ref: 432c769d604a481bdb96e9f13c53289ed5028b0b
dir: /src/asm/section.c/
#include <assert.h> #include <errno.h> #include <inttypes.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include "asm/fstack.h" #include "asm/main.h" #include "asm/output.h" #include "asm/rpn.h" #include "asm/section.h" #include "asm/symbol.h" #include "asm/warning.h" #include "extern/err.h" #include "platform.h" // strdup uint8_t fillByte; struct SectionStackEntry { struct Section *section; char const *scope; /* Section's symbol scope */ uint32_t offset; struct SectionStackEntry *next; }; struct SectionStackEntry *sectionStack; uint32_t curOffset; /* Offset into the current section (see sect_GetSymbolOffset) */ static struct Section *currentLoadSection = NULL; int32_t loadOffset; /* Offset into the LOAD section's parent (see sect_GetOutputOffset) */ struct UnionStackEntry { uint32_t start; uint32_t size; struct UnionStackEntry *next; } *unionStack = NULL; /* * A quick check to see if we have an initialized section */ static void checksection(void) { if (pCurrentSection == NULL) fatalerror("Code generation before SECTION directive\n"); } /* * A quick check to see if we have an initialized section that can contain * this much initialized data */ static void checkcodesection(void) { checksection(); if (!sect_HasData(pCurrentSection->type)) fatalerror("Section '%s' cannot contain code or data (not ROM0 or ROMX)\n", pCurrentSection->name); } static void checkSectionSize(struct Section const *sect, uint32_t size) { uint32_t maxSize = maxsize[sect->type]; if (size > maxSize) fatalerror("Section '%s' grew too big (max size = 0x%" PRIX32 " bytes, reached 0x%" PRIX32 ").\n", sect->name, maxSize, size); } /* * Check if the section has grown too much. */ static void reserveSpace(uint32_t delta_size) { /* * This check is here to trap broken code that generates sections that * are too big and to prevent the assembler from generating huge object * files or trying to allocate too much memory. * A check at the linking stage is still necessary. */ checkSectionSize(pCurrentSection, curOffset + loadOffset + delta_size); if (currentLoadSection) checkSectionSize(currentLoadSection, curOffset + delta_size); } struct Section *out_FindSectionByName(const char *name) { for (struct Section *sect = pSectionList; sect; sect = sect->next) { if (strcmp(name, sect->name) == 0) return sect; } return NULL; } #define mask(align) ((1U << (align)) - 1) #define fail(...) \ do { \ error(__VA_ARGS__); \ nbSectErrors++; \ } while (0) static unsigned int mergeSectUnion(struct Section *sect, enum SectionType type, uint32_t org, uint8_t alignment, uint16_t alignOffset) { assert(alignment < 16); // Should be ensured by the caller unsigned int nbSectErrors = 0; /* * Unionized sections only need "compatible" constraints, and they end up with the strictest * combination of both. */ if (sect_HasData(type)) fail("Cannot declare ROM sections as UNION\n"); if (org != (uint32_t)-1) { /* If both are fixed, they must be the same */ if (sect->org != (uint32_t)-1 && sect->org != org) fail("Section already declared as fixed at different address $%04" PRIx32 "\n", sect->org); else if (sect->align != 0 && (mask(sect->align) & (org - sect->alignOfs))) fail("Section already declared as aligned to %u bytes (offset %" PRIu16 ")\n", 1U << sect->align, sect->alignOfs); else /* Otherwise, just override */ sect->org = org; } else if (alignment != 0) { /* Make sure any fixed address given is compatible */ if (sect->org != (uint32_t)-1) { if ((sect->org - alignOffset) & mask(alignment)) fail("Section already declared as fixed at incompatible address $%04" PRIx32 "\n", sect->org); /* Check if alignment offsets are compatible */ } else if ((alignOffset & mask(sect->align)) != (sect->alignOfs & mask(alignment))) { fail("Section already declared with incompatible %" PRIu8 "-byte alignment (offset %" PRIu16 ")\n", sect->align, sect->alignOfs); } else if (alignment > sect->align) { // If the section is not fixed, its alignment is the largest of both sect->align = alignment; sect->alignOfs = alignOffset; } } return nbSectErrors; } static unsigned int mergeFragments(struct Section *sect, enum SectionType type, uint32_t org, uint8_t alignment, uint16_t alignOffset) { (void)type; assert(alignment < 16); // Should be ensured by the caller unsigned int nbSectErrors = 0; /* * Fragments only need "compatible" constraints, and they end up with the strictest * combination of both. * The merging is however performed at the *end* of the original section! */ if (org != (uint32_t)-1) { uint16_t curOrg = org - sect->size; /* If both are fixed, they must be the same */ if (sect->org != (uint32_t)-1 && sect->org != curOrg) fail("Section already declared as fixed at incompatible address $%04" PRIx32 " (cur addr = %04" PRIx32 ")\n", sect->org, sect->org + sect->size); else if (sect->align != 0 && (mask(sect->align) & (curOrg - sect->alignOfs))) fail("Section already declared as aligned to %u bytes (offset %" PRIu16 ")\n", 1U << sect->align, sect->alignOfs); else /* Otherwise, just override */ sect->org = curOrg; } else if (alignment != 0) { int32_t curOfs = (alignOffset - sect->size) % (1U << alignment); if (curOfs < 0) curOfs += 1U << alignment; /* Make sure any fixed address given is compatible */ if (sect->org != (uint32_t)-1) { if ((sect->org - curOfs) & mask(alignment)) fail("Section already declared as fixed at incompatible address $%04" PRIx32 "\n", sect->org); /* Check if alignment offsets are compatible */ } else if ((curOfs & mask(sect->align)) != (sect->alignOfs & mask(alignment))) { fail("Section already declared with incompatible %" PRIu8 "-byte alignment (offset %" PRIu16 ")\n", sect->align, sect->alignOfs); } else if (alignment > sect->align) { // If the section is not fixed, its alignment is the largest of both sect->align = alignment; sect->alignOfs = curOfs; } } return nbSectErrors; } static void mergeSections(struct Section *sect, enum SectionType type, uint32_t org, uint32_t bank, uint8_t alignment, uint16_t alignOffset, enum SectionModifier mod) { unsigned int nbSectErrors = 0; if (type != sect->type) fail("Section already exists but with type %s\n", typeNames[sect->type]); if (sect->modifier != mod) { fail("Section already declared as %s section\n", sectionModNames[sect->modifier]); } else { switch (mod) { case SECTION_UNION: case SECTION_FRAGMENT: nbSectErrors += (mod == SECTION_UNION ? mergeSectUnion : mergeFragments) (sect, type, org, alignment, alignOffset); // Common checks /* If the section's bank is unspecified, override it */ if (sect->bank == (uint32_t)-1) sect->bank = bank; /* If both specify a bank, it must be the same one */ else if (bank != (uint32_t)-1 && sect->bank != bank) fail("Section already declared with different bank %" PRIu32 "\n", sect->bank); break; case SECTION_NORMAL: fail("Section already defined previously at "); fstk_Dump(sect->src, sect->fileLine); putc('\n', stderr); break; } } if (nbSectErrors) fatalerror("Cannot create section \"%s\" (%u error%s)\n", sect->name, nbSectErrors, nbSectErrors == 1 ? "" : "s"); } #undef fail /* * Create a new section, not yet in the list. */ static struct Section *createSection(char const *name, enum SectionType type, uint32_t org, uint32_t bank, uint8_t alignment, uint16_t alignOffset, enum SectionModifier mod) { struct Section *sect = malloc(sizeof(*sect)); if (sect == NULL) fatalerror("Not enough memory for section: %s\n", strerror(errno)); sect->name = strdup(name); if (sect->name == NULL) fatalerror("Not enough memory for section name: %s\n", strerror(errno)); sect->type = type; sect->modifier = mod; sect->src = fstk_GetFileStack(); sect->fileLine = lexer_GetLineNo(); sect->size = 0; sect->org = org; sect->bank = bank; sect->align = alignment; sect->alignOfs = alignOffset; sect->next = NULL; sect->patches = NULL; /* It is only needed to allocate memory for ROM sections. */ if (sect_HasData(type)) { sect->data = malloc(maxsize[type]); if (sect->data == NULL) fatalerror("Not enough memory for section: %s\n", strerror(errno)); } else { sect->data = NULL; } return sect; } /* * Find a section by name and type. If it doesn't exist, create it. */ static struct Section *getSection(char const *name, enum SectionType type, uint32_t org, struct SectionSpec const *attrs, enum SectionModifier mod) { uint32_t bank = attrs->bank; uint8_t alignment = attrs->alignment; uint16_t alignOffset = attrs->alignOfs; // First, validate parameters, and normalize them if applicable if (bank != (uint32_t)-1) { if (type != SECTTYPE_ROMX && type != SECTTYPE_VRAM && type != SECTTYPE_SRAM && type != SECTTYPE_WRAMX) error("BANK only allowed for ROMX, WRAMX, SRAM, or VRAM sections\n"); else if (bank < bankranges[type][0] || bank > bankranges[type][1]) error("%s bank value $%04" PRIx32 " out of range ($%04" PRIx32 " to $%04" PRIx32 ")\n", typeNames[type], bank, bankranges[type][0], bankranges[type][1]); } else if (nbbanks(type) == 1) { // If the section type only has a single bank, implicitly force it bank = bankranges[type][0]; } if (alignOffset >= 1 << alignment) { error("Alignment offset (%" PRIu16 ") must be smaller than alignment size (%u)\n", alignOffset, 1U << alignment); alignOffset = 0; } if (org != (uint32_t)-1) { if (org < startaddr[type] || org > endaddr(type)) error("Section \"%s\"'s fixed address %#" PRIx32 " is outside of range [%#" PRIx16 "; %#" PRIx16 "]\n", name, org, startaddr[type], endaddr(type)); } if (alignment != 0) { if (alignment > 16) { error("Alignment must be between 0 and 16, not %u\n", alignment); alignment = 16; } /* It doesn't make sense to have both alignment and org set */ uint32_t mask = mask(alignment); if (org != (uint32_t)-1) { if ((org - alignOffset) & mask) error("Section \"%s\"'s fixed address doesn't match its alignment\n", name); alignment = 0; /* Ignore it if it's satisfied */ } else if (startaddr[type] & mask) { error("Section \"%s\"'s alignment cannot be attained in %s\n", name, typeNames[type]); alignment = 0; /* Ignore it if it's unattainable */ org = 0; } else if (alignment == 16) { // Treat an alignment of 16 as being fixed at address 0 alignment = 0; org = 0; // The address is known to be valid, since the alignment is } } // Check if another section exists with the same name; merge if yes, otherwise create one struct Section *sect = out_FindSectionByName(name); if (sect) { mergeSections(sect, type, org, bank, alignment, alignOffset, mod); } else { sect = createSection(name, type, org, bank, alignment, alignOffset, mod); // Add the new section to the list (order doesn't matter) sect->next = pSectionList; pSectionList = sect; } return sect; } /* * Set the current section */ static void changeSection(void) { if (unionStack) fatalerror("Cannot change the section within a UNION\n"); sym_SetCurrentSymbolScope(NULL); } /* * Set the current section by name and type */ void out_NewSection(char const *name, uint32_t type, uint32_t org, struct SectionSpec const *attribs, enum SectionModifier mod) { if (currentLoadSection) fatalerror("Cannot change the section within a `LOAD` block\n"); for (struct SectionStackEntry *stack = sectionStack; stack; stack = stack->next) { if (stack->section && !strcmp(name, stack->section->name)) fatalerror("Section '%s' is already on the stack\n", name); } struct Section *sect = getSection(name, type, org, attribs, mod); changeSection(); curOffset = mod == SECTION_UNION ? 0 : sect->size; pCurrentSection = sect; } /* * Set the current section by name and type */ void out_SetLoadSection(char const *name, uint32_t type, uint32_t org, struct SectionSpec const *attribs, enum SectionModifier mod) { checkcodesection(); if (currentLoadSection) fatalerror("`LOAD` blocks cannot be nested\n"); if (sect_HasData(type)) error("`LOAD` blocks cannot create a ROM section\n"); struct Section *sect = getSection(name, type, org, attribs, mod); changeSection(); loadOffset = curOffset - (mod == SECTION_UNION ? 0 : sect->size); curOffset -= loadOffset; currentLoadSection = sect; } void out_EndLoadSection(void) { if (!currentLoadSection) error("Found `ENDL` outside of a `LOAD` block\n"); changeSection(); curOffset += loadOffset; loadOffset = 0; currentLoadSection = NULL; } struct Section *sect_GetSymbolSection(void) { return currentLoadSection ? currentLoadSection : pCurrentSection; } /* * The offset into the section above */ uint32_t sect_GetSymbolOffset(void) { return curOffset; } uint32_t sect_GetOutputOffset(void) { return curOffset + loadOffset; } void sect_AlignPC(uint8_t alignment, uint16_t offset) { checksection(); struct Section *sect = sect_GetSymbolSection(); uint16_t alignSize = 1 << alignment; // Size of an aligned "block" if (sect->org != (uint32_t)-1) { if ((sym_GetPCValue() - offset) % alignSize) error("Section's fixed address fails required alignment (PC = $%04" PRIx32 ")\n", sym_GetPCValue()); } else if (sect->align != 0) { if ((((sect->alignOfs + curOffset) % (1 << sect->align)) - offset) % alignSize) { error("Section's alignment fails required alignment (offset from section start = $%04" PRIx32 ")\n", curOffset); } else if (alignment > sect->align) { sect->align = alignment; sect->alignOfs = (offset - curOffset) % alignSize; } } else { sect->align = alignment; // We need `(sect->alignOfs + curOffset) % alignSize == offset sect->alignOfs = (offset - curOffset) % alignSize; } } static void growSection(uint32_t growth) { curOffset += growth; if (curOffset + loadOffset > pCurrentSection->size) pCurrentSection->size = curOffset + loadOffset; if (currentLoadSection && curOffset > currentLoadSection->size) currentLoadSection->size = curOffset; } static void writebyte(uint8_t byte) { pCurrentSection->data[sect_GetOutputOffset()] = byte; growSection(1); } static void writeword(uint16_t b) { writebyte(b & 0xFF); writebyte(b >> 8); } static void writelong(uint32_t b) { writebyte(b & 0xFF); writebyte(b >> 8); writebyte(b >> 16); writebyte(b >> 24); } static void createPatch(enum PatchType type, struct Expression const *expr, uint32_t pcShift) { out_CreatePatch(type, expr, sect_GetOutputOffset(), pcShift); } void sect_StartUnion(void) { if (!pCurrentSection) fatalerror("UNIONs must be inside a SECTION\n"); if (sect_HasData(pCurrentSection->type)) fatalerror("Cannot use UNION inside of ROM0 or ROMX sections\n"); struct UnionStackEntry *entry = malloc(sizeof(*entry)); if (!entry) fatalerror("Failed to allocate new union stack entry: %s\n", strerror(errno)); entry->start = curOffset; entry->size = 0; entry->next = unionStack; unionStack = entry; } static void endUnionMember(void) { uint32_t memberSize = curOffset - unionStack->start; if (memberSize > unionStack->size) unionStack->size = memberSize; curOffset = unionStack->start; } void sect_NextUnionMember(void) { if (!unionStack) fatalerror("Found NEXTU outside of a UNION construct\n"); endUnionMember(); } void sect_EndUnion(void) { if (!unionStack) fatalerror("Found ENDU outside of a UNION construct\n"); endUnionMember(); curOffset += unionStack->size; struct UnionStackEntry *next = unionStack->next; free(unionStack); unionStack = next; } void sect_CheckUnionClosed(void) { if (unionStack) error("Unterminated UNION construct!\n"); } /* * Output an absolute byte */ void out_AbsByte(uint8_t b) { checkcodesection(); reserveSpace(1); writebyte(b); } void out_AbsByteGroup(uint8_t const *s, int32_t length) { checkcodesection(); reserveSpace(length); while (length--) writebyte(*s++); } void out_AbsWordGroup(uint8_t const *s, int32_t length) { checkcodesection(); reserveSpace(length * 2); while (length--) writeword(*s++); } void out_AbsLongGroup(uint8_t const *s, int32_t length) { checkcodesection(); reserveSpace(length * 4); while (length--) writelong(*s++); } /* * Skip this many bytes */ void out_Skip(int32_t skip, bool ds) { checksection(); reserveSpace(skip); if (!ds && sect_HasData(pCurrentSection->type)) warning(WARNING_EMPTY_DATA_DIRECTIVE, "%s directive without data in ROM\n", (skip == 4) ? "DL" : (skip == 2) ? "DW" : "DB"); if (!sect_HasData(pCurrentSection->type)) { growSection(skip); } else { checkcodesection(); while (skip--) writebyte(fillByte); } } /* * Output a NULL terminated string (excluding the NULL-character) */ void out_String(char const *s) { checkcodesection(); reserveSpace(strlen(s)); while (*s) writebyte(*s++); } /* * Output a relocatable byte. Checking will be done to see if it * is an absolute value in disguise. */ void out_RelByte(struct Expression *expr, uint32_t pcShift) { checkcodesection(); reserveSpace(1); if (!rpn_isKnown(expr)) { createPatch(PATCHTYPE_BYTE, expr, pcShift); writebyte(0); } else { writebyte(expr->nVal); } rpn_Free(expr); } /* * Output several copies of a relocatable byte. Checking will be done to see if * it is an absolute value in disguise. */ void out_RelBytes(uint32_t n, struct Expression *exprs, size_t size) { checkcodesection(); reserveSpace(n); for (uint32_t i = 0; i < n; i++) { struct Expression *expr = &exprs[i % size]; if (!rpn_isKnown(expr)) { createPatch(PATCHTYPE_BYTE, expr, i); writebyte(0); } else { writebyte(expr->nVal); } } for (size_t i = 0; i < size; i++) rpn_Free(&exprs[i]); } /* * Output a relocatable word. Checking will be done to see if * it's an absolute value in disguise. */ void out_RelWord(struct Expression *expr, uint32_t pcShift) { checkcodesection(); reserveSpace(2); if (!rpn_isKnown(expr)) { createPatch(PATCHTYPE_WORD, expr, pcShift); writeword(0); } else { writeword(expr->nVal); } rpn_Free(expr); } /* * Output a relocatable longword. Checking will be done to see if * is an absolute value in disguise. */ void out_RelLong(struct Expression *expr, uint32_t pcShift) { checkcodesection(); reserveSpace(2); if (!rpn_isKnown(expr)) { createPatch(PATCHTYPE_LONG, expr, pcShift); writelong(0); } else { writelong(expr->nVal); } rpn_Free(expr); } /* * Output a PC-relative relocatable byte. Checking will be done to see if it * is an absolute value in disguise. */ void out_PCRelByte(struct Expression *expr, uint32_t pcShift) { checkcodesection(); reserveSpace(1); struct Symbol const *pc = sym_GetPC(); if (!rpn_IsDiffConstant(expr, pc)) { createPatch(PATCHTYPE_JR, expr, pcShift); writebyte(0); } else { struct Symbol const *sym = rpn_SymbolOf(expr); /* The offset wraps (jump from ROM to HRAM, for example) */ int16_t offset; /* Offset is relative to the byte *after* the operand */ if (sym == pc) offset = -2; /* PC as operand to `jr` is lower than reference PC by 2 */ else offset = sym_GetValue(sym) - (sym_GetValue(pc) + 1); if (offset < -128 || offset > 127) { error("jr target out of reach (expected -129 < %" PRId16 " < 128)\n", offset); writebyte(0); } else { writebyte(offset); } } rpn_Free(expr); } /* * Output a binary file */ void out_BinaryFile(char const *s, int32_t startPos) { if (startPos < 0) { error("Start position cannot be negative (%" PRId32 ")\n", startPos); startPos = 0; } char *fullPath = NULL; size_t size = 0; FILE *f = NULL; if (fstk_FindFile(s, &fullPath, &size)) f = fopen(fullPath, "rb"); free(fullPath); if (!f) { if (oGeneratedMissingIncludes) { if (verbose) printf("Aborting (-MG) on INCBIN file '%s' (%s)\n", s, strerror(errno)); oFailedOnMissingInclude = true; return; } error("Error opening INCBIN file '%s': %s\n", s, strerror(errno)); return; } int32_t fsize = -1; int byte; checkcodesection(); if (fseek(f, 0, SEEK_END) != -1) { fsize = ftell(f); if (startPos > fsize) { error("Specified start position is greater than length of file\n"); goto cleanup; } fseek(f, startPos, SEEK_SET); reserveSpace(fsize - startPos); } else { if (errno != ESPIPE) error("Error determining size of INCBIN file '%s': %s\n", s, strerror(errno)); /* The file isn't seekable, so we'll just skip bytes */ while (startPos--) (void)fgetc(f); } while ((byte = fgetc(f)) != EOF) { if (fsize == -1) growSection(1); writebyte(byte); } if (ferror(f)) error("Error reading INCBIN file '%s': %s\n", s, strerror(errno)); cleanup: fclose(f); } void out_BinaryFileSlice(char const *s, int32_t start_pos, int32_t length) { if (start_pos < 0) { error("Start position cannot be negative (%" PRId32 ")\n", start_pos); start_pos = 0; } if (length < 0) { error("Number of bytes to read cannot be negative (%" PRId32 ")\n", length); length = 0; } if (length == 0) /* Don't even bother with 0-byte slices */ return; char *fullPath = NULL; size_t size = 0; FILE *f = NULL; if (fstk_FindFile(s, &fullPath, &size)) f = fopen(fullPath, "rb"); free(fullPath); if (!f) { if (oGeneratedMissingIncludes) { if (verbose) printf("Aborting (-MG) on INCBIN file '%s' (%s)\n", s, strerror(errno)); oFailedOnMissingInclude = true; } else { error("Error opening INCBIN file '%s': %s\n", s, strerror(errno)); } return; } checkcodesection(); reserveSpace(length); int32_t fsize; if (fseek(f, 0, SEEK_END) != -1) { fsize = ftell(f); if (start_pos > fsize) { error("Specified start position is greater than length of file\n"); goto cleanup; } if ((start_pos + length) > fsize) { error("Specified range in INCBIN is out of bounds (%" PRIu32 " + %" PRIu32 " > %" PRIu32 ")\n", start_pos, length, fsize); goto cleanup; } fseek(f, start_pos, SEEK_SET); } else { if (errno != ESPIPE) error("Error determining size of INCBIN file '%s': %s\n", s, strerror(errno)); /* The file isn't seekable, so we'll just skip bytes */ while (start_pos--) (void)fgetc(f); } int32_t todo = length; while (todo--) { int byte = fgetc(f); if (byte != EOF) { writebyte(byte); } else if (ferror(f)) { error("Error reading INCBIN file '%s': %s\n", s, strerror(errno)); } else { error("Premature end of file (%" PRId32 " bytes left to read)\n", todo + 1); } } cleanup: fclose(f); } /* * Section stack routines */ void out_PushSection(void) { struct SectionStackEntry *sect = malloc(sizeof(*sect)); if (sect == NULL) fatalerror("No memory for section stack: %s\n", strerror(errno)); sect->section = pCurrentSection; sect->scope = sym_GetCurrentSymbolScope(); sect->offset = curOffset; sect->next = sectionStack; sectionStack = sect; /* TODO: maybe set current section to NULL? */ } void out_PopSection(void) { if (!sectionStack) fatalerror("No entries in the section stack\n"); if (currentLoadSection) fatalerror("Cannot change the section within a `LOAD` block!\n"); struct SectionStackEntry *sect; sect = sectionStack; changeSection(); pCurrentSection = sect->section; sym_SetCurrentSymbolScope(sect->scope); curOffset = sect->offset; sectionStack = sect->next; free(sect); }