ref: 187806ad2021994c4e841d4dbddc569d51023bb0
dir: /sys/src/ape/lib/ap/math/j0.c/
#include <math.h> #include <errno.h> /* floating point Bessel's function of the first and second kinds of order zero j0(x) returns the value of J0(x) for all real values of x. There are no error returns. Calls sin, cos, sqrt. There is a niggling bug in J0 which causes errors up to 2e-16 for x in the interval [-8,8]. The bug is caused by an inappropriate order of summation of the series. rhm will fix it someday. Coefficients are from Hart & Cheney. #5849 (19.22D) #6549 (19.25D) #6949 (19.41D) y0(x) returns the value of Y0(x) for positive real values of x. For x<=0, error number EDOM is set and a large negative value is returned. Calls sin, cos, sqrt, log, j0. The values of Y0 have not been checked to more than ten places. Coefficients are from Hart & Cheney. #6245 (18.78D) #6549 (19.25D) #6949 (19.41D) */ static double pzero, qzero; static double tpi = .6366197723675813430755350535e0; static double pio4 = .7853981633974483096156608458e0; static double p1[] = { 0.4933787251794133561816813446e21, -.1179157629107610536038440800e21, 0.6382059341072356562289432465e19, -.1367620353088171386865416609e18, 0.1434354939140344111664316553e16, -.8085222034853793871199468171e13, 0.2507158285536881945555156435e11, -.4050412371833132706360663322e8, 0.2685786856980014981415848441e5, }; static double q1[] = { 0.4933787251794133562113278438e21, 0.5428918384092285160200195092e19, 0.3024635616709462698627330784e17, 0.1127756739679798507056031594e15, 0.3123043114941213172572469442e12, 0.6699987672982239671814028660e9, 0.1114636098462985378182402543e7, 0.1363063652328970604442810507e4, 1.0 }; static double p2[] = { 0.5393485083869438325262122897e7, 0.1233238476817638145232406055e8, 0.8413041456550439208464315611e7, 0.2016135283049983642487182349e7, 0.1539826532623911470917825993e6, 0.2485271928957404011288128951e4, 0.0, }; static double q2[] = { 0.5393485083869438325560444960e7, 0.1233831022786324960844856182e8, 0.8426449050629797331554404810e7, 0.2025066801570134013891035236e7, 0.1560017276940030940592769933e6, 0.2615700736920839685159081813e4, 1.0, }; static double p3[] = { -.3984617357595222463506790588e4, -.1038141698748464093880530341e5, -.8239066313485606568803548860e4, -.2365956170779108192723612816e4, -.2262630641933704113967255053e3, -.4887199395841261531199129300e1, 0.0, }; static double q3[] = { 0.2550155108860942382983170882e6, 0.6667454239319826986004038103e6, 0.5332913634216897168722255057e6, 0.1560213206679291652539287109e6, 0.1570489191515395519392882766e5, 0.4087714673983499223402830260e3, 1.0, }; static double p4[] = { -.2750286678629109583701933175e20, 0.6587473275719554925999402049e20, -.5247065581112764941297350814e19, 0.1375624316399344078571335453e18, -.1648605817185729473122082537e16, 0.1025520859686394284509167421e14, -.3436371222979040378171030138e11, 0.5915213465686889654273830069e8, -.4137035497933148554125235152e5, }; static double q4[] = { 0.3726458838986165881989980e21, 0.4192417043410839973904769661e19, 0.2392883043499781857439356652e17, 0.9162038034075185262489147968e14, 0.2613065755041081249568482092e12, 0.5795122640700729537480087915e9, 0.1001702641288906265666651753e7, 0.1282452772478993804176329391e4, 1.0, }; static void asympt(double arg) { double zsq, n, d; int i; zsq = 64 / (arg*arg); for(n=0,d=0,i=6;i>=0;i--) { n = n*zsq + p2[i]; d = d*zsq + q2[i]; } pzero = n/d; for(n=0,d=0,i=6;i>=0;i--) { n = n*zsq + p3[i]; d = d*zsq + q3[i]; } qzero = (8/arg)*(n/d); } double j0(double arg) { double argsq, n, d; int i; if(arg < 0) arg = -arg; if(arg > 8) { asympt(arg); n = arg - pio4; return sqrt(tpi/arg)*(pzero*cos(n) - qzero*sin(n)); } argsq = arg*arg; for(n=0,d=0,i=8;i>=0;i--) { n = n*argsq + p1[i]; d = d*argsq + q1[i]; } return n/d; } double y0(double arg) { double argsq, n, d; int i; errno = 0; if(arg <= 0) { errno = EDOM; return(-HUGE_VAL); } if(arg > 8) { asympt(arg); n = arg - pio4; return sqrt(tpi/arg)*(pzero*sin(n) + qzero*cos(n)); } argsq = arg*arg; for(n=0,d=0,i=8;i>=0;i--) { n = n*argsq + p4[i]; d = d*argsq + q4[i]; } return n/d + tpi*j0(arg)*log(arg); }