ref: 20bca0c2029c53de3d4149d957240b17d44684a8
dir: /sys/src/libgeometry/quaternion.c/
#include <u.h> #include <libc.h> #include <geometry.h> Quaternion Quat(double r, double i, double j, double k) { return (Quaternion){r, i, j, k}; } Quaternion Quatvec(double s, Point3 v) { return (Quaternion){s, v.x, v.y, v.z}; } Quaternion addq(Quaternion a, Quaternion b) { return Quat(a.r+b.r, a.i+b.i, a.j+b.j, a.k+b.k); } Quaternion subq(Quaternion a, Quaternion b) { return Quat(a.r-b.r, a.i-b.i, a.j-b.j, a.k-b.k); } Quaternion mulq(Quaternion q, Quaternion r) { Point3 qv, rv, tmp; qv = Vec3(q.i, q.j, q.k); rv = Vec3(r.i, r.j, r.k); tmp = addpt3(addpt3(mulpt3(rv, q.r), mulpt3(qv, r.r)), crossvec3(qv, rv)); return Quatvec(q.r*r.r - dotvec3(qv, rv), tmp); } Quaternion smulq(Quaternion q, double s) { return Quat(q.r*s, q.i*s, q.j*s, q.k*s); } Quaternion sdivq(Quaternion q, double s) { return Quat(q.r/s, q.i/s, q.j/s, q.k/s); } double dotq(Quaternion q, Quaternion r) { return q.r*r.r + q.i*r.i + q.j*r.j + q.k*r.k; } Quaternion invq(Quaternion q) { double len²; len² = dotq(q, q); if(len² == 0) return Quat(0,0,0,0); return Quat(q.r/len², -q.i/len², -q.j/len², -q.k/len²); } double qlen(Quaternion q) { return sqrt(dotq(q, q)); } Quaternion normq(Quaternion q) { return sdivq(q, qlen(q)); } /* * based on the implementation from: * * Jonathan Blow, “Understanding Slerp, Then Not Using it”, * The Inner Product, April 2004. */ Quaternion slerp(Quaternion q, Quaternion r, double t) { Quaternion v; double θ, q·r; q·r = fclamp(dotq(q, r), -1, 1); /* stay within the domain of acos(2) */ θ = acos(q·r)*t; v = normq(subq(r, smulq(q, q·r))); /* v = r - (q·r)q / |v| */ return addq(smulq(q, cos(θ)), smulq(v, sin(θ))); /* q cos(θ) + v sin(θ) */ } Point3 qrotate(Point3 p, Point3 axis, double θ) { Quaternion qaxis, qr; θ /= 2; qaxis = Quatvec(cos(θ), mulpt3(axis, sin(θ))); qr = mulq(mulq(qaxis, Quatvec(0, p)), invq(qaxis)); /* qpq⁻¹ */ return Pt3(qr.i, qr.j, qr.k, p.w); }