ref: 0f86084e08c20bbba44c60c981776c54e7101aab
dir: /src/asm/section.c/
/* * This file is part of RGBDS. * * Copyright (c) 2022, RGBDS contributors. * * SPDX-License-Identifier: MIT */ #include <assert.h> #include <errno.h> #include <inttypes.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "asm/fstack.h" #include "asm/main.h" #include "asm/output.h" #include "asm/rpn.h" #include "asm/section.h" #include "asm/symbol.h" #include "asm/warning.h" #include "error.h" #include "linkdefs.h" #include "platform.h" // strdup uint8_t fillByte; struct UnionStackEntry { uint32_t start; uint32_t size; struct UnionStackEntry *next; } *unionStack = NULL; struct SectionStackEntry { struct Section *section; struct Section *loadSection; char const *scope; // Section's symbol scope uint32_t offset; int32_t loadOffset; struct UnionStackEntry *unionStack; struct SectionStackEntry *next; }; struct SectionStackEntry *sectionStack; uint32_t curOffset; // Offset into the current section (see sect_GetSymbolOffset) struct Section *currentSection = NULL; static struct Section *currentLoadSection = NULL; int32_t loadOffset; // Offset into the LOAD section's parent (see sect_GetOutputOffset) // A quick check to see if we have an initialized section attr_(warn_unused_result) static bool checksection(void) { if (currentSection) return true; error("Cannot output data outside of a SECTION\n"); return false; } // A quick check to see if we have an initialized section that can contain // this much initialized data attr_(warn_unused_result) static bool checkcodesection(void) { if (!checksection()) return false; if (sect_HasData(currentSection->type)) return true; error("Section '%s' cannot contain code or data (not ROM0 or ROMX)\n", currentSection->name); return false; } attr_(warn_unused_result) static bool checkSectionSize(struct Section const *sect, uint32_t size) { uint32_t maxSize = sectionTypeInfo[sect->type].size; // If the new size is reasonable, keep going if (size <= maxSize) return true; error("Section '%s' grew too big (max size = 0x%" PRIX32 " bytes, reached 0x%" PRIX32 ").\n", sect->name, maxSize, size); return false; } // Check if the section has grown too much. attr_(warn_unused_result) static bool reserveSpace(uint32_t delta_size) { // This check is here to trap broken code that generates sections that are too big and to // prevent the assembler from generating huge object files or trying to allocate too much // memory. // A check at the linking stage is still necessary. // If the section has already overflowed, skip the check to avoid erroring out ad nauseam if (currentSection->size != UINT32_MAX && !checkSectionSize(currentSection, curOffset + loadOffset + delta_size)) // Mark the section as overflowed, to avoid repeating the error currentSection->size = UINT32_MAX; if (currentLoadSection && currentLoadSection->size != UINT32_MAX && !checkSectionSize(currentLoadSection, curOffset + delta_size)) currentLoadSection->size = UINT32_MAX; return currentSection->size != UINT32_MAX && (!currentLoadSection || currentLoadSection->size != UINT32_MAX); } struct Section *sect_FindSectionByName(char const *name) { for (struct Section *sect = sectionList; sect; sect = sect->next) { if (strcmp(name, sect->name) == 0) return sect; } return NULL; } #define mask(align) ((1U << (align)) - 1) #define fail(...) \ do { \ error(__VA_ARGS__); \ nbSectErrors++; \ } while (0) static unsigned int mergeSectUnion(struct Section *sect, enum SectionType type, uint32_t org, uint8_t alignment, uint16_t alignOffset) { assert(alignment < 16); // Should be ensured by the caller unsigned int nbSectErrors = 0; // Unionized sections only need "compatible" constraints, and they end up with the strictest // combination of both. if (sect_HasData(type)) fail("Cannot declare ROM sections as UNION\n"); if (org != (uint32_t)-1) { // If both are fixed, they must be the same if (sect->org != (uint32_t)-1 && sect->org != org) fail("Section already declared as fixed at different address $%04" PRIx32 "\n", sect->org); else if (sect->align != 0 && (mask(sect->align) & (org - sect->alignOfs))) fail("Section already declared as aligned to %u bytes (offset %" PRIu16 ")\n", 1U << sect->align, sect->alignOfs); else // Otherwise, just override sect->org = org; } else if (alignment != 0) { // Make sure any fixed address given is compatible if (sect->org != (uint32_t)-1) { if ((sect->org - alignOffset) & mask(alignment)) fail("Section already declared as fixed at incompatible address $%04" PRIx32 "\n", sect->org); // Check if alignment offsets are compatible } else if ((alignOffset & mask(sect->align)) != (sect->alignOfs & mask(alignment))) { fail("Section already declared with incompatible %u" "-byte alignment (offset %" PRIu16 ")\n", 1u << sect->align, sect->alignOfs); } else if (alignment > sect->align) { // If the section is not fixed, its alignment is the largest of both sect->align = alignment; sect->alignOfs = alignOffset; } } return nbSectErrors; } static unsigned int mergeFragments(struct Section *sect, enum SectionType type, uint32_t org, uint8_t alignment, uint16_t alignOffset) { (void)type; assert(alignment < 16); // Should be ensured by the caller unsigned int nbSectErrors = 0; // Fragments only need "compatible" constraints, and they end up with the strictest // combination of both. // The merging is however performed at the *end* of the original section! if (org != (uint32_t)-1) { uint16_t curOrg = org - sect->size; // If both are fixed, they must be the same if (sect->org != (uint32_t)-1 && sect->org != curOrg) fail("Section already declared as fixed at incompatible address $%04" PRIx32 " (cur addr = %04" PRIx32 ")\n", sect->org, sect->org + sect->size); else if (sect->align != 0 && (mask(sect->align) & (curOrg - sect->alignOfs))) fail("Section already declared as aligned to %u bytes (offset %" PRIu16 ")\n", 1U << sect->align, sect->alignOfs); else // Otherwise, just override sect->org = curOrg; } else if (alignment != 0) { int32_t curOfs = (alignOffset - sect->size) % (1U << alignment); if (curOfs < 0) curOfs += 1U << alignment; // Make sure any fixed address given is compatible if (sect->org != (uint32_t)-1) { if ((sect->org - curOfs) & mask(alignment)) fail("Section already declared as fixed at incompatible address $%04" PRIx32 "\n", sect->org); // Check if alignment offsets are compatible } else if ((curOfs & mask(sect->align)) != (sect->alignOfs & mask(alignment))) { fail("Section already declared with incompatible %u" "-byte alignment (offset %" PRIu16 ")\n", 1u << sect->align, sect->alignOfs); } else if (alignment > sect->align) { // If the section is not fixed, its alignment is the largest of both sect->align = alignment; sect->alignOfs = curOfs; } } return nbSectErrors; } static void mergeSections(struct Section *sect, enum SectionType type, uint32_t org, uint32_t bank, uint8_t alignment, uint16_t alignOffset, enum SectionModifier mod) { unsigned int nbSectErrors = 0; if (type != sect->type) fail("Section already exists but with type %s\n", sectionTypeInfo[sect->type].name); if (sect->modifier != mod) { fail("Section already declared as %s section\n", sectionModNames[sect->modifier]); } else { switch (mod) { case SECTION_UNION: case SECTION_FRAGMENT: nbSectErrors += (mod == SECTION_UNION ? mergeSectUnion : mergeFragments) (sect, type, org, alignment, alignOffset); // Common checks // If the section's bank is unspecified, override it if (sect->bank == (uint32_t)-1) sect->bank = bank; // If both specify a bank, it must be the same one else if (bank != (uint32_t)-1 && sect->bank != bank) fail("Section already declared with different bank %" PRIu32 "\n", sect->bank); break; case SECTION_NORMAL: fail("Section already defined previously at "); fstk_Dump(sect->src, sect->fileLine); putc('\n', stderr); break; } } if (nbSectErrors) fatalerror("Cannot create section \"%s\" (%u error%s)\n", sect->name, nbSectErrors, nbSectErrors == 1 ? "" : "s"); } #undef fail // Create a new section, not yet in the list. static struct Section *createSection(char const *name, enum SectionType type, uint32_t org, uint32_t bank, uint8_t alignment, uint16_t alignOffset, enum SectionModifier mod) { struct Section *sect = malloc(sizeof(*sect)); if (sect == NULL) fatalerror("Not enough memory for section: %s\n", strerror(errno)); sect->name = strdup(name); if (sect->name == NULL) fatalerror("Not enough memory for section name: %s\n", strerror(errno)); sect->type = type; sect->modifier = mod; sect->src = fstk_GetFileStack(); sect->fileLine = lexer_GetLineNo(); sect->size = 0; sect->org = org; sect->bank = bank; sect->align = alignment; sect->alignOfs = alignOffset; sect->next = NULL; sect->patches = NULL; // It is only needed to allocate memory for ROM sections. if (sect_HasData(type)) { sect->data = malloc(sectionTypeInfo[type].size); if (sect->data == NULL) fatalerror("Not enough memory for section: %s\n", strerror(errno)); } else { sect->data = NULL; } return sect; } // Find a section by name and type. If it doesn't exist, create it. static struct Section *getSection(char const *name, enum SectionType type, uint32_t org, struct SectionSpec const *attrs, enum SectionModifier mod) { uint32_t bank = attrs->bank; uint8_t alignment = attrs->alignment; uint16_t alignOffset = attrs->alignOfs; // First, validate parameters, and normalize them if applicable if (bank != (uint32_t)-1) { if (type != SECTTYPE_ROMX && type != SECTTYPE_VRAM && type != SECTTYPE_SRAM && type != SECTTYPE_WRAMX) error("BANK only allowed for ROMX, WRAMX, SRAM, or VRAM sections\n"); else if (bank < sectionTypeInfo[type].firstBank || bank > sectionTypeInfo[type].lastBank) error("%s bank value $%04" PRIx32 " out of range ($%04" PRIx32 " to $%04" PRIx32 ")\n", sectionTypeInfo[type].name, bank, sectionTypeInfo[type].firstBank, sectionTypeInfo[type].lastBank); } else if (nbbanks(type) == 1) { // If the section type only has a single bank, implicitly force it bank = sectionTypeInfo[type].firstBank; } if (alignOffset >= 1 << alignment) { error("Alignment offset (%" PRIu16 ") must be smaller than alignment size (%u)\n", alignOffset, 1U << alignment); alignOffset = 0; } if (org != (uint32_t)-1) { if (org < sectionTypeInfo[type].startAddr || org > endaddr(type)) error("Section \"%s\"'s fixed address %#" PRIx32 " is outside of range [%#" PRIx16 "; %#" PRIx16 "]\n", name, org, sectionTypeInfo[type].startAddr, endaddr(type)); } if (alignment != 0) { if (alignment > 16) { error("Alignment must be between 0 and 16, not %u\n", alignment); alignment = 16; } // It doesn't make sense to have both alignment and org set uint32_t mask = mask(alignment); if (org != (uint32_t)-1) { if ((org - alignOffset) & mask) error("Section \"%s\"'s fixed address doesn't match its alignment\n", name); alignment = 0; // Ignore it if it's satisfied } else if (sectionTypeInfo[type].startAddr & mask) { error("Section \"%s\"'s alignment cannot be attained in %s\n", name, sectionTypeInfo[type].name); alignment = 0; // Ignore it if it's unattainable org = 0; } else if (alignment == 16) { // Treat an alignment of 16 as being fixed at address 0 alignment = 0; org = 0; // The address is known to be valid, since the alignment is } } // Check if another section exists with the same name; merge if yes, otherwise create one struct Section *sect = sect_FindSectionByName(name); if (sect) { mergeSections(sect, type, org, bank, alignment, alignOffset, mod); } else { sect = createSection(name, type, org, bank, alignment, alignOffset, mod); // Add the new section to the list (order doesn't matter) sect->next = sectionList; sectionList = sect; } return sect; } // Set the current section static void changeSection(void) { if (unionStack) fatalerror("Cannot change the section within a UNION\n"); sym_SetCurrentSymbolScope(NULL); } // Set the current section by name and type void sect_NewSection(char const *name, uint32_t type, uint32_t org, struct SectionSpec const *attribs, enum SectionModifier mod) { if (currentLoadSection) fatalerror("Cannot change the section within a `LOAD` block\n"); for (struct SectionStackEntry *stack = sectionStack; stack; stack = stack->next) { if (stack->section && !strcmp(name, stack->section->name)) fatalerror("Section '%s' is already on the stack\n", name); } struct Section *sect = getSection(name, type, org, attribs, mod); changeSection(); curOffset = mod == SECTION_UNION ? 0 : sect->size; loadOffset = 0; // This is still used when checking for section size overflow! currentSection = sect; } // Set the current section by name and type void sect_SetLoadSection(char const *name, uint32_t type, uint32_t org, struct SectionSpec const *attribs, enum SectionModifier mod) { // Important info: currently, UNION and LOAD cannot interact, since UNION is prohibited in // "code" sections, whereas LOAD is restricted to them. // Therefore, any interactions are NOT TESTED, so lift either of those restrictions at // your own peril! ^^ if (!checkcodesection()) return; if (currentLoadSection) { error("`LOAD` blocks cannot be nested\n"); return; } if (sect_HasData(type)) { error("`LOAD` blocks cannot create a ROM section\n"); return; } if (mod == SECTION_FRAGMENT) { error("`LOAD FRAGMENT` is not allowed\n"); return; } struct Section *sect = getSection(name, type, org, attribs, mod); changeSection(); loadOffset = curOffset - (mod == SECTION_UNION ? 0 : sect->size); curOffset -= loadOffset; currentLoadSection = sect; } void sect_EndLoadSection(void) { if (!currentLoadSection) { error("Found `ENDL` outside of a `LOAD` block\n"); return; } changeSection(); curOffset += loadOffset; loadOffset = 0; currentLoadSection = NULL; } struct Section *sect_GetSymbolSection(void) { return currentLoadSection ? currentLoadSection : currentSection; } // The offset into the section above uint32_t sect_GetSymbolOffset(void) { return curOffset; } uint32_t sect_GetOutputOffset(void) { return curOffset + loadOffset; } void sect_AlignPC(uint8_t alignment, uint16_t offset) { if (!checksection()) return; struct Section *sect = sect_GetSymbolSection(); uint16_t alignSize = 1 << alignment; // Size of an aligned "block" if (sect->org != (uint32_t)-1) { if ((sym_GetPCValue() - offset) % alignSize) error("Section's fixed address fails required alignment (PC = $%04" PRIx32 ")\n", sym_GetPCValue()); } else if (sect->align != 0) { if ((((sect->alignOfs + curOffset) % (1 << sect->align)) - offset) % alignSize) { error("Section's alignment fails required alignment (offset from section start = $%04" PRIx32 ")\n", curOffset); } else if (alignment > sect->align) { sect->align = alignment; sect->alignOfs = (offset - curOffset) % alignSize; } } else { sect->align = alignment; // We need `(sect->alignOfs + curOffset) % alignSize == offset sect->alignOfs = (offset - curOffset) % alignSize; } } static void growSection(uint32_t growth) { curOffset += growth; if (curOffset + loadOffset > currentSection->size) currentSection->size = curOffset + loadOffset; if (currentLoadSection && curOffset > currentLoadSection->size) currentLoadSection->size = curOffset; } static void writebyte(uint8_t byte) { currentSection->data[sect_GetOutputOffset()] = byte; growSection(1); } static void writeword(uint16_t b) { writebyte(b & 0xFF); writebyte(b >> 8); } static void writelong(uint32_t b) { writebyte(b & 0xFF); writebyte(b >> 8); writebyte(b >> 16); writebyte(b >> 24); } static void createPatch(enum PatchType type, struct Expression const *expr, uint32_t pcShift) { out_CreatePatch(type, expr, sect_GetOutputOffset(), pcShift); } void sect_StartUnion(void) { // Important info: currently, UNION and LOAD cannot interact, since UNION is prohibited in // "code" sections, whereas LOAD is restricted to them. // Therefore, any interactions are NOT TESTED, so lift either of those restrictions at // your own peril! ^^ if (!currentSection) { error("UNIONs must be inside a SECTION\n"); return; } if (sect_HasData(currentSection->type)) { error("Cannot use UNION inside of ROM0 or ROMX sections\n"); return; } struct UnionStackEntry *entry = malloc(sizeof(*entry)); if (!entry) fatalerror("Failed to allocate new union stack entry: %s\n", strerror(errno)); entry->start = curOffset; entry->size = 0; entry->next = unionStack; unionStack = entry; } static void endUnionMember(void) { uint32_t memberSize = curOffset - unionStack->start; if (memberSize > unionStack->size) unionStack->size = memberSize; curOffset = unionStack->start; } void sect_NextUnionMember(void) { if (!unionStack) { error("Found NEXTU outside of a UNION construct\n"); return; } endUnionMember(); } void sect_EndUnion(void) { if (!unionStack) { error("Found ENDU outside of a UNION construct\n"); return; } endUnionMember(); curOffset += unionStack->size; struct UnionStackEntry *next = unionStack->next; free(unionStack); unionStack = next; } void sect_CheckUnionClosed(void) { if (unionStack) error("Unterminated UNION construct!\n"); } // Output an absolute byte void sect_AbsByte(uint8_t b) { if (!checkcodesection()) return; if (!reserveSpace(1)) return; writebyte(b); } void sect_AbsByteGroup(uint8_t const *s, size_t length) { if (!checkcodesection()) return; if (!reserveSpace(length)) return; while (length--) writebyte(*s++); } void sect_AbsWordGroup(uint8_t const *s, size_t length) { if (!checkcodesection()) return; if (!reserveSpace(length * 2)) return; while (length--) writeword(*s++); } void sect_AbsLongGroup(uint8_t const *s, size_t length) { if (!checkcodesection()) return; if (!reserveSpace(length * 4)) return; while (length--) writelong(*s++); } // Skip this many bytes void sect_Skip(uint32_t skip, bool ds) { if (!checksection()) return; if (!reserveSpace(skip)) return; if (!sect_HasData(currentSection->type)) { growSection(skip); } else { if (!ds) warning(WARNING_EMPTY_DATA_DIRECTIVE, "%s directive without data in ROM\n", (skip == 4) ? "DL" : (skip == 2) ? "DW" : "DB"); // We know we're in a code SECTION while (skip--) writebyte(fillByte); } } // Output a NULL terminated string (excluding the NULL-character) void sect_String(char const *s) { if (!checkcodesection()) return; if (!reserveSpace(strlen(s))) return; while (*s) writebyte(*s++); } // Output a relocatable byte. Checking will be done to see if it // is an absolute value in disguise. void sect_RelByte(struct Expression *expr, uint32_t pcShift) { if (!checkcodesection()) return; if (!reserveSpace(1)) return; if (!rpn_isKnown(expr)) { createPatch(PATCHTYPE_BYTE, expr, pcShift); writebyte(0); } else { writebyte(expr->val); } rpn_Free(expr); } // Output several copies of a relocatable byte. Checking will be done to see if // it is an absolute value in disguise. void sect_RelBytes(uint32_t n, struct Expression *exprs, size_t size) { if (!checkcodesection()) return; if (!reserveSpace(n)) return; for (uint32_t i = 0; i < n; i++) { struct Expression *expr = &exprs[i % size]; if (!rpn_isKnown(expr)) { createPatch(PATCHTYPE_BYTE, expr, i); writebyte(0); } else { writebyte(expr->val); } } for (size_t i = 0; i < size; i++) rpn_Free(&exprs[i]); } // Output a relocatable word. Checking will be done to see if // it's an absolute value in disguise. void sect_RelWord(struct Expression *expr, uint32_t pcShift) { if (!checkcodesection()) return; if (!reserveSpace(2)) return; if (!rpn_isKnown(expr)) { createPatch(PATCHTYPE_WORD, expr, pcShift); writeword(0); } else { writeword(expr->val); } rpn_Free(expr); } // Output a relocatable longword. Checking will be done to see if // is an absolute value in disguise. void sect_RelLong(struct Expression *expr, uint32_t pcShift) { if (!checkcodesection()) return; if (!reserveSpace(2)) return; if (!rpn_isKnown(expr)) { createPatch(PATCHTYPE_LONG, expr, pcShift); writelong(0); } else { writelong(expr->val); } rpn_Free(expr); } // Output a PC-relative relocatable byte. Checking will be done to see if it // is an absolute value in disguise. void sect_PCRelByte(struct Expression *expr, uint32_t pcShift) { if (!checkcodesection()) return; if (!reserveSpace(1)) return; struct Symbol const *pc = sym_GetPC(); if (!rpn_IsDiffConstant(expr, pc)) { createPatch(PATCHTYPE_JR, expr, pcShift); writebyte(0); } else { struct Symbol const *sym = rpn_SymbolOf(expr); // The offset wraps (jump from ROM to HRAM, for example) int16_t offset; // Offset is relative to the byte *after* the operand if (sym == pc) offset = -2; // PC as operand to `jr` is lower than reference PC by 2 else offset = sym_GetValue(sym) - (sym_GetValue(pc) + 1); if (offset < -128 || offset > 127) { error("jr target out of reach (expected -129 < %" PRId16 " < 128)\n", offset); writebyte(0); } else { writebyte(offset); } } rpn_Free(expr); } // Output a binary file void sect_BinaryFile(char const *s, int32_t startPos) { if (startPos < 0) { error("Start position cannot be negative (%" PRId32 ")\n", startPos); startPos = 0; } if (!checkcodesection()) return; char *fullPath = NULL; size_t size = 0; FILE *f = NULL; if (fstk_FindFile(s, &fullPath, &size)) f = fopen(fullPath, "rb"); free(fullPath); if (!f) { if (generatedMissingIncludes) { if (verbose) printf("Aborting (-MG) on INCBIN file '%s' (%s)\n", s, strerror(errno)); failedOnMissingInclude = true; return; } error("Error opening INCBIN file '%s': %s\n", s, strerror(errno)); return; } int32_t fsize = -1; int byte; if (fseek(f, 0, SEEK_END) != -1) { fsize = ftell(f); if (startPos > fsize) { error("Specified start position is greater than length of file\n"); goto cleanup; } fseek(f, startPos, SEEK_SET); if (!reserveSpace(fsize - startPos)) goto cleanup; } else { if (errno != ESPIPE) error("Error determining size of INCBIN file '%s': %s\n", s, strerror(errno)); // The file isn't seekable, so we'll just skip bytes while (startPos--) (void)fgetc(f); } while ((byte = fgetc(f)) != EOF) { if (fsize == -1) growSection(1); writebyte(byte); } if (ferror(f)) error("Error reading INCBIN file '%s': %s\n", s, strerror(errno)); cleanup: fclose(f); } void sect_BinaryFileSlice(char const *s, int32_t start_pos, int32_t length) { if (start_pos < 0) { error("Start position cannot be negative (%" PRId32 ")\n", start_pos); start_pos = 0; } if (length < 0) { error("Number of bytes to read cannot be negative (%" PRId32 ")\n", length); length = 0; } if (!checkcodesection()) return; if (length == 0) // Don't even bother with 0-byte slices return; if (!reserveSpace(length)) return; char *fullPath = NULL; size_t size = 0; FILE *f = NULL; if (fstk_FindFile(s, &fullPath, &size)) f = fopen(fullPath, "rb"); free(fullPath); if (!f) { if (generatedMissingIncludes) { if (verbose) printf("Aborting (-MG) on INCBIN file '%s' (%s)\n", s, strerror(errno)); failedOnMissingInclude = true; } else { error("Error opening INCBIN file '%s': %s\n", s, strerror(errno)); } return; } int32_t fsize; if (fseek(f, 0, SEEK_END) != -1) { fsize = ftell(f); if (start_pos > fsize) { error("Specified start position is greater than length of file\n"); goto cleanup; } if ((start_pos + length) > fsize) { error("Specified range in INCBIN is out of bounds (%" PRIu32 " + %" PRIu32 " > %" PRIu32 ")\n", start_pos, length, fsize); goto cleanup; } fseek(f, start_pos, SEEK_SET); } else { if (errno != ESPIPE) error("Error determining size of INCBIN file '%s': %s\n", s, strerror(errno)); // The file isn't seekable, so we'll just skip bytes while (start_pos--) (void)fgetc(f); } while (length--) { int byte = fgetc(f); if (byte != EOF) { writebyte(byte); } else if (ferror(f)) { error("Error reading INCBIN file '%s': %s\n", s, strerror(errno)); } else { error("Premature end of file (%" PRId32 " bytes left to read)\n", length + 1); } } cleanup: fclose(f); } // Section stack routines void sect_PushSection(void) { struct SectionStackEntry *entry = malloc(sizeof(*entry)); if (entry == NULL) fatalerror("No memory for section stack: %s\n", strerror(errno)); entry->section = currentSection; entry->loadSection = currentLoadSection; entry->scope = sym_GetCurrentSymbolScope(); entry->offset = curOffset; entry->loadOffset = loadOffset; entry->unionStack = unionStack; entry->next = sectionStack; sectionStack = entry; // Reset the section scope currentSection = NULL; currentLoadSection = NULL; sym_SetCurrentSymbolScope(NULL); unionStack = NULL; } void sect_PopSection(void) { if (!sectionStack) fatalerror("No entries in the section stack\n"); if (currentLoadSection) fatalerror("Cannot change the section within a `LOAD` block!\n"); struct SectionStackEntry *entry = sectionStack; changeSection(); currentSection = entry->section; currentLoadSection = entry->loadSection; sym_SetCurrentSymbolScope(entry->scope); curOffset = entry->offset; loadOffset = entry->loadOffset; unionStack = entry->unionStack; sectionStack = entry->next; free(entry); } bool sect_IsSizeKnown(struct Section const NONNULL(sect)) { // SECTION UNION and SECTION FRAGMENT can still grow if (sect->modifier != SECTION_NORMAL) return false; // The current section (or current load section if within one) is still growing if (sect == currentSection || sect == currentLoadSection) return false; // Any section on the stack is still growing for (struct SectionStackEntry *stack = sectionStack; stack; stack = stack->next) { if (stack->section && !strcmp(sect->name, stack->section->name)) return false; } return true; }