ref: b0974c3def80bf7cec6dffcbc4be7653eb03cecb
dir: /external/SDL2/src/video/arm/pixman-arm-neon-asm.h/
/* * Copyright © 2009 Nokia Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Author: Siarhei Siamashka (siarhei.siamashka@nokia.com) */ /* * This file contains a macro ('generate_composite_function') which can * construct 2D image processing functions, based on a common template. * Any combinations of source, destination and mask images with 8bpp, * 16bpp, 24bpp, 32bpp color formats are supported. * * This macro takes care of: * - handling of leading and trailing unaligned pixels * - doing most of the work related to L2 cache preload * - encourages the use of software pipelining for better instructions * scheduling * * The user of this macro has to provide some configuration parameters * (bit depths for the images, prefetch distance, etc.) and a set of * macros, which should implement basic code chunks responsible for * pixels processing. See 'pixman-arm-neon-asm.S' file for the usage * examples. * * TODO: * - try overlapped pixel method (from Ian Rickards) when processing * exactly two blocks of pixels * - maybe add an option to do reverse scanline processing */ /* * Bit flags for 'generate_composite_function' macro which are used * to tune generated functions behavior. */ .set FLAG_DST_WRITEONLY, 0 .set FLAG_DST_READWRITE, 1 .set FLAG_DEINTERLEAVE_32BPP, 2 /* * Offset in stack where mask and source pointer/stride can be accessed * from 'init' macro. This is useful for doing special handling for solid mask. */ .set ARGS_STACK_OFFSET, 40 /* * Constants for selecting preferable prefetch type. */ .set PREFETCH_TYPE_NONE, 0 /* No prefetch at all */ .set PREFETCH_TYPE_SIMPLE, 1 /* A simple, fixed-distance-ahead prefetch */ .set PREFETCH_TYPE_ADVANCED, 2 /* Advanced fine-grained prefetch */ /* * Definitions of supplementary pixld/pixst macros (for partial load/store of * pixel data). */ .macro pixldst1 op, elem_size, reg1, mem_operand, abits .if abits > 0 op&.&elem_size {d®1}, [&mem_operand&, :&abits&]! .else op&.&elem_size {d®1}, [&mem_operand&]! .endif .endm .macro pixldst2 op, elem_size, reg1, reg2, mem_operand, abits .if abits > 0 op&.&elem_size {d®1, d®2}, [&mem_operand&, :&abits&]! .else op&.&elem_size {d®1, d®2}, [&mem_operand&]! .endif .endm .macro pixldst4 op, elem_size, reg1, reg2, reg3, reg4, mem_operand, abits .if abits > 0 op&.&elem_size {d®1, d®2, d®3, d®4}, [&mem_operand&, :&abits&]! .else op&.&elem_size {d®1, d®2, d®3, d®4}, [&mem_operand&]! .endif .endm .macro pixldst0 op, elem_size, reg1, idx, mem_operand, abits op&.&elem_size {d®1[idx]}, [&mem_operand&]! .endm .macro pixldst3 op, elem_size, reg1, reg2, reg3, mem_operand op&.&elem_size {d®1, d®2, d®3}, [&mem_operand&]! .endm .macro pixldst30 op, elem_size, reg1, reg2, reg3, idx, mem_operand op&.&elem_size {d®1[idx], d®2[idx], d®3[idx]}, [&mem_operand&]! .endm .macro pixldst numbytes, op, elem_size, basereg, mem_operand, abits .if numbytes == 32 pixldst4 op, elem_size, %(basereg+4), %(basereg+5), \ %(basereg+6), %(basereg+7), mem_operand, abits .elseif numbytes == 16 pixldst2 op, elem_size, %(basereg+2), %(basereg+3), mem_operand, abits .elseif numbytes == 8 pixldst1 op, elem_size, %(basereg+1), mem_operand, abits .elseif numbytes == 4 .if !RESPECT_STRICT_ALIGNMENT || (elem_size == 32) pixldst0 op, 32, %(basereg+0), 1, mem_operand, abits .elseif elem_size == 16 pixldst0 op, 16, %(basereg+0), 2, mem_operand, abits pixldst0 op, 16, %(basereg+0), 3, mem_operand, abits .else pixldst0 op, 8, %(basereg+0), 4, mem_operand, abits pixldst0 op, 8, %(basereg+0), 5, mem_operand, abits pixldst0 op, 8, %(basereg+0), 6, mem_operand, abits pixldst0 op, 8, %(basereg+0), 7, mem_operand, abits .endif .elseif numbytes == 2 .if !RESPECT_STRICT_ALIGNMENT || (elem_size == 16) pixldst0 op, 16, %(basereg+0), 1, mem_operand, abits .else pixldst0 op, 8, %(basereg+0), 2, mem_operand, abits pixldst0 op, 8, %(basereg+0), 3, mem_operand, abits .endif .elseif numbytes == 1 pixldst0 op, 8, %(basereg+0), 1, mem_operand, abits .else .error "unsupported size: numbytes" .endif .endm .macro pixld numpix, bpp, basereg, mem_operand, abits=0 .if bpp > 0 .if (bpp == 32) && (numpix == 8) && (DEINTERLEAVE_32BPP_ENABLED != 0) pixldst4 vld4, 8, %(basereg+4), %(basereg+5), \ %(basereg+6), %(basereg+7), mem_operand, abits .elseif (bpp == 24) && (numpix == 8) pixldst3 vld3, 8, %(basereg+3), %(basereg+4), %(basereg+5), mem_operand .elseif (bpp == 24) && (numpix == 4) pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 4, mem_operand pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 5, mem_operand pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 6, mem_operand pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 7, mem_operand .elseif (bpp == 24) && (numpix == 2) pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 2, mem_operand pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 3, mem_operand .elseif (bpp == 24) && (numpix == 1) pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 1, mem_operand .else pixldst %(numpix * bpp / 8), vld1, %(bpp), basereg, mem_operand, abits .endif .endif .endm .macro pixst numpix, bpp, basereg, mem_operand, abits=0 .if bpp > 0 .if (bpp == 32) && (numpix == 8) && (DEINTERLEAVE_32BPP_ENABLED != 0) pixldst4 vst4, 8, %(basereg+4), %(basereg+5), \ %(basereg+6), %(basereg+7), mem_operand, abits .elseif (bpp == 24) && (numpix == 8) pixldst3 vst3, 8, %(basereg+3), %(basereg+4), %(basereg+5), mem_operand .elseif (bpp == 24) && (numpix == 4) pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 4, mem_operand pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 5, mem_operand pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 6, mem_operand pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 7, mem_operand .elseif (bpp == 24) && (numpix == 2) pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 2, mem_operand pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 3, mem_operand .elseif (bpp == 24) && (numpix == 1) pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 1, mem_operand .else pixldst %(numpix * bpp / 8), vst1, %(bpp), basereg, mem_operand, abits .endif .endif .endm .macro pixld_a numpix, bpp, basereg, mem_operand .if (bpp * numpix) <= 128 pixld numpix, bpp, basereg, mem_operand, %(bpp * numpix) .else pixld numpix, bpp, basereg, mem_operand, 128 .endif .endm .macro pixst_a numpix, bpp, basereg, mem_operand .if (bpp * numpix) <= 128 pixst numpix, bpp, basereg, mem_operand, %(bpp * numpix) .else pixst numpix, bpp, basereg, mem_operand, 128 .endif .endm /* * Pixel fetcher for nearest scaling (needs TMP1, TMP2, VX, UNIT_X register * aliases to be defined) */ .macro pixld1_s elem_size, reg1, mem_operand .if elem_size == 16 mov TMP1, VX, asr #16 adds VX, VX, UNIT_X 5: subpls VX, VX, SRC_WIDTH_FIXED bpl 5b add TMP1, mem_operand, TMP1, asl #1 mov TMP2, VX, asr #16 adds VX, VX, UNIT_X 5: subpls VX, VX, SRC_WIDTH_FIXED bpl 5b add TMP2, mem_operand, TMP2, asl #1 vld1.16 {d®1&[0]}, [TMP1, :16] mov TMP1, VX, asr #16 adds VX, VX, UNIT_X 5: subpls VX, VX, SRC_WIDTH_FIXED bpl 5b add TMP1, mem_operand, TMP1, asl #1 vld1.16 {d®1&[1]}, [TMP2, :16] mov TMP2, VX, asr #16 adds VX, VX, UNIT_X 5: subpls VX, VX, SRC_WIDTH_FIXED bpl 5b add TMP2, mem_operand, TMP2, asl #1 vld1.16 {d®1&[2]}, [TMP1, :16] vld1.16 {d®1&[3]}, [TMP2, :16] .elseif elem_size == 32 mov TMP1, VX, asr #16 adds VX, VX, UNIT_X 5: subpls VX, VX, SRC_WIDTH_FIXED bpl 5b add TMP1, mem_operand, TMP1, asl #2 mov TMP2, VX, asr #16 adds VX, VX, UNIT_X 5: subpls VX, VX, SRC_WIDTH_FIXED bpl 5b add TMP2, mem_operand, TMP2, asl #2 vld1.32 {d®1&[0]}, [TMP1, :32] vld1.32 {d®1&[1]}, [TMP2, :32] .else .error "unsupported" .endif .endm .macro pixld2_s elem_size, reg1, reg2, mem_operand .if 0 /* elem_size == 32 */ mov TMP1, VX, asr #16 add VX, VX, UNIT_X, asl #1 add TMP1, mem_operand, TMP1, asl #2 mov TMP2, VX, asr #16 sub VX, VX, UNIT_X add TMP2, mem_operand, TMP2, asl #2 vld1.32 {d®1&[0]}, [TMP1, :32] mov TMP1, VX, asr #16 add VX, VX, UNIT_X, asl #1 add TMP1, mem_operand, TMP1, asl #2 vld1.32 {d®2&[0]}, [TMP2, :32] mov TMP2, VX, asr #16 add VX, VX, UNIT_X add TMP2, mem_operand, TMP2, asl #2 vld1.32 {d®1&[1]}, [TMP1, :32] vld1.32 {d®2&[1]}, [TMP2, :32] .else pixld1_s elem_size, reg1, mem_operand pixld1_s elem_size, reg2, mem_operand .endif .endm .macro pixld0_s elem_size, reg1, idx, mem_operand .if elem_size == 16 mov TMP1, VX, asr #16 adds VX, VX, UNIT_X 5: subpls VX, VX, SRC_WIDTH_FIXED bpl 5b add TMP1, mem_operand, TMP1, asl #1 vld1.16 {d®1&[idx]}, [TMP1, :16] .elseif elem_size == 32 mov TMP1, VX, asr #16 adds VX, VX, UNIT_X 5: subpls VX, VX, SRC_WIDTH_FIXED bpl 5b add TMP1, mem_operand, TMP1, asl #2 vld1.32 {d®1&[idx]}, [TMP1, :32] .endif .endm .macro pixld_s_internal numbytes, elem_size, basereg, mem_operand .if numbytes == 32 pixld2_s elem_size, %(basereg+4), %(basereg+5), mem_operand pixld2_s elem_size, %(basereg+6), %(basereg+7), mem_operand pixdeinterleave elem_size, %(basereg+4) .elseif numbytes == 16 pixld2_s elem_size, %(basereg+2), %(basereg+3), mem_operand .elseif numbytes == 8 pixld1_s elem_size, %(basereg+1), mem_operand .elseif numbytes == 4 .if elem_size == 32 pixld0_s elem_size, %(basereg+0), 1, mem_operand .elseif elem_size == 16 pixld0_s elem_size, %(basereg+0), 2, mem_operand pixld0_s elem_size, %(basereg+0), 3, mem_operand .else pixld0_s elem_size, %(basereg+0), 4, mem_operand pixld0_s elem_size, %(basereg+0), 5, mem_operand pixld0_s elem_size, %(basereg+0), 6, mem_operand pixld0_s elem_size, %(basereg+0), 7, mem_operand .endif .elseif numbytes == 2 .if elem_size == 16 pixld0_s elem_size, %(basereg+0), 1, mem_operand .else pixld0_s elem_size, %(basereg+0), 2, mem_operand pixld0_s elem_size, %(basereg+0), 3, mem_operand .endif .elseif numbytes == 1 pixld0_s elem_size, %(basereg+0), 1, mem_operand .else .error "unsupported size: numbytes" .endif .endm .macro pixld_s numpix, bpp, basereg, mem_operand .if bpp > 0 pixld_s_internal %(numpix * bpp / 8), %(bpp), basereg, mem_operand .endif .endm .macro vuzp8 reg1, reg2 vuzp.8 d®1, d®2 .endm .macro vzip8 reg1, reg2 vzip.8 d®1, d®2 .endm /* deinterleave B, G, R, A channels for eight 32bpp pixels in 4 registers */ .macro pixdeinterleave bpp, basereg .if (bpp == 32) && (DEINTERLEAVE_32BPP_ENABLED != 0) vuzp8 %(basereg+0), %(basereg+1) vuzp8 %(basereg+2), %(basereg+3) vuzp8 %(basereg+1), %(basereg+3) vuzp8 %(basereg+0), %(basereg+2) .endif .endm /* interleave B, G, R, A channels for eight 32bpp pixels in 4 registers */ .macro pixinterleave bpp, basereg .if (bpp == 32) && (DEINTERLEAVE_32BPP_ENABLED != 0) vzip8 %(basereg+0), %(basereg+2) vzip8 %(basereg+1), %(basereg+3) vzip8 %(basereg+2), %(basereg+3) vzip8 %(basereg+0), %(basereg+1) .endif .endm /* * This is a macro for implementing cache preload. The main idea is that * cache preload logic is mostly independent from the rest of pixels * processing code. It starts at the top left pixel and moves forward * across pixels and can jump across scanlines. Prefetch distance is * handled in an 'incremental' way: it starts from 0 and advances to the * optimal distance over time. After reaching optimal prefetch distance, * it is kept constant. There are some checks which prevent prefetching * unneeded pixel lines below the image (but it still can prefetch a bit * more data on the right side of the image - not a big issue and may * be actually helpful when rendering text glyphs). Additional trick is * the use of LDR instruction for prefetch instead of PLD when moving to * the next line, the point is that we have a high chance of getting TLB * miss in this case, and PLD would be useless. * * This sounds like it may introduce a noticeable overhead (when working with * fully cached data). But in reality, due to having a separate pipeline and * instruction queue for NEON unit in ARM Cortex-A8, normal ARM code can * execute simultaneously with NEON and be completely shadowed by it. Thus * we get no performance overhead at all (*). This looks like a very nice * feature of Cortex-A8, if used wisely. We don't have a hardware prefetcher, * but still can implement some rather advanced prefetch logic in software * for almost zero cost! * * (*) The overhead of the prefetcher is visible when running some trivial * pixels processing like simple copy. Anyway, having prefetch is a must * when working with the graphics data. */ .macro PF a, x:vararg .if (PREFETCH_TYPE_CURRENT == PREFETCH_TYPE_ADVANCED) a x .endif .endm .macro cache_preload std_increment, boost_increment .if (src_bpp_shift >= 0) || (dst_r_bpp != 0) || (mask_bpp_shift >= 0) .if regs_shortage PF ldr ORIG_W, [sp] /* If we are short on regs, ORIG_W is kept on stack */ .endif .if std_increment != 0 PF add PF_X, PF_X, #std_increment .endif PF tst PF_CTL, #0xF PF addne PF_X, PF_X, #boost_increment PF subne PF_CTL, PF_CTL, #1 PF cmp PF_X, ORIG_W .if src_bpp_shift >= 0 PF pld, [PF_SRC, PF_X, lsl #src_bpp_shift] .endif .if dst_r_bpp != 0 PF pld, [PF_DST, PF_X, lsl #dst_bpp_shift] .endif .if mask_bpp_shift >= 0 PF pld, [PF_MASK, PF_X, lsl #mask_bpp_shift] .endif PF subge PF_X, PF_X, ORIG_W PF subges PF_CTL, PF_CTL, #0x10 .if src_bpp_shift >= 0 PF ldrgeb DUMMY, [PF_SRC, SRC_STRIDE, lsl #src_bpp_shift]! .endif .if dst_r_bpp != 0 PF ldrgeb DUMMY, [PF_DST, DST_STRIDE, lsl #dst_bpp_shift]! .endif .if mask_bpp_shift >= 0 PF ldrgeb DUMMY, [PF_MASK, MASK_STRIDE, lsl #mask_bpp_shift]! .endif .endif .endm .macro cache_preload_simple .if (PREFETCH_TYPE_CURRENT == PREFETCH_TYPE_SIMPLE) .if src_bpp > 0 pld [SRC, #(PREFETCH_DISTANCE_SIMPLE * src_bpp / 8)] .endif .if dst_r_bpp > 0 pld [DST_R, #(PREFETCH_DISTANCE_SIMPLE * dst_r_bpp / 8)] .endif .if mask_bpp > 0 pld [MASK, #(PREFETCH_DISTANCE_SIMPLE * mask_bpp / 8)] .endif .endif .endm .macro fetch_mask_pixblock pixld pixblock_size, mask_bpp, \ (mask_basereg - pixblock_size * mask_bpp / 64), MASK .endm /* * Macro which is used to process leading pixels until destination * pointer is properly aligned (at 16 bytes boundary). When destination * buffer uses 16bpp format, this is unnecessary, or even pointless. */ .macro ensure_destination_ptr_alignment process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head .if dst_w_bpp != 24 tst DST_R, #0xF beq 2f .irp lowbit, 1, 2, 4, 8, 16 local skip1 .if (dst_w_bpp <= (lowbit * 8)) && ((lowbit * 8) < (pixblock_size * dst_w_bpp)) .if lowbit < 16 /* we don't need more than 16-byte alignment */ tst DST_R, #lowbit beq 1f .endif pixld_src (lowbit * 8 / dst_w_bpp), src_bpp, src_basereg, SRC pixld (lowbit * 8 / dst_w_bpp), mask_bpp, mask_basereg, MASK .if dst_r_bpp > 0 pixld_a (lowbit * 8 / dst_r_bpp), dst_r_bpp, dst_r_basereg, DST_R .else add DST_R, DST_R, #lowbit .endif PF add PF_X, PF_X, #(lowbit * 8 / dst_w_bpp) sub W, W, #(lowbit * 8 / dst_w_bpp) 1: .endif .endr pixdeinterleave src_bpp, src_basereg pixdeinterleave mask_bpp, mask_basereg pixdeinterleave dst_r_bpp, dst_r_basereg process_pixblock_head cache_preload 0, pixblock_size cache_preload_simple process_pixblock_tail pixinterleave dst_w_bpp, dst_w_basereg .irp lowbit, 1, 2, 4, 8, 16 .if (dst_w_bpp <= (lowbit * 8)) && ((lowbit * 8) < (pixblock_size * dst_w_bpp)) .if lowbit < 16 /* we don't need more than 16-byte alignment */ tst DST_W, #lowbit beq 1f .endif pixst_a (lowbit * 8 / dst_w_bpp), dst_w_bpp, dst_w_basereg, DST_W 1: .endif .endr .endif 2: .endm /* * Special code for processing up to (pixblock_size - 1) remaining * trailing pixels. As SIMD processing performs operation on * pixblock_size pixels, anything smaller than this has to be loaded * and stored in a special way. Loading and storing of pixel data is * performed in such a way that we fill some 'slots' in the NEON * registers (some slots naturally are unused), then perform compositing * operation as usual. In the end, the data is taken from these 'slots' * and saved to memory. * * cache_preload_flag - allows to suppress prefetch if * set to 0 * dst_aligned_flag - selects whether destination buffer * is aligned */ .macro process_trailing_pixels cache_preload_flag, \ dst_aligned_flag, \ process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head tst W, #(pixblock_size - 1) beq 2f .irp chunk_size, 16, 8, 4, 2, 1 .if pixblock_size > chunk_size tst W, #chunk_size beq 1f pixld_src chunk_size, src_bpp, src_basereg, SRC pixld chunk_size, mask_bpp, mask_basereg, MASK .if dst_aligned_flag != 0 pixld_a chunk_size, dst_r_bpp, dst_r_basereg, DST_R .else pixld chunk_size, dst_r_bpp, dst_r_basereg, DST_R .endif .if cache_preload_flag != 0 PF add PF_X, PF_X, #chunk_size .endif 1: .endif .endr pixdeinterleave src_bpp, src_basereg pixdeinterleave mask_bpp, mask_basereg pixdeinterleave dst_r_bpp, dst_r_basereg process_pixblock_head .if cache_preload_flag != 0 cache_preload 0, pixblock_size cache_preload_simple .endif process_pixblock_tail pixinterleave dst_w_bpp, dst_w_basereg .irp chunk_size, 16, 8, 4, 2, 1 .if pixblock_size > chunk_size tst W, #chunk_size beq 1f .if dst_aligned_flag != 0 pixst_a chunk_size, dst_w_bpp, dst_w_basereg, DST_W .else pixst chunk_size, dst_w_bpp, dst_w_basereg, DST_W .endif 1: .endif .endr 2: .endm /* * Macro, which performs all the needed operations to switch to the next * scanline and start the next loop iteration unless all the scanlines * are already processed. */ .macro advance_to_next_scanline start_of_loop_label .if regs_shortage ldrd W, [sp] /* load W and H (width and height) from stack */ .else mov W, ORIG_W .endif add DST_W, DST_W, DST_STRIDE, lsl #dst_bpp_shift .if src_bpp != 0 add SRC, SRC, SRC_STRIDE, lsl #src_bpp_shift .endif .if mask_bpp != 0 add MASK, MASK, MASK_STRIDE, lsl #mask_bpp_shift .endif .if (dst_w_bpp != 24) sub DST_W, DST_W, W, lsl #dst_bpp_shift .endif .if (src_bpp != 24) && (src_bpp != 0) sub SRC, SRC, W, lsl #src_bpp_shift .endif .if (mask_bpp != 24) && (mask_bpp != 0) sub MASK, MASK, W, lsl #mask_bpp_shift .endif subs H, H, #1 mov DST_R, DST_W .if regs_shortage str H, [sp, #4] /* save updated height to stack */ .endif bge start_of_loop_label .endm /* * Registers are allocated in the following way by default: * d0, d1, d2, d3 - reserved for loading source pixel data * d4, d5, d6, d7 - reserved for loading destination pixel data * d24, d25, d26, d27 - reserved for loading mask pixel data * d28, d29, d30, d31 - final destination pixel data for writeback to memory */ .macro generate_composite_function fname, \ src_bpp_, \ mask_bpp_, \ dst_w_bpp_, \ flags, \ pixblock_size_, \ prefetch_distance, \ init, \ cleanup, \ process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head, \ dst_w_basereg_ = 28, \ dst_r_basereg_ = 4, \ src_basereg_ = 0, \ mask_basereg_ = 24 pixman_asm_function fname push {r4-r12, lr} /* save all registers */ /* * Select prefetch type for this function. If prefetch distance is * set to 0 or one of the color formats is 24bpp, SIMPLE prefetch * has to be used instead of ADVANCED. */ .set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_DEFAULT .if prefetch_distance == 0 .set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_NONE .elseif (PREFETCH_TYPE_CURRENT > PREFETCH_TYPE_SIMPLE) && \ ((src_bpp_ == 24) || (mask_bpp_ == 24) || (dst_w_bpp_ == 24)) .set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_SIMPLE .endif /* * Make some macro arguments globally visible and accessible * from other macros */ .set src_bpp, src_bpp_ .set mask_bpp, mask_bpp_ .set dst_w_bpp, dst_w_bpp_ .set pixblock_size, pixblock_size_ .set dst_w_basereg, dst_w_basereg_ .set dst_r_basereg, dst_r_basereg_ .set src_basereg, src_basereg_ .set mask_basereg, mask_basereg_ .macro pixld_src x:vararg pixld x .endm .macro fetch_src_pixblock pixld_src pixblock_size, src_bpp, \ (src_basereg - pixblock_size * src_bpp / 64), SRC .endm /* * Assign symbolic names to registers */ W .req r0 /* width (is updated during processing) */ H .req r1 /* height (is updated during processing) */ DST_W .req r2 /* destination buffer pointer for writes */ DST_STRIDE .req r3 /* destination image stride */ SRC .req r4 /* source buffer pointer */ SRC_STRIDE .req r5 /* source image stride */ DST_R .req r6 /* destination buffer pointer for reads */ MASK .req r7 /* mask pointer */ MASK_STRIDE .req r8 /* mask stride */ PF_CTL .req r9 /* combined lines counter and prefetch */ /* distance increment counter */ PF_X .req r10 /* pixel index in a scanline for current */ /* pretetch position */ PF_SRC .req r11 /* pointer to source scanline start */ /* for prefetch purposes */ PF_DST .req r12 /* pointer to destination scanline start */ /* for prefetch purposes */ PF_MASK .req r14 /* pointer to mask scanline start */ /* for prefetch purposes */ /* * Check whether we have enough registers for all the local variables. * If we don't have enough registers, original width and height are * kept on top of stack (and 'regs_shortage' variable is set to indicate * this for the rest of code). Even if there are enough registers, the * allocation scheme may be a bit different depending on whether source * or mask is not used. */ .if (PREFETCH_TYPE_CURRENT < PREFETCH_TYPE_ADVANCED) ORIG_W .req r10 /* saved original width */ DUMMY .req r12 /* temporary register */ .set regs_shortage, 0 .elseif mask_bpp == 0 ORIG_W .req r7 /* saved original width */ DUMMY .req r8 /* temporary register */ .set regs_shortage, 0 .elseif src_bpp == 0 ORIG_W .req r4 /* saved original width */ DUMMY .req r5 /* temporary register */ .set regs_shortage, 0 .else ORIG_W .req r1 /* saved original width */ DUMMY .req r1 /* temporary register */ .set regs_shortage, 1 .endif .set mask_bpp_shift, -1 .if src_bpp == 32 .set src_bpp_shift, 2 .elseif src_bpp == 24 .set src_bpp_shift, 0 .elseif src_bpp == 16 .set src_bpp_shift, 1 .elseif src_bpp == 8 .set src_bpp_shift, 0 .elseif src_bpp == 0 .set src_bpp_shift, -1 .else .error "requested src bpp (src_bpp) is not supported" .endif .if mask_bpp == 32 .set mask_bpp_shift, 2 .elseif mask_bpp == 24 .set mask_bpp_shift, 0 .elseif mask_bpp == 8 .set mask_bpp_shift, 0 .elseif mask_bpp == 0 .set mask_bpp_shift, -1 .else .error "requested mask bpp (mask_bpp) is not supported" .endif .if dst_w_bpp == 32 .set dst_bpp_shift, 2 .elseif dst_w_bpp == 24 .set dst_bpp_shift, 0 .elseif dst_w_bpp == 16 .set dst_bpp_shift, 1 .elseif dst_w_bpp == 8 .set dst_bpp_shift, 0 .else .error "requested dst bpp (dst_w_bpp) is not supported" .endif .if (((flags) & FLAG_DST_READWRITE) != 0) .set dst_r_bpp, dst_w_bpp .else .set dst_r_bpp, 0 .endif .if (((flags) & FLAG_DEINTERLEAVE_32BPP) != 0) .set DEINTERLEAVE_32BPP_ENABLED, 1 .else .set DEINTERLEAVE_32BPP_ENABLED, 0 .endif .if prefetch_distance < 0 || prefetch_distance > 15 .error "invalid prefetch distance (prefetch_distance)" .endif .if src_bpp > 0 ldr SRC, [sp, #40] .endif .if mask_bpp > 0 ldr MASK, [sp, #48] .endif PF mov PF_X, #0 .if src_bpp > 0 ldr SRC_STRIDE, [sp, #44] .endif .if mask_bpp > 0 ldr MASK_STRIDE, [sp, #52] .endif mov DST_R, DST_W .if src_bpp == 24 sub SRC_STRIDE, SRC_STRIDE, W sub SRC_STRIDE, SRC_STRIDE, W, lsl #1 .endif .if mask_bpp == 24 sub MASK_STRIDE, MASK_STRIDE, W sub MASK_STRIDE, MASK_STRIDE, W, lsl #1 .endif .if dst_w_bpp == 24 sub DST_STRIDE, DST_STRIDE, W sub DST_STRIDE, DST_STRIDE, W, lsl #1 .endif /* * Setup advanced prefetcher initial state */ PF mov PF_SRC, SRC PF mov PF_DST, DST_R PF mov PF_MASK, MASK /* PF_CTL = prefetch_distance | ((h - 1) << 4) */ PF mov PF_CTL, H, lsl #4 PF add PF_CTL, #(prefetch_distance - 0x10) init .if regs_shortage push {r0, r1} .endif subs H, H, #1 .if regs_shortage str H, [sp, #4] /* save updated height to stack */ .else mov ORIG_W, W .endif blt 9f cmp W, #(pixblock_size * 2) blt 8f /* * This is the start of the pipelined loop, which if optimized for * long scanlines */ 0: ensure_destination_ptr_alignment process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head /* Implement "head (tail_head) ... (tail_head) tail" loop pattern */ pixld_a pixblock_size, dst_r_bpp, \ (dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R fetch_src_pixblock pixld pixblock_size, mask_bpp, \ (mask_basereg - pixblock_size * mask_bpp / 64), MASK PF add PF_X, PF_X, #pixblock_size process_pixblock_head cache_preload 0, pixblock_size cache_preload_simple subs W, W, #(pixblock_size * 2) blt 2f 1: process_pixblock_tail_head cache_preload_simple subs W, W, #pixblock_size bge 1b 2: process_pixblock_tail pixst_a pixblock_size, dst_w_bpp, \ (dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W /* Process the remaining trailing pixels in the scanline */ process_trailing_pixels 1, 1, \ process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head advance_to_next_scanline 0b .if regs_shortage pop {r0, r1} .endif cleanup pop {r4-r12, pc} /* exit */ /* * This is the start of the loop, designed to process images with small width * (less than pixblock_size * 2 pixels). In this case neither pipelining * nor prefetch are used. */ 8: /* Process exactly pixblock_size pixels if needed */ tst W, #pixblock_size beq 1f pixld pixblock_size, dst_r_bpp, \ (dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R fetch_src_pixblock pixld pixblock_size, mask_bpp, \ (mask_basereg - pixblock_size * mask_bpp / 64), MASK process_pixblock_head process_pixblock_tail pixst pixblock_size, dst_w_bpp, \ (dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W 1: /* Process the remaining trailing pixels in the scanline */ process_trailing_pixels 0, 0, \ process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head advance_to_next_scanline 8b 9: .if regs_shortage pop {r0, r1} .endif cleanup pop {r4-r12, pc} /* exit */ .purgem fetch_src_pixblock .purgem pixld_src .unreq SRC .unreq MASK .unreq DST_R .unreq DST_W .unreq ORIG_W .unreq W .unreq H .unreq SRC_STRIDE .unreq DST_STRIDE .unreq MASK_STRIDE .unreq PF_CTL .unreq PF_X .unreq PF_SRC .unreq PF_DST .unreq PF_MASK .unreq DUMMY .endfunc .endm /* * A simplified variant of function generation template for a single * scanline processing (for implementing pixman combine functions) */ .macro generate_composite_function_scanline use_nearest_scaling, \ fname, \ src_bpp_, \ mask_bpp_, \ dst_w_bpp_, \ flags, \ pixblock_size_, \ init, \ cleanup, \ process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head, \ dst_w_basereg_ = 28, \ dst_r_basereg_ = 4, \ src_basereg_ = 0, \ mask_basereg_ = 24 pixman_asm_function fname .set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_NONE /* * Make some macro arguments globally visible and accessible * from other macros */ .set src_bpp, src_bpp_ .set mask_bpp, mask_bpp_ .set dst_w_bpp, dst_w_bpp_ .set pixblock_size, pixblock_size_ .set dst_w_basereg, dst_w_basereg_ .set dst_r_basereg, dst_r_basereg_ .set src_basereg, src_basereg_ .set mask_basereg, mask_basereg_ .if use_nearest_scaling != 0 /* * Assign symbolic names to registers for nearest scaling */ W .req r0 DST_W .req r1 SRC .req r2 VX .req r3 UNIT_X .req ip MASK .req lr TMP1 .req r4 TMP2 .req r5 DST_R .req r6 SRC_WIDTH_FIXED .req r7 .macro pixld_src x:vararg pixld_s x .endm ldr UNIT_X, [sp] push {r4-r8, lr} ldr SRC_WIDTH_FIXED, [sp, #(24 + 4)] .if mask_bpp != 0 ldr MASK, [sp, #(24 + 8)] .endif .else /* * Assign symbolic names to registers */ W .req r0 /* width (is updated during processing) */ DST_W .req r1 /* destination buffer pointer for writes */ SRC .req r2 /* source buffer pointer */ DST_R .req ip /* destination buffer pointer for reads */ MASK .req r3 /* mask pointer */ .macro pixld_src x:vararg pixld x .endm .endif .if (((flags) & FLAG_DST_READWRITE) != 0) .set dst_r_bpp, dst_w_bpp .else .set dst_r_bpp, 0 .endif .if (((flags) & FLAG_DEINTERLEAVE_32BPP) != 0) .set DEINTERLEAVE_32BPP_ENABLED, 1 .else .set DEINTERLEAVE_32BPP_ENABLED, 0 .endif .macro fetch_src_pixblock pixld_src pixblock_size, src_bpp, \ (src_basereg - pixblock_size * src_bpp / 64), SRC .endm init mov DST_R, DST_W cmp W, #pixblock_size blt 8f ensure_destination_ptr_alignment process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head subs W, W, #pixblock_size blt 7f /* Implement "head (tail_head) ... (tail_head) tail" loop pattern */ pixld_a pixblock_size, dst_r_bpp, \ (dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R fetch_src_pixblock pixld pixblock_size, mask_bpp, \ (mask_basereg - pixblock_size * mask_bpp / 64), MASK process_pixblock_head subs W, W, #pixblock_size blt 2f 1: process_pixblock_tail_head subs W, W, #pixblock_size bge 1b 2: process_pixblock_tail pixst_a pixblock_size, dst_w_bpp, \ (dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W 7: /* Process the remaining trailing pixels in the scanline (dst aligned) */ process_trailing_pixels 0, 1, \ process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head cleanup .if use_nearest_scaling != 0 pop {r4-r8, pc} /* exit */ .else bx lr /* exit */ .endif 8: /* Process the remaining trailing pixels in the scanline (dst unaligned) */ process_trailing_pixels 0, 0, \ process_pixblock_head, \ process_pixblock_tail, \ process_pixblock_tail_head cleanup .if use_nearest_scaling != 0 pop {r4-r8, pc} /* exit */ .unreq DST_R .unreq SRC .unreq W .unreq VX .unreq UNIT_X .unreq TMP1 .unreq TMP2 .unreq DST_W .unreq MASK .unreq SRC_WIDTH_FIXED .else bx lr /* exit */ .unreq SRC .unreq MASK .unreq DST_R .unreq DST_W .unreq W .endif .purgem fetch_src_pixblock .purgem pixld_src .endfunc .endm .macro generate_composite_function_single_scanline x:vararg generate_composite_function_scanline 0, x .endm .macro generate_composite_function_nearest_scanline x:vararg generate_composite_function_scanline 1, x .endm /* Default prologue/epilogue, nothing special needs to be done */ .macro default_init .endm .macro default_cleanup .endm /* * Prologue/epilogue variant which additionally saves/restores d8-d15 * registers (they need to be saved/restored by callee according to ABI). * This is required if the code needs to use all the NEON registers. */ .macro default_init_need_all_regs vpush {d8-d15} .endm .macro default_cleanup_need_all_regs vpop {d8-d15} .endm /******************************************************************************/ /* * Conversion of 8 r5g6b6 pixels packed in 128-bit register (in) * into a planar a8r8g8b8 format (with a, r, g, b color components * stored into 64-bit registers out_a, out_r, out_g, out_b respectively). * * Warning: the conversion is destructive and the original * value (in) is lost. */ .macro convert_0565_to_8888 in, out_a, out_r, out_g, out_b vshrn.u16 out_r, in, #8 vshrn.u16 out_g, in, #3 vsli.u16 in, in, #5 vmov.u8 out_a, #255 vsri.u8 out_r, out_r, #5 vsri.u8 out_g, out_g, #6 vshrn.u16 out_b, in, #2 .endm .macro convert_0565_to_x888 in, out_r, out_g, out_b vshrn.u16 out_r, in, #8 vshrn.u16 out_g, in, #3 vsli.u16 in, in, #5 vsri.u8 out_r, out_r, #5 vsri.u8 out_g, out_g, #6 vshrn.u16 out_b, in, #2 .endm /* * Conversion from planar a8r8g8b8 format (with a, r, g, b color components * in 64-bit registers in_a, in_r, in_g, in_b respectively) into 8 r5g6b6 * pixels packed in 128-bit register (out). Requires two temporary 128-bit * registers (tmp1, tmp2) */ .macro convert_8888_to_0565 in_r, in_g, in_b, out, tmp1, tmp2 vshll.u8 tmp1, in_g, #8 vshll.u8 out, in_r, #8 vshll.u8 tmp2, in_b, #8 vsri.u16 out, tmp1, #5 vsri.u16 out, tmp2, #11 .endm /* * Conversion of four r5g6b5 pixels (in) to four x8r8g8b8 pixels * returned in (out0, out1) registers pair. Requires one temporary * 64-bit register (tmp). 'out1' and 'in' may overlap, the original * value from 'in' is lost */ .macro convert_four_0565_to_x888_packed in, out0, out1, tmp vshl.u16 out0, in, #5 /* G top 6 bits */ vshl.u16 tmp, in, #11 /* B top 5 bits */ vsri.u16 in, in, #5 /* R is ready in top bits */ vsri.u16 out0, out0, #6 /* G is ready in top bits */ vsri.u16 tmp, tmp, #5 /* B is ready in top bits */ vshr.u16 out1, in, #8 /* R is in place */ vsri.u16 out0, tmp, #8 /* G & B is in place */ vzip.u16 out0, out1 /* everything is in place */ .endm