ref: 18c47843f1c4ed3e9c480559bccf5f8a059ddd97
dir: /src/asm/section.c/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "asm/fstack.h"
#include "asm/main.h"
#include "asm/output.h"
#include "asm/rpn.h"
#include "asm/section.h"
#include "asm/warning.h"
#include "extern/err.h"
struct SectionStackEntry {
struct Section *pSection;
struct sSymbol *pScope; /* Section's symbol scope */
struct SectionStackEntry *pNext;
};
struct SectionStackEntry *pSectionStack;
static struct Section *currentLoadSection = NULL;
/*
* A quick check to see if we have an initialized section
*/
static void checksection(void)
{
if (pCurrentSection == NULL)
fatalerror("Code generation before SECTION directive");
}
/*
* A quick check to see if we have an initialized section that can contain
* this much initialized data
*/
static void checkcodesection(void)
{
checksection();
if (!sect_HasData(pCurrentSection->nType))
fatalerror("Section '%s' cannot contain code or data (not ROM0 or ROMX)",
pCurrentSection->pzName);
else if (nUnionDepth > 0)
fatalerror("UNIONs cannot contain code or data");
}
/*
* Check if the section has grown too much.
*/
static void checksectionoverflow(uint32_t delta_size)
{
uint32_t maxSize = maxsize[pCurrentSection->nType];
uint32_t newSize = pCurrentSection->nPC + delta_size;
if (newSize > maxSize) {
/*
* This check is here to trap broken code that generates
* sections that are too big and to prevent the assembler from
* generating huge object files or trying to allocate too much
* memory.
* The real check must be done at the linking stage.
*/
fatalerror("Section '%s' is too big (max size = 0x%X bytes, reached 0x%X).",
pCurrentSection->pzName, maxSize, newSize);
}
}
struct Section *out_FindSectionByName(const char *pzName)
{
struct Section *pSect = pSectionList;
while (pSect) {
if (strcmp(pzName, pSect->pzName) == 0)
return pSect;
pSect = pSect->pNext;
}
return NULL;
}
/*
* Find a section by name and type. If it doesn't exist, create it
*/
static struct Section *getSection(char const *pzName, enum SectionType type,
int32_t org, int32_t bank, int32_t alignment)
{
if (bank != -1) {
if (type != SECTTYPE_ROMX && type != SECTTYPE_VRAM
&& type != SECTTYPE_SRAM && type != SECTTYPE_WRAMX)
yyerror("BANK only allowed for ROMX, WRAMX, SRAM, or VRAM sections");
else if (bank < bankranges[type][0]
|| bank > bankranges[type][1])
yyerror("%s bank value $%x out of range ($%x to $%x)",
typeNames[type], bank,
bankranges[type][0], bankranges[type][1]);
}
if (alignment != 1) {
/* It doesn't make sense to have both set */
uint32_t mask = alignment - 1;
if (org != -1) {
if (org & mask)
yyerror("Section \"%s\"'s fixed address doesn't match its alignment",
pzName);
else
alignment = 1; /* Ignore it if it's satisfied */
}
}
if (org != -1) {
if (org < startaddr[type] || org > endaddr(type))
yyerror("Section \"%s\"'s fixed address %#x is outside of range [%#x; %#x]",
pzName, org, startaddr[type], endaddr(type));
}
struct Section *pSect = out_FindSectionByName(pzName);
if (pSect) {
if (type == pSect->nType
&& ((uint32_t)org) == pSect->nOrg
&& ((uint32_t)bank) == pSect->nBank
&& ((uint32_t)alignment == pSect->nAlign)) {
return pSect;
}
fatalerror("Section already exists but with a different type");
}
pSect = malloc(sizeof(*pSect));
if (pSect == NULL)
fatalerror("Not enough memory for section");
pSect->pzName = strdup(pzName);
if (pSect->pzName == NULL)
fatalerror("Not enough memory for sectionname");
if (nbbanks(type) == 1)
bank = bankranges[type][0];
pSect->nType = type;
pSect->nPC = 0;
pSect->nOrg = org;
pSect->nBank = bank;
pSect->nAlign = alignment;
pSect->pNext = pSectionList;
pSect->pPatches = NULL;
/* It is only needed to allocate memory for ROM sections. */
if (sect_HasData(type)) {
uint32_t sectsize;
sectsize = maxsize[type];
pSect->tData = malloc(sectsize);
if (pSect->tData == NULL)
fatalerror("Not enough memory for section");
} else {
pSect->tData = NULL;
}
/*
* Add the new section to the list
* at the beginning because order doesn't matter
*/
pSectionList = pSect;
return pSect;
}
/*
* Set the current section
*/
static void setSection(struct Section *pSect)
{
if (nUnionDepth > 0)
fatalerror("Cannot change the section within a UNION");
nPC = (pSect != NULL) ? pSect->nPC : 0;
pPCSymbol->pSection = pSect;
pPCSymbol->isConstant = pSect && pSect->nOrg != -1;
}
/*
* Set the current section by name and type
*/
void out_NewSection(char const *pzName, uint32_t type, int32_t org,
struct SectionSpec const *attributes)
{
if (currentLoadSection)
fatalerror("Cannot change the section within a `LOAD` block");
struct Section *pSect = getSection(pzName, type, org, attributes->bank,
1 << attributes->alignment);
nPC = pSect->nPC;
setSection(pSect);
pCurrentSection = pSect;
}
/*
* Set the current section by name and type
*/
void out_SetLoadSection(char const *name, uint32_t type, int32_t org,
struct SectionSpec const *attributes)
{
if (currentLoadSection)
fatalerror("`LOAD` blocks cannot be nested");
struct Section *pSect = getSection(name, type, org, attributes->bank,
1 << attributes->alignment);
nPC = pSect->nPC;
setSection(pSect);
currentLoadSection = pSect;
}
void out_EndLoadSection(void)
{
if (!currentLoadSection)
yyerror("Found `ENDL` outside of a `LOAD` block");
currentLoadSection = NULL;
sym_SetCurrentSymbolScope(NULL);
nPC = pCurrentSection->nPC;
setSection(pCurrentSection);
}
struct Section *sect_GetSymbolSection(void)
{
return currentLoadSection ? currentLoadSection : pCurrentSection;
}
/*
* Output an absolute byte (bypassing ROM/union checks)
*/
static void absByteBypassCheck(uint8_t b)
{
pCurrentSection->tData[pCurrentSection->nPC++] = b;
if (currentLoadSection)
currentLoadSection->nPC++;
nPC++;
}
/*
* Output an absolute byte
*/
void out_AbsByte(uint8_t b)
{
checkcodesection();
checksectionoverflow(1);
absByteBypassCheck(b);
}
void out_AbsByteGroup(uint8_t const *s, int32_t length)
{
checkcodesection();
checksectionoverflow(length);
while (length--)
absByteBypassCheck(*s++);
}
/*
* Skip this many bytes
*/
void out_Skip(int32_t skip)
{
checksection();
checksectionoverflow(skip);
if (!sect_HasData(pCurrentSection->nType)) {
pCurrentSection->nPC += skip;
if (currentLoadSection)
currentLoadSection->nPC += skip;
nPC += skip;
} else if (nUnionDepth > 0) {
while (skip--)
absByteBypassCheck(CurrentOptions.fillchar);
} else {
checkcodesection();
while (skip--)
absByteBypassCheck(CurrentOptions.fillchar);
}
}
/*
* Output a NULL terminated string (excluding the NULL-character)
*/
void out_String(char const *s)
{
checkcodesection();
checksectionoverflow(strlen(s));
while (*s)
absByteBypassCheck(*s++);
}
/*
* Output a relocatable byte. Checking will be done to see if it
* is an absolute value in disguise.
*/
void out_RelByte(struct Expression *expr)
{
if (!rpn_isKnown(expr)) {
out_CreatePatch(PATCHTYPE_BYTE, expr);
out_AbsByte(0);
} else {
out_AbsByte(expr->nVal);
}
rpn_Free(expr);
}
/*
* Output an absolute word
*/
static void absWord(uint16_t b)
{
checkcodesection();
checksectionoverflow(2);
pCurrentSection->tData[pCurrentSection->nPC++] = b & 0xFF;
pCurrentSection->tData[pCurrentSection->nPC++] = b >> 8;
if (currentLoadSection)
currentLoadSection->nPC += 2;
nPC += 2;
}
/*
* Output a relocatable word. Checking will be done to see if
* it's an absolute value in disguise.
*/
void out_RelWord(struct Expression *expr)
{
if (!rpn_isKnown(expr)) {
out_CreatePatch(PATCHTYPE_WORD, expr);
absWord(0);
} else {
absWord(expr->nVal);
}
rpn_Free(expr);
}
/*
* Output an absolute longword
*/
static void absLong(uint32_t b)
{
checkcodesection();
checksectionoverflow(4);
pCurrentSection->tData[pCurrentSection->nPC++] = b & 0xFF;
pCurrentSection->tData[pCurrentSection->nPC++] = b >> 8;
pCurrentSection->tData[pCurrentSection->nPC++] = b >> 16;
pCurrentSection->tData[pCurrentSection->nPC++] = b >> 24;
if (currentLoadSection)
currentLoadSection->nPC += 4;
nPC += 4;
}
/*
* Output a relocatable longword. Checking will be done to see if
* is an absolute value in disguise.
*/
void out_RelLong(struct Expression *expr)
{
if (!rpn_isKnown(expr)) {
out_CreatePatch(PATCHTYPE_LONG, expr);
absLong(0);
} else {
absLong(expr->nVal);
}
rpn_Free(expr);
}
/*
* Output a PC-relative relocatable byte. Checking will be done to see if it
* is an absolute value in disguise.
*/
void out_PCRelByte(struct Expression *expr)
{
checkcodesection();
checksectionoverflow(1);
if (!rpn_isKnown(expr) || pCurrentSection->nOrg == -1) {
out_CreatePatch(PATCHTYPE_JR, expr);
pCurrentSection->tData[pCurrentSection->nPC++] = 0;
if (currentLoadSection)
currentLoadSection->nPC++;
nPC++;
} else {
/* Target is relative to the byte *after* the operand */
uint16_t address = pCurrentSection->nOrg + nPC + 1;
/* The offset wraps (jump from ROM to HRAM, for loopexample) */
int16_t offset = expr->nVal - address;
if (offset < -128 || offset > 127) {
yyerror("jr target out of reach (expected -129 < %d < 128)", offset);
out_AbsByte(0);
} else {
out_AbsByte(offset);
}
}
rpn_Free(expr);
}
/*
* Output a binary file
*/
void out_BinaryFile(char const *s)
{
FILE *f = fstk_FindFile(s, NULL);
if (!f) {
if (oGeneratedMissingIncludes) {
oFailedOnMissingInclude = true;
return;
}
fatalerror("Error opening INCBIN file '%s': %s", s,
strerror(errno));
}
int32_t fsize = -1;
int byte;
checkcodesection();
if (fseek(f, 0, SEEK_END) != -1) {
fsize = ftell(f);
rewind(f);
checksectionoverflow(fsize);
} else if (errno != ESPIPE) {
yyerror("Error determining size of INCBIN file '%s': %s", s,
strerror(errno));
}
while ((byte = fgetc(f)) != EOF) {
if (fsize == -1)
checksectionoverflow(1);
pCurrentSection->tData[pCurrentSection->nPC++] = byte;
if (currentLoadSection)
currentLoadSection->nPC++;
nPC++;
}
if (ferror(f))
yyerror("Error reading INCBIN file '%s': %s", s,
strerror(errno));
fclose(f);
}
void out_BinaryFileSlice(char const *s, int32_t start_pos, int32_t length)
{
if (start_pos < 0) {
yyerror("Start position cannot be negative (%d)", start_pos);
start_pos = 0;
}
if (length < 0) {
yyerror("Number of bytes to read cannot be negative (%d)",
length);
length = 0;
}
if (length == 0) /* Don't even bother with 0-byte slices */
return;
FILE *f = fstk_FindFile(s, NULL);
if (!f) {
if (oGeneratedMissingIncludes) {
oFailedOnMissingInclude = true;
return;
}
fatalerror("Error opening INCBIN file '%s': %s", s,
strerror(errno));
}
checkcodesection();
checksectionoverflow(length);
int32_t fsize;
if (fseek(f, 0, SEEK_END) != -1) {
fsize = ftell(f);
if (start_pos >= fsize) {
yyerror("Specified start position is greater than length of file");
return;
}
if ((start_pos + length) > fsize)
fatalerror("Specified range in INCBIN is out of bounds");
fseek(f, start_pos, SEEK_SET);
} else {
if (errno != ESPIPE)
yyerror("Error determining size of INCBIN file '%s': %s",
s, strerror(errno));
/* The file isn't seekable, so we'll just skip bytes */
while (start_pos--)
(void)fgetc(f);
}
int32_t todo = length;
while (todo--) {
int byte = fgetc(f);
if (byte != EOF) {
pCurrentSection->tData[pCurrentSection->nPC++] = byte;
if (currentLoadSection)
currentLoadSection->nPC++;
nPC++;
} else if (ferror(f)) {
yyerror("Error reading INCBIN file '%s': %s", s,
strerror(errno));
} else {
yyerror("Premature end of file (%d bytes left to read)",
todo + 1);
}
}
fclose(f);
}
/*
* Section stack routines
*/
void out_PushSection(void)
{
struct SectionStackEntry *pSect;
pSect = malloc(sizeof(struct SectionStackEntry));
if (pSect == NULL)
fatalerror("No memory for section stack");
pSect->pSection = pCurrentSection;
pSect->pScope = sym_GetCurrentSymbolScope();
pSect->pNext = pSectionStack;
pSectionStack = pSect;
}
void out_PopSection(void)
{
if (pSectionStack == NULL)
fatalerror("No entries in the section stack");
struct SectionStackEntry *pSect;
pSect = pSectionStack;
setSection(pSect->pSection);
pCurrentSection = pSect->pSection;
sym_SetCurrentSymbolScope(pSect->pScope);
pSectionStack = pSect->pNext;
free(pSect);
}