ref: a1d4d588a866ce31b2abb3c89920ff4173e867ab
dir: /src/Backends/Audio/SoftwareMixer/WiiU.cpp/
// Released under the MIT licence. // See LICENCE.txt for details. #include "Backend.h" #include <math.h> #include <stddef.h> #include <stdlib.h> #include <string.h> #include <coreinit/cache.h> #include <coreinit/mutex.h> #include <coreinit/thread.h> #include <sndcore2/core.h> #include <sndcore2/voice.h> #include <sndcore2/drcvs.h> #define AUDIO_BUFFERS 2 // Double-buffer #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define CLAMP(x, y, z) MIN(MAX((x), (y)), (z)) static void (*parent_callback)(long *stream, size_t frames_total); static OSMutex sound_list_mutex; static OSMutex organya_mutex; static AXVoice *voices[2]; static short *stream_buffers[2]; static long *stream_buffer_long; static size_t buffer_length; static void FrameCallback(void) { // We use a double-buffer: while the Wii U is busy playing one half of the buffer, we update the other. // The buffer is 10ms long in total, and this function runs every 3ms. // Just assume both voices are in-sync, and only check the first one AXVoiceOffsets offsets; AXGetVoiceOffsets(voices[0], &offsets); unsigned int current_buffer = offsets.currentOffset / buffer_length; static unsigned int last_buffer = 1; if (current_buffer != last_buffer) { // Clear the mixer buffer memset(stream_buffer_long, 0, buffer_length * sizeof(long) * 2); // Fill mixer buffer parent_callback(stream_buffer_long, buffer_length); // Deinterlate samples, convert them to S16, and write them to the double-buffers short *left_output_buffer = &stream_buffers[0][buffer_length * last_buffer]; short *right_output_buffer = &stream_buffers[1][buffer_length * last_buffer]; long *mixer_buffer_pointer = stream_buffer_long; short *left_output_buffer_pointer = left_output_buffer; short *right_output_buffer_pointer = right_output_buffer; for (unsigned int i = 0; i < buffer_length; ++i) { const long left_sample = *mixer_buffer_pointer++; const long right_sample = *mixer_buffer_pointer++; // Clamp samples to sane limits, convert to S16, and store in double-buffers if (left_sample > 0x7FFF) *left_output_buffer_pointer++ = 0x7FFF; else if (left_sample < -0x7FFF) *left_output_buffer_pointer++ = -0x7FFF; else *left_output_buffer_pointer++ = (short)left_sample; if (right_sample > 0x7FFF) *right_output_buffer_pointer++ = 0x7FFF; else if (right_sample < -0x7FFF) *right_output_buffer_pointer++ = -0x7FFF; else *right_output_buffer_pointer++ = (short)right_sample; } // Make sure the sound hardware can see our data DCStoreRange(left_output_buffer, buffer_length * sizeof(short)); DCStoreRange(right_output_buffer, buffer_length * sizeof(short)); last_buffer = current_buffer; } } unsigned long SoftwareMixerBackend_Init(void (*callback)(long *stream, size_t frames_total)) { if (!AXIsInit()) { AXInitParams initparams = { .renderer = AX_INIT_RENDERER_48KHZ, .pipeline = AX_INIT_PIPELINE_SINGLE, }; AXInitWithParams(&initparams); } OSInitMutex(&sound_list_mutex); OSInitMutex(&organya_mutex); unsigned long output_frequency = AXGetInputSamplesPerSec(); buffer_length = output_frequency / 100; // 10ms buffer // Create and initialise two 'voices': each one will stream its own // audio - one for the left speaker, and one for the right. // The software-mixer outputs interlaced samples into a buffer of `long`s, // so create a buffer for it here. stream_buffer_long = (long*)malloc(buffer_length * sizeof(long) * 2); // `* 2` because it's an interlaced stereo buffer if (stream_buffer_long != NULL) { stream_buffers[0] = (short*)malloc(buffer_length * sizeof(short) * AUDIO_BUFFERS); if (stream_buffers[0] != NULL) { stream_buffers[1] = (short*)malloc(buffer_length * sizeof(short) * AUDIO_BUFFERS); if (stream_buffers[1] != NULL) { voices[0] = AXAcquireVoice(31, NULL, NULL); if (voices[0] != NULL) { voices[1] = AXAcquireVoice(31, NULL, NULL); if (voices[1] != NULL) { for (unsigned int i = 0; i < 2; ++i) { AXVoiceBegin(voices[i]); AXSetVoiceType(voices[i], 0); AXVoiceVeData vol = {.volume = 0x8000}; AXSetVoiceVe(voices[i], &vol); AXVoiceDeviceMixData mix_data[6]; memset(mix_data, 0, sizeof(mix_data)); mix_data[i].bus[0].volume = 0x8000; // Voice 1 goes on the left speaker - voice 2 goes on the right speaker AXSetVoiceDeviceMix(voices[i], AX_DEVICE_TYPE_DRC, 0, mix_data); AXSetVoiceDeviceMix(voices[i], AX_DEVICE_TYPE_TV, 0, mix_data); AXSetVoiceSrcRatio(voices[i], 1.0f); // We use the native sample rate AXSetVoiceSrcType(voices[i], AX_VOICE_SRC_TYPE_NONE); AXVoiceOffsets offs = { .dataType = AX_VOICE_FORMAT_LPCM16, .loopingEnabled = AX_VOICE_LOOP_ENABLED, .loopOffset = 0, .endOffset = (buffer_length * AUDIO_BUFFERS) - 1, // -1 or else you'll get popping! .currentOffset = 0, .data = stream_buffers[i] }; AXSetVoiceOffsets(voices[i], &offs); AXVoiceEnd(voices[i]); } parent_callback = callback; // Register the frame callback. // Apparently, this fires every 3ms - we will use // it to update the stream buffers when needed. AXRegisterAppFrameCallback(FrameCallback); return output_frequency; } AXFreeVoice(voices[0]); } free(stream_buffers[1]); } free(stream_buffers[0]); } free(stream_buffer_long); } AXQuit(); return 0; } void SoftwareMixerBackend_Deinit(void) { AXRegisterAppFrameCallback(NULL); AXFreeVoice(voices[1]); AXFreeVoice(voices[0]); free(stream_buffers[1]); free(stream_buffers[0]); free(stream_buffer_long); AXQuit(); } bool SoftwareMixerBackend_Start(void) { AXSetVoiceState(voices[0], AX_VOICE_STATE_PLAYING); AXSetVoiceState(voices[1], AX_VOICE_STATE_PLAYING); return true; } void SoftwareMixerBackend_LockMixerMutex(void) { OSLockMutex(&sound_list_mutex); } void SoftwareMixerBackend_UnlockMixerMutex(void) { OSUnlockMutex(&sound_list_mutex); } void SoftwareMixerBackend_LockOrganyaMutex(void) { OSLockMutex(&organya_mutex); } void SoftwareMixerBackend_UnlockOrganyaMutex(void) { OSUnlockMutex(&organya_mutex); }