ref: b04e71ed34cbbd9cb15f79cd20ba787438e6bcfb
dir: /src/gfx/gb.c/
/*
* This file is part of RGBDS.
*
* Copyright (c) 2013-2018, stag019 and RGBDS contributors.
*
* SPDX-License-Identifier: MIT
*/
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include "gfx/gb.h"
void transpose_tiles(struct GBImage *gb, int width)
{
uint8_t *newdata;
int i;
int newbyte;
newdata = calloc(gb->size, 1);
if (!newdata)
err(1, "%s: Failed to allocate memory for new data", __func__);
for (i = 0; i < gb->size; i++) {
newbyte = i / (8 * depth) * width * 8 * depth;
newbyte = newbyte % gb->size
+ 8 * depth * (newbyte / gb->size)
+ i % (8 * depth);
newdata[newbyte] = gb->data[i];
}
free(gb->data);
gb->data = newdata;
}
void raw_to_gb(const struct RawIndexedImage *raw_image, struct GBImage *gb)
{
int x, y, byte;
uint8_t index;
for (y = 0; y < raw_image->height; y++) {
for (x = 0; x < raw_image->width; x++) {
index = raw_image->data[y][x];
index &= (1 << depth) - 1;
byte = y * depth
+ x / 8 * raw_image->height / 8 * 8 * depth;
gb->data[byte] |= (index & 1) << (7 - x % 8);
if (depth == 2) {
gb->data[byte + 1] |=
(index >> 1) << (7 - x % 8);
}
}
}
if (!gb->horizontal)
transpose_tiles(gb, raw_image->width / 8);
}
void output_file(const struct Options *opts, const struct GBImage *gb)
{
FILE *f;
f = fopen(opts->outfile, "wb");
if (!f)
err(1, "%s: Opening output file '%s' failed", __func__,
opts->outfile);
fwrite(gb->data, 1, gb->size - gb->trim * 8 * depth, f);
fclose(f);
}
int get_tile_index(uint8_t *tile, uint8_t **tiles, int num_tiles, int tile_size)
{
int i, j;
for (i = 0; i < num_tiles; i++) {
for (j = 0; j < tile_size; j++) {
if (tile[j] != tiles[i][j])
break;
}
if (j >= tile_size)
return i;
}
return -1;
}
uint8_t reverse_bits(uint8_t b)
{
uint8_t rev = 0;
rev |= (b & 0x80) >> 7;
rev |= (b & 0x40) >> 5;
rev |= (b & 0x20) >> 3;
rev |= (b & 0x10) >> 1;
rev |= (b & 0x08) << 1;
rev |= (b & 0x04) << 3;
rev |= (b & 0x02) << 5;
rev |= (b & 0x01) << 7;
return rev;
}
void xflip(uint8_t *tile, uint8_t *tile_xflip, int tile_size)
{
int i;
for (i = 0; i < tile_size; i++)
tile_xflip[i] = reverse_bits(tile[i]);
}
void yflip(uint8_t *tile, uint8_t *tile_yflip, int tile_size)
{
int i;
for (i = 0; i < tile_size; i++)
tile_yflip[i] = tile[(tile_size - i - 1) ^ (depth - 1)];
}
/*
* get_mirrored_tile_index looks for `tile` in tile array `tiles`, also
* checking x-, y-, and xy-mirrored versions of `tile`. If one is found,
* `*flags` is set according to the type of mirroring and the index of the
* matched tile is returned. If no match is found, -1 is returned.
*/
int get_mirrored_tile_index(uint8_t *tile, uint8_t **tiles, int num_tiles,
int tile_size, int *flags)
{
int index;
uint8_t *tile_xflip;
uint8_t *tile_yflip;
index = get_tile_index(tile, tiles, num_tiles, tile_size);
if (index >= 0) {
*flags = 0;
return index;
}
tile_yflip = malloc(tile_size);
if (!tile_yflip)
err(1, "%s: Failed to allocate memory for Y flip of tile",
__func__);
yflip(tile, tile_yflip, tile_size);
index = get_tile_index(tile_yflip, tiles, num_tiles, tile_size);
if (index >= 0) {
*flags = YFLIP;
free(tile_yflip);
return index;
}
tile_xflip = malloc(tile_size);
if (!tile_xflip)
err(1, "%s: Failed to allocate memory for X flip of tile",
__func__);
xflip(tile, tile_xflip, tile_size);
index = get_tile_index(tile_xflip, tiles, num_tiles, tile_size);
if (index >= 0) {
*flags = XFLIP;
free(tile_yflip);
free(tile_xflip);
return index;
}
yflip(tile_xflip, tile_yflip, tile_size);
index = get_tile_index(tile_yflip, tiles, num_tiles, tile_size);
if (index >= 0)
*flags = XFLIP | YFLIP;
free(tile_yflip);
free(tile_xflip);
return index;
}
void create_mapfiles(const struct Options *opts, struct GBImage *gb,
struct Mapfile *tilemap, struct Mapfile *attrmap)
{
int i, j;
int gb_i;
int tile_size;
int max_tiles;
int num_tiles;
int index;
int flags;
int gb_size;
uint8_t *tile;
uint8_t **tiles;
tile_size = sizeof(*tile) * depth * 8;
gb_size = gb->size - (gb->trim * tile_size);
max_tiles = gb_size / tile_size;
/* If the input image doesn't fill the last tile, increase the count. */
if (gb_size > max_tiles * tile_size)
max_tiles++;
tiles = calloc(max_tiles, sizeof(*tiles));
if (!tiles)
err(1, "%s: Failed to allocate memory for tiles", __func__);
num_tiles = 0;
if (*opts->tilemapfile) {
tilemap->data = calloc(max_tiles, sizeof(*tilemap->data));
if (!tilemap->data)
err(1, "%s: Failed to allocate memory for tilemap data",
__func__);
tilemap->size = 0;
}
if (*opts->attrmapfile) {
attrmap->data = calloc(max_tiles, sizeof(*attrmap->data));
if (!attrmap->data)
err(1, "%s: Failed to allocate memory for attrmap data",
__func__);
attrmap->size = 0;
}
gb_i = 0;
while (gb_i < gb_size) {
flags = 0;
tile = malloc(tile_size);
if (!tile)
err(1, "%s: Failed to allocate memory for tile",
__func__);
/*
* If the input image doesn't fill the last tile,
* `gb_i` will reach `gb_size`.
*/
for (i = 0; i < tile_size && gb_i < gb_size; i++) {
tile[i] = gb->data[gb_i];
gb_i++;
}
if (opts->unique) {
if (opts->mirror) {
index = get_mirrored_tile_index(tile, tiles,
num_tiles,
tile_size,
&flags);
} else {
index = get_tile_index(tile, tiles, num_tiles,
tile_size);
}
if (index < 0) {
index = num_tiles;
tiles[num_tiles] = tile;
num_tiles++;
} else {
free(tile);
}
} else {
index = num_tiles;
tiles[num_tiles] = tile;
num_tiles++;
}
if (*opts->tilemapfile) {
tilemap->data[tilemap->size] = index;
tilemap->size++;
}
if (*opts->attrmapfile) {
attrmap->data[attrmap->size] = flags;
attrmap->size++;
}
}
if (opts->unique) {
free(gb->data);
gb->data = malloc(tile_size * num_tiles);
if (!gb->data)
err(1, "%s: Failed to allocate memory for tile data",
__func__);
for (i = 0; i < num_tiles; i++) {
tile = tiles[i];
for (j = 0; j < tile_size; j++)
gb->data[i * tile_size + j] = tile[j];
}
gb->size = i * tile_size;
}
for (i = 0; i < num_tiles; i++)
free(tiles[i]);
free(tiles);
}
void output_tilemap_file(const struct Options *opts,
const struct Mapfile *tilemap)
{
FILE *f;
f = fopen(opts->tilemapfile, "wb");
if (!f)
err(1, "%s: Opening tilemap file '%s' failed", __func__,
opts->tilemapfile);
fwrite(tilemap->data, 1, tilemap->size, f);
fclose(f);
if (opts->tilemapout)
free(opts->tilemapfile);
}
void output_attrmap_file(const struct Options *opts,
const struct Mapfile *attrmap)
{
FILE *f;
f = fopen(opts->attrmapfile, "wb");
if (!f)
err(1, "%s: Opening attrmap file '%s' failed", __func__,
opts->attrmapfile);
fwrite(attrmap->data, 1, attrmap->size, f);
fclose(f);
if (opts->attrmapout)
free(opts->attrmapfile);
}
/*
* based on the Gaussian-like curve used by SameBoy since commit
* 65dd02cc52f531dbbd3a7e6014e99d5b24e71a4c (Oct 2017)
* with ties resolved by comparing the difference of the squares.
*/
static int reverse_curve[] = {
0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7,
7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8,
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18,
18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19,
19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21,
21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22,
22, 23, 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24,
24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26,
26, 27, 27, 27, 27, 27, 28, 28, 28, 28, 29, 29, 29, 30, 30, 31,
};
void output_palette_file(const struct Options *opts,
const struct RawIndexedImage *raw_image)
{
FILE *f;
int i, color;
uint8_t cur_bytes[2];
f = fopen(opts->palfile, "wb");
if (!f)
err(1, "%s: Opening palette file '%s' failed", __func__,
opts->palfile);
for (i = 0; i < raw_image->num_colors; i++) {
int r = raw_image->palette[i].red;
int g = raw_image->palette[i].green;
int b = raw_image->palette[i].blue;
if (opts->colorcurve) {
g = (g * 4 - b) / 3;
if (g < 0)
g = 0;
r = reverse_curve[r];
g = reverse_curve[g];
b = reverse_curve[b];
} else {
r >>= 3;
g >>= 3;
b >>= 3;
}
color = b << 10 | g << 5 | r;
cur_bytes[0] = color & 0xFF;
cur_bytes[1] = color >> 8;
fwrite(cur_bytes, 2, 1, f);
}
fclose(f);
if (opts->palout)
free(opts->palfile);
}