cconvert->pub.color_convert = ycc_rgb_convert; build_bg_ycc_rgb_table(cinfo); break; case JCS_RGB: switch (cinfo->color_transform) { case JCT_NONE: cconvert->pub.color_convert = rgb_convert; break; case JCT_SUBTRACT_GREEN: cconvert->pub.color_convert = rgb1_rgb_convert; break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } break; case JCS_BG_RGB: cinfo->out_color_components = RGB_PIXELSIZE; if (cinfo->jpeg_color_space == JCS_BG_RGB) { switch (cinfo->color_transform) { case JCT_NONE: cconvert->pub.color_convert = rgb_convert; break; case JCT_SUBTRACT_GREEN: cconvert->pub.color_convert = rgb1_rgb_convert; break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_CMYK: cinfo->out_color_components = 4; switch (cinfo->jpeg_color_space) { case JCS_YCCK: cconvert->pub.color_convert = ycck_cmyk_convert; build_ycc_rgb_table(cinfo); break; case JCS_CMYK: cconvert->pub.color_convert = null_convert; break; default: ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } break; default: /* Permit null conversion to same output space */ if (cinfo->out_color_space == cinfo->jpeg_color_space) { cinfo->out_color_components = cinfo->num_components; cconvert->pub.color_convert = null_convert; } else /* unsupported non-null conversion */ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; } if (cinfo->quantize_colors) cinfo->output_components = 1; /* single colormapped output component */ else cinfo->output_components = cinfo->out_color_components; }