ref: 2e8af772a56629c5ddba4add975d957cf7d8a09a
dir: /sys/src/cmd/audio/libFLAC/stream_encoder.c/
/* libFLAC - Free Lossless Audio Codec library * Copyright (C) 2000-2009 Josh Coalson * Copyright (C) 2011-2022 Xiph.Org Foundation * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * - Neither the name of the Xiph.org Foundation nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H # include <config.h> #endif #include <limits.h> #include <stdio.h> #include <stdlib.h> /* for malloc() */ #include <string.h> /* for memcpy() */ #include <sys/types.h> /* for off_t */ #ifdef _WIN32 #include <windows.h> /* for GetFileType() */ #include <io.h> /* for _get_osfhandle() */ #endif #include "share/compat.h" #include "FLAC/assert.h" #include "FLAC/stream_decoder.h" #include "protected/stream_encoder.h" #include "private/bitwriter.h" #include "private/bitmath.h" #include "private/crc.h" #include "private/cpu.h" #include "private/fixed.h" #include "private/format.h" #include "private/lpc.h" #include "private/md5.h" #include "private/memory.h" #include "private/macros.h" #if FLAC__HAS_OGG #include "private/ogg_helper.h" #include "private/ogg_mapping.h" #endif #include "private/stream_encoder.h" #include "private/stream_encoder_framing.h" #include "private/window.h" #include "share/alloc.h" #include "share/private.h" /* Exact Rice codeword length calculation is off by default. The simple * (and fast) estimation (of how many bits a residual value will be * encoded with) in this encoder is very good, almost always yielding * compression within 0.1% of exact calculation. */ #undef EXACT_RICE_BITS_CALCULATION /* Rice parameter searching is off by default. The simple (and fast) * parameter estimation in this encoder is very good, almost always * yielding compression within 0.1% of the optimal parameters. */ #undef ENABLE_RICE_PARAMETER_SEARCH typedef struct { FLAC__int32 *data[FLAC__MAX_CHANNELS]; uint32_t size; /* of each data[] in samples */ uint32_t tail; } verify_input_fifo; typedef struct { const FLAC__byte *data; uint32_t capacity; uint32_t bytes; } verify_output; typedef enum { ENCODER_IN_MAGIC = 0, ENCODER_IN_METADATA = 1, ENCODER_IN_AUDIO = 2 } EncoderStateHint; static const struct CompressionLevels { FLAC__bool do_mid_side_stereo; FLAC__bool loose_mid_side_stereo; uint32_t max_lpc_order; uint32_t qlp_coeff_precision; FLAC__bool do_qlp_coeff_prec_search; FLAC__bool do_escape_coding; FLAC__bool do_exhaustive_model_search; uint32_t min_residual_partition_order; uint32_t max_residual_partition_order; uint32_t rice_parameter_search_dist; const char *apodization; } compression_levels_[] = { { false, false, 0, 0, false, false, false, 0, 3, 0, "tukey(5e-1)" }, { true , true , 0, 0, false, false, false, 0, 3, 0, "tukey(5e-1)" }, { true , false, 0, 0, false, false, false, 0, 3, 0, "tukey(5e-1)" }, { false, false, 6, 0, false, false, false, 0, 4, 0, "tukey(5e-1)" }, { true , true , 8, 0, false, false, false, 0, 4, 0, "tukey(5e-1)" }, { true , false, 8, 0, false, false, false, 0, 5, 0, "tukey(5e-1)" }, { true , false, 8, 0, false, false, false, 0, 6, 0, "subdivide_tukey(2)" }, { true , false, 12, 0, false, false, false, 0, 6, 0, "subdivide_tukey(2)" }, { true , false, 12, 0, false, false, false, 0, 6, 0, "subdivide_tukey(3)" } /* here we use locale-independent 5e-1 instead of 0.5 or 0,5 */ }; /*********************************************************************** * * Private class method prototypes * ***********************************************************************/ static void set_defaults_(FLAC__StreamEncoder *encoder); static void free_(FLAC__StreamEncoder *encoder); static FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, uint32_t new_blocksize); static FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, uint32_t samples, FLAC__bool is_last_block); static FLAC__StreamEncoderWriteStatus write_frame_(FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, uint32_t samples, FLAC__bool is_last_block); static void update_metadata_(const FLAC__StreamEncoder *encoder); #if FLAC__HAS_OGG static void update_ogg_metadata_(FLAC__StreamEncoder *encoder); #endif static FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_block); static FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder); static FLAC__bool process_subframe_( FLAC__StreamEncoder *encoder, uint32_t min_partition_order, uint32_t max_partition_order, const FLAC__FrameHeader *frame_header, uint32_t subframe_bps, const void *integer_signal, FLAC__Subframe *subframe[2], FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2], FLAC__int32 *residual[2], uint32_t *best_subframe, uint32_t *best_bits ); static FLAC__bool add_subframe_( FLAC__StreamEncoder *encoder, uint32_t blocksize, uint32_t subframe_bps, const FLAC__Subframe *subframe, FLAC__BitWriter *frame ); static uint32_t evaluate_constant_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int64 signal, uint32_t blocksize, uint32_t subframe_bps, FLAC__Subframe *subframe ); static uint32_t evaluate_fixed_subframe_( FLAC__StreamEncoder *encoder, const void *signal, FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t raw_bits_per_partition[], uint32_t blocksize, uint32_t subframe_bps, uint32_t order, uint32_t rice_parameter_limit, uint32_t min_partition_order, uint32_t max_partition_order, FLAC__bool do_escape_coding, uint32_t rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ); #ifndef FLAC__INTEGER_ONLY_LIBRARY static uint32_t evaluate_lpc_subframe_( FLAC__StreamEncoder *encoder, const void *signal, FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t raw_bits_per_partition[], const FLAC__real lp_coeff[], uint32_t blocksize, uint32_t subframe_bps, uint32_t order, uint32_t qlp_coeff_precision, uint32_t rice_parameter_limit, uint32_t min_partition_order, uint32_t max_partition_order, FLAC__bool do_escape_coding, uint32_t rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ); #endif static uint32_t evaluate_verbatim_subframe_( FLAC__StreamEncoder *encoder, const void *signal, uint32_t blocksize, uint32_t subframe_bps, FLAC__Subframe *subframe ); static uint32_t find_best_partition_order_( struct FLAC__StreamEncoderPrivate *private_, const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t raw_bits_per_partition[], uint32_t residual_samples, uint32_t predictor_order, uint32_t rice_parameter_limit, uint32_t min_partition_order, uint32_t max_partition_order, uint32_t bps, FLAC__bool do_escape_coding, uint32_t rice_parameter_search_dist, FLAC__EntropyCodingMethod *best_ecm ); static void precompute_partition_info_sums_( const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t residual_samples, uint32_t predictor_order, uint32_t min_partition_order, uint32_t max_partition_order, uint32_t bps ); static void precompute_partition_info_escapes_( const FLAC__int32 residual[], uint32_t raw_bits_per_partition[], uint32_t residual_samples, uint32_t predictor_order, uint32_t min_partition_order, uint32_t max_partition_order ); static FLAC__bool set_partitioned_rice_( #ifdef EXACT_RICE_BITS_CALCULATION const FLAC__int32 residual[], #endif const FLAC__uint64 abs_residual_partition_sums[], const uint32_t raw_bits_per_partition[], const uint32_t residual_samples, const uint32_t predictor_order, const uint32_t rice_parameter_limit, const uint32_t rice_parameter_search_dist, const uint32_t partition_order, const FLAC__bool search_for_escapes, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, uint32_t *bits ); static uint32_t get_wasted_bits_(FLAC__int32 signal[], uint32_t samples); static uint32_t get_wasted_bits_wide_(FLAC__int64 signal_wide[], FLAC__int32 signal[], uint32_t samples); /* verify-related routines: */ static void append_to_verify_fifo_( verify_input_fifo *fifo, const FLAC__int32 * const input[], uint32_t input_offset, uint32_t channels, uint32_t wide_samples ); static void append_to_verify_fifo_interleaved_( verify_input_fifo *fifo, const FLAC__int32 input[], uint32_t input_offset, uint32_t channels, uint32_t wide_samples ); static FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data); static FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data); static void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data); static void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data); static FLAC__StreamEncoderReadStatus file_read_callback_(const FLAC__StreamEncoder *encoder, FLAC__byte buffer[], size_t *bytes, void *client_data); static FLAC__StreamEncoderSeekStatus file_seek_callback_(const FLAC__StreamEncoder *encoder, FLAC__uint64 absolute_byte_offset, void *client_data); static FLAC__StreamEncoderTellStatus file_tell_callback_(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_byte_offset, void *client_data); static FLAC__StreamEncoderWriteStatus file_write_callback_(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, uint32_t samples, uint32_t current_frame, void *client_data); static FILE *get_binary_stdout_(void); /*********************************************************************** * * Private class data * ***********************************************************************/ typedef struct FLAC__StreamEncoderPrivate { uint32_t input_capacity; /* current size (in samples) of the signal and residual buffers */ FLAC__int32 *integer_signal[FLAC__MAX_CHANNELS]; /* the integer version of the input signal */ FLAC__int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */ FLAC__int64 *integer_signal_33bit_side; /* 33-bit side for 32-bit stereo decorrelation */ #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__real *real_signal[FLAC__MAX_CHANNELS]; /* (@@@ currently unused) the floating-point version of the input signal */ FLAC__real *real_signal_mid_side[2]; /* (@@@ currently unused) the floating-point version of the mid-side input signal (stereo only) */ FLAC__real *window[FLAC__MAX_APODIZATION_FUNCTIONS]; /* the pre-computed floating-point window for each apodization function */ FLAC__real *windowed_signal; /* the integer_signal[] * current window[] */ #endif uint32_t subframe_bps[FLAC__MAX_CHANNELS]; /* the effective bits per sample of the input signal (stream bps - wasted bits) */ uint32_t subframe_bps_mid_side[2]; /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */ FLAC__int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */ FLAC__int32 *residual_workspace_mid_side[2][2]; FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2]; FLAC__Subframe subframe_workspace_mid_side[2][2]; FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2]; FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace_mid_side[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr[FLAC__MAX_CHANNELS][2]; FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr_mid_side[FLAC__MAX_CHANNELS][2]; uint32_t best_subframe[FLAC__MAX_CHANNELS]; /* index (0 or 1) into 2nd dimension of the above workspaces */ uint32_t best_subframe_mid_side[2]; uint32_t best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */ uint32_t best_subframe_bits_mid_side[2]; FLAC__uint64 *abs_residual_partition_sums; /* workspace where the sum of abs(candidate residual) for each partition is stored */ uint32_t *raw_bits_per_partition; /* workspace where the sum of silog2(candidate residual) for each partition is stored */ FLAC__BitWriter *frame; /* the current frame being worked on */ uint32_t loose_mid_side_stereo_frames; /* rounded number of frames the encoder will use before trying both independent and mid/side frames again */ uint32_t loose_mid_side_stereo_frame_count; /* number of frames using the current channel assignment */ FLAC__ChannelAssignment last_channel_assignment; FLAC__StreamMetadata streaminfo; /* scratchpad for STREAMINFO as it is built */ FLAC__StreamMetadata_SeekTable *seek_table; /* pointer into encoder->protected_->metadata_ where the seek table is */ uint32_t current_sample_number; uint32_t current_frame_number; FLAC__MD5Context md5context; FLAC__CPUInfo cpuinfo; void (*local_precompute_partition_info_sums)(const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t residual_samples, uint32_t predictor_order, uint32_t min_partition_order, uint32_t max_partition_order, uint32_t bps); #ifndef FLAC__INTEGER_ONLY_LIBRARY uint32_t (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); uint32_t (*local_fixed_compute_best_predictor_wide)(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); #else uint32_t (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); uint32_t (*local_fixed_compute_best_predictor_wide)(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]); #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY void (*local_lpc_compute_autocorrelation)(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]); void (*local_lpc_compute_residual_from_qlp_coefficients)(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); void (*local_lpc_compute_residual_from_qlp_coefficients_64bit)(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); void (*local_lpc_compute_residual_from_qlp_coefficients_16bit)(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]); #endif FLAC__bool disable_mmx; FLAC__bool disable_sse2; FLAC__bool disable_ssse3; FLAC__bool disable_sse41; FLAC__bool disable_avx2; FLAC__bool disable_fma; FLAC__bool disable_constant_subframes; FLAC__bool disable_fixed_subframes; FLAC__bool disable_verbatim_subframes; FLAC__bool is_ogg; FLAC__StreamEncoderReadCallback read_callback; /* currently only needed for Ogg FLAC */ FLAC__StreamEncoderSeekCallback seek_callback; FLAC__StreamEncoderTellCallback tell_callback; FLAC__StreamEncoderWriteCallback write_callback; FLAC__StreamEncoderMetadataCallback metadata_callback; FLAC__StreamEncoderProgressCallback progress_callback; void *client_data; uint32_t first_seekpoint_to_check; FILE *file; /* only used when encoding to a file */ FLAC__uint64 bytes_written; FLAC__uint64 samples_written; uint32_t frames_written; uint32_t total_frames_estimate; /* unaligned (original) pointers to allocated data */ FLAC__int32 *integer_signal_unaligned[FLAC__MAX_CHANNELS]; FLAC__int32 *integer_signal_mid_side_unaligned[2]; FLAC__int64 *integer_signal_33bit_side_unaligned; #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__real *real_signal_unaligned[FLAC__MAX_CHANNELS]; /* (@@@ currently unused) */ FLAC__real *real_signal_mid_side_unaligned[2]; /* (@@@ currently unused) */ FLAC__real *window_unaligned[FLAC__MAX_APODIZATION_FUNCTIONS]; FLAC__real *windowed_signal_unaligned; #endif FLAC__int32 *residual_workspace_unaligned[FLAC__MAX_CHANNELS][2]; FLAC__int32 *residual_workspace_mid_side_unaligned[2][2]; FLAC__uint64 *abs_residual_partition_sums_unaligned; uint32_t *raw_bits_per_partition_unaligned; /* * These fields have been moved here from private function local * declarations merely to save stack space during encoding. */ #ifndef FLAC__INTEGER_ONLY_LIBRARY FLAC__real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER]; /* from process_subframe_() */ #endif FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_extra[2]; /* from find_best_partition_order_() */ /* * The data for the verify section */ struct { FLAC__StreamDecoder *decoder; EncoderStateHint state_hint; FLAC__bool needs_magic_hack; verify_input_fifo input_fifo; verify_output output; struct { FLAC__uint64 absolute_sample; uint32_t frame_number; uint32_t channel; uint32_t sample; FLAC__int32 expected; FLAC__int32 got; } error_stats; } verify; FLAC__bool is_being_deleted; /* if true, call to ..._finish() from ..._delete() will not call the callbacks */ } FLAC__StreamEncoderPrivate; /*********************************************************************** * * Public static class data * ***********************************************************************/ FLAC_API const char * const FLAC__StreamEncoderStateString[] = { "FLAC__STREAM_ENCODER_OK", "FLAC__STREAM_ENCODER_UNINITIALIZED", "FLAC__STREAM_ENCODER_OGG_ERROR", "FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR", "FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA", "FLAC__STREAM_ENCODER_CLIENT_ERROR", "FLAC__STREAM_ENCODER_IO_ERROR", "FLAC__STREAM_ENCODER_FRAMING_ERROR", "FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR" }; FLAC_API const char * const FLAC__StreamEncoderInitStatusString[] = { "FLAC__STREAM_ENCODER_INIT_STATUS_OK", "FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR", "FLAC__STREAM_ENCODER_INIT_STATUS_UNSUPPORTED_CONTAINER", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_CALLBACKS", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_NUMBER_OF_CHANNELS", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BITS_PER_SAMPLE", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_SAMPLE_RATE", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BLOCK_SIZE", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_MAX_LPC_ORDER", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_QLP_COEFF_PRECISION", "FLAC__STREAM_ENCODER_INIT_STATUS_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER", "FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE", "FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA", "FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED" }; FLAC_API const char * const FLAC__StreamEncoderReadStatusString[] = { "FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE", "FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM", "FLAC__STREAM_ENCODER_READ_STATUS_ABORT", "FLAC__STREAM_ENCODER_READ_STATUS_UNSUPPORTED" }; FLAC_API const char * const FLAC__StreamEncoderWriteStatusString[] = { "FLAC__STREAM_ENCODER_WRITE_STATUS_OK", "FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR" }; FLAC_API const char * const FLAC__StreamEncoderSeekStatusString[] = { "FLAC__STREAM_ENCODER_SEEK_STATUS_OK", "FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR", "FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED" }; FLAC_API const char * const FLAC__StreamEncoderTellStatusString[] = { "FLAC__STREAM_ENCODER_TELL_STATUS_OK", "FLAC__STREAM_ENCODER_TELL_STATUS_ERROR", "FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED" }; /* Number of samples that will be overread to watch for end of stream. By * 'overread', we mean that the FLAC__stream_encoder_process*() calls will * always try to read blocksize+1 samples before encoding a block, so that * even if the stream has a total sample count that is an integral multiple * of the blocksize, we will still notice when we are encoding the last * block. This is needed, for example, to correctly set the end-of-stream * marker in Ogg FLAC. * * WATCHOUT: some parts of the code assert that OVERREAD_ == 1 and there's * not really any reason to change it. */ static const uint32_t OVERREAD_ = 1; /*********************************************************************** * * Class constructor/destructor * */ FLAC_API FLAC__StreamEncoder *FLAC__stream_encoder_new(void) { FLAC__StreamEncoder *encoder; uint32_t i; FLAC__ASSERT(sizeof(int) >= 4); /* we want to die right away if this is not true */ encoder = calloc(1, sizeof(FLAC__StreamEncoder)); if(encoder == 0) { return 0; } encoder->protected_ = calloc(1, sizeof(FLAC__StreamEncoderProtected)); if(encoder->protected_ == 0) { free(encoder); return 0; } encoder->private_ = calloc(1, sizeof(FLAC__StreamEncoderPrivate)); if(encoder->private_ == 0) { free(encoder->protected_); free(encoder); return 0; } encoder->private_->frame = FLAC__bitwriter_new(); if(encoder->private_->frame == 0) { free(encoder->private_); free(encoder->protected_); free(encoder); return 0; } encoder->private_->file = 0; encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; set_defaults_(encoder); encoder->private_->is_being_deleted = false; for(i = 0; i < FLAC__MAX_CHANNELS; i++) { encoder->private_->subframe_workspace_ptr[i][0] = &encoder->private_->subframe_workspace[i][0]; encoder->private_->subframe_workspace_ptr[i][1] = &encoder->private_->subframe_workspace[i][1]; } for(i = 0; i < 2; i++) { encoder->private_->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->subframe_workspace_mid_side[i][0]; encoder->private_->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->subframe_workspace_mid_side[i][1]; } for(i = 0; i < FLAC__MAX_CHANNELS; i++) { encoder->private_->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->partitioned_rice_contents_workspace[i][0]; encoder->private_->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->partitioned_rice_contents_workspace[i][1]; } for(i = 0; i < 2; i++) { encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]; encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]; } for(i = 0; i < FLAC__MAX_CHANNELS; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace[i][1]); } for(i = 0; i < 2; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]); } for(i = 0; i < 2; i++) FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->partitioned_rice_contents_extra[i]); return encoder; } FLAC_API void FLAC__stream_encoder_delete(FLAC__StreamEncoder *encoder) { uint32_t i; if (encoder == NULL) return ; FLAC__ASSERT(0 != encoder->protected_); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->private_->frame); encoder->private_->is_being_deleted = true; (void)FLAC__stream_encoder_finish(encoder); if(0 != encoder->private_->verify.decoder) FLAC__stream_decoder_delete(encoder->private_->verify.decoder); for(i = 0; i < FLAC__MAX_CHANNELS; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace[i][1]); } for(i = 0; i < 2; i++) { FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][0]); FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_workspace_mid_side[i][1]); } for(i = 0; i < 2; i++) FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->partitioned_rice_contents_extra[i]); FLAC__bitwriter_delete(encoder->private_->frame); free(encoder->private_); free(encoder->protected_); free(encoder); } /*********************************************************************** * * Public class methods * ***********************************************************************/ static FLAC__StreamEncoderInitStatus init_stream_internal_( FLAC__StreamEncoder *encoder, FLAC__StreamEncoderReadCallback read_callback, FLAC__StreamEncoderWriteCallback write_callback, FLAC__StreamEncoderSeekCallback seek_callback, FLAC__StreamEncoderTellCallback tell_callback, FLAC__StreamEncoderMetadataCallback metadata_callback, void *client_data, FLAC__bool is_ogg ) { uint32_t i; FLAC__bool metadata_has_seektable, metadata_has_vorbis_comment, metadata_picture_has_type1, metadata_picture_has_type2; FLAC__ASSERT(0 != encoder); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED; if(FLAC__HAS_OGG == 0 && is_ogg) return FLAC__STREAM_ENCODER_INIT_STATUS_UNSUPPORTED_CONTAINER; if(0 == write_callback || (seek_callback && 0 == tell_callback)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_CALLBACKS; if(encoder->protected_->channels == 0 || encoder->protected_->channels > FLAC__MAX_CHANNELS) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_NUMBER_OF_CHANNELS; if(encoder->protected_->channels != 2) { encoder->protected_->do_mid_side_stereo = false; encoder->protected_->loose_mid_side_stereo = false; } else if(!encoder->protected_->do_mid_side_stereo) encoder->protected_->loose_mid_side_stereo = false; if(encoder->protected_->bits_per_sample < FLAC__MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > FLAC__MAX_BITS_PER_SAMPLE) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BITS_PER_SAMPLE; if(!FLAC__format_sample_rate_is_valid(encoder->protected_->sample_rate)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_SAMPLE_RATE; if(encoder->protected_->blocksize == 0) { if(encoder->protected_->max_lpc_order == 0) encoder->protected_->blocksize = 1152; else encoder->protected_->blocksize = 4096; } if(encoder->protected_->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->protected_->blocksize > FLAC__MAX_BLOCK_SIZE) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BLOCK_SIZE; if(encoder->protected_->max_lpc_order > FLAC__MAX_LPC_ORDER) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_MAX_LPC_ORDER; if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order) return FLAC__STREAM_ENCODER_INIT_STATUS_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER; if(encoder->protected_->qlp_coeff_precision == 0) { if(encoder->protected_->bits_per_sample < 16) { /* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */ /* @@@ until then we'll make a guess */ encoder->protected_->qlp_coeff_precision = flac_max(FLAC__MIN_QLP_COEFF_PRECISION, 2 + encoder->protected_->bits_per_sample / 2); } else if(encoder->protected_->bits_per_sample == 16) { if(encoder->protected_->blocksize <= 192) encoder->protected_->qlp_coeff_precision = 7; else if(encoder->protected_->blocksize <= 384) encoder->protected_->qlp_coeff_precision = 8; else if(encoder->protected_->blocksize <= 576) encoder->protected_->qlp_coeff_precision = 9; else if(encoder->protected_->blocksize <= 1152) encoder->protected_->qlp_coeff_precision = 10; else if(encoder->protected_->blocksize <= 2304) encoder->protected_->qlp_coeff_precision = 11; else if(encoder->protected_->blocksize <= 4608) encoder->protected_->qlp_coeff_precision = 12; else encoder->protected_->qlp_coeff_precision = 13; } else { if(encoder->protected_->blocksize <= 384) encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-2; else if(encoder->protected_->blocksize <= 1152) encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-1; else encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION; } FLAC__ASSERT(encoder->protected_->qlp_coeff_precision <= FLAC__MAX_QLP_COEFF_PRECISION); } else if(encoder->protected_->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision > FLAC__MAX_QLP_COEFF_PRECISION) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_QLP_COEFF_PRECISION; if(encoder->protected_->streamable_subset) { if(!FLAC__format_blocksize_is_subset(encoder->protected_->blocksize, encoder->protected_->sample_rate)) return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; if(!FLAC__format_sample_rate_is_subset(encoder->protected_->sample_rate)) return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; if( encoder->protected_->bits_per_sample != 8 && encoder->protected_->bits_per_sample != 12 && encoder->protected_->bits_per_sample != 16 && encoder->protected_->bits_per_sample != 20 && encoder->protected_->bits_per_sample != 24 && encoder->protected_->bits_per_sample != 32 ) return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; if(encoder->protected_->max_residual_partition_order > FLAC__SUBSET_MAX_RICE_PARTITION_ORDER) return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; if( encoder->protected_->sample_rate <= 48000 && ( encoder->protected_->blocksize > FLAC__SUBSET_MAX_BLOCK_SIZE_48000HZ || encoder->protected_->max_lpc_order > FLAC__SUBSET_MAX_LPC_ORDER_48000HZ ) ) { return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE; } } if(encoder->protected_->max_residual_partition_order >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN)) encoder->protected_->max_residual_partition_order = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1; if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order) encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order; #if FLAC__HAS_OGG /* reorder metadata if necessary to ensure that any VORBIS_COMMENT is the first, according to the mapping spec */ if(is_ogg && 0 != encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 1) { uint32_t i1; for(i1 = 1; i1 < encoder->protected_->num_metadata_blocks; i1++) { if(0 != encoder->protected_->metadata[i1] && encoder->protected_->metadata[i1]->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) { FLAC__StreamMetadata *vc = encoder->protected_->metadata[i1]; for( ; i1 > 0; i1--) encoder->protected_->metadata[i1] = encoder->protected_->metadata[i1-1]; encoder->protected_->metadata[0] = vc; break; } } } #endif /* keep track of any SEEKTABLE block */ if(0 != encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0) { uint32_t i2; for(i2 = 0; i2 < encoder->protected_->num_metadata_blocks; i2++) { if(0 != encoder->protected_->metadata[i2] && encoder->protected_->metadata[i2]->type == FLAC__METADATA_TYPE_SEEKTABLE) { encoder->private_->seek_table = &encoder->protected_->metadata[i2]->data.seek_table; break; /* take only the first one */ } } } /* validate metadata */ if(0 == encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_has_seektable = false; metadata_has_vorbis_comment = false; metadata_picture_has_type1 = false; metadata_picture_has_type2 = false; for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { const FLAC__StreamMetadata *m = encoder->protected_->metadata[i]; if(m->type == FLAC__METADATA_TYPE_STREAMINFO) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; else if(m->type == FLAC__METADATA_TYPE_SEEKTABLE) { if(metadata_has_seektable) /* only one is allowed */ return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_has_seektable = true; if(!FLAC__format_seektable_is_legal(&m->data.seek_table)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; } else if(m->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) { if(metadata_has_vorbis_comment) /* only one is allowed */ return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_has_vorbis_comment = true; } else if(m->type == FLAC__METADATA_TYPE_CUESHEET) { if(!FLAC__format_cuesheet_is_legal(&m->data.cue_sheet, m->data.cue_sheet.is_cd, /*violation=*/0)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; } else if(m->type == FLAC__METADATA_TYPE_PICTURE) { if(!FLAC__format_picture_is_legal(&m->data.picture, /*violation=*/0)) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; if(m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON_STANDARD) { if(metadata_picture_has_type1) /* there should only be 1 per stream */ return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_picture_has_type1 = true; /* standard icon must be 32x32 pixel PNG */ if( m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON_STANDARD && ( (strcmp(m->data.picture.mime_type, "image/png") && strcmp(m->data.picture.mime_type, "-->")) || m->data.picture.width != 32 || m->data.picture.height != 32 ) ) return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; } else if(m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON) { if(metadata_picture_has_type2) /* there should only be 1 per stream */ return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA; metadata_picture_has_type2 = true; } } } encoder->private_->input_capacity = 0; for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->integer_signal_unaligned[i] = encoder->private_->integer_signal[i] = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->real_signal_unaligned[i] = encoder->private_->real_signal[i] = 0; #endif } for(i = 0; i < 2; i++) { encoder->private_->integer_signal_mid_side_unaligned[i] = encoder->private_->integer_signal_mid_side[i] = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->real_signal_mid_side_unaligned[i] = encoder->private_->real_signal_mid_side[i] = 0; #endif } encoder->private_->integer_signal_33bit_side_unaligned = encoder->private_->integer_signal_33bit_side = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY for(i = 0; i < encoder->protected_->num_apodizations; i++) encoder->private_->window_unaligned[i] = encoder->private_->window[i] = 0; encoder->private_->windowed_signal_unaligned = encoder->private_->windowed_signal = 0; #endif for(i = 0; i < encoder->protected_->channels; i++) { encoder->private_->residual_workspace_unaligned[i][0] = encoder->private_->residual_workspace[i][0] = 0; encoder->private_->residual_workspace_unaligned[i][1] = encoder->private_->residual_workspace[i][1] = 0; encoder->private_->best_subframe[i] = 0; } for(i = 0; i < 2; i++) { encoder->private_->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->residual_workspace_mid_side[i][0] = 0; encoder->private_->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->residual_workspace_mid_side[i][1] = 0; encoder->private_->best_subframe_mid_side[i] = 0; } encoder->private_->abs_residual_partition_sums_unaligned = encoder->private_->abs_residual_partition_sums = 0; encoder->private_->raw_bits_per_partition_unaligned = encoder->private_->raw_bits_per_partition = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->loose_mid_side_stereo_frames = (uint32_t)((double)encoder->protected_->sample_rate * 0.4 / (double)encoder->protected_->blocksize + 0.5); #else /* 26214 is the approximate fixed-point equivalent to 0.4 (0.4 * 2^16) */ /* sample rate can be up to 1048575 Hz, and thus use 20 bits, so we do the multiply÷ by hand */ FLAC__ASSERT(FLAC__MAX_SAMPLE_RATE <= 1048575); FLAC__ASSERT(FLAC__MAX_BLOCK_SIZE <= 65535); FLAC__ASSERT(encoder->protected_->sample_rate <= 1048575); FLAC__ASSERT(encoder->protected_->blocksize <= 65535); encoder->private_->loose_mid_side_stereo_frames = (uint32_t)FLAC__fixedpoint_trunc((((FLAC__uint64)(encoder->protected_->sample_rate) * (FLAC__uint64)(26214)) << 16) / (encoder->protected_->blocksize<<16) + FLAC__FP_ONE_HALF); #endif if(encoder->private_->loose_mid_side_stereo_frames == 0) encoder->private_->loose_mid_side_stereo_frames = 1; encoder->private_->loose_mid_side_stereo_frame_count = 0; encoder->private_->current_sample_number = 0; encoder->private_->current_frame_number = 0; /* * get the CPU info and set the function pointers */ FLAC__cpu_info(&encoder->private_->cpuinfo); /* remove cpu info as requested by * FLAC__stream_encoder_disable_instruction_set */ if(encoder->private_->disable_mmx) encoder->private_->cpuinfo.x86.mmx = false; if(encoder->private_->disable_sse2) encoder->private_->cpuinfo.x86.sse2 = false; if(encoder->private_->disable_ssse3) encoder->private_->cpuinfo.x86.ssse3 = false; if(encoder->private_->disable_sse41) encoder->private_->cpuinfo.x86.sse41 = false; if(encoder->private_->disable_avx2) encoder->private_->cpuinfo.x86.avx2 = false; if(encoder->private_->disable_fma) encoder->private_->cpuinfo.x86.fma = false; /* first default to the non-asm routines */ #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation; #endif encoder->private_->local_precompute_partition_info_sums = precompute_partition_info_sums_; encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor; encoder->private_->local_fixed_compute_best_predictor_wide = FLAC__fixed_compute_best_predictor_wide; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients; #endif /* now override with asm where appropriate */ #ifndef FLAC__INTEGER_ONLY_LIBRARY # ifndef FLAC__NO_ASM #if defined(FLAC__CPU_PPC64) && defined(FLAC__USE_VSX) #ifdef FLAC__HAS_TARGET_POWER8 #ifdef FLAC__HAS_TARGET_POWER9 if (encoder->private_->cpuinfo.ppc.arch_3_00) { if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_8; else if(encoder->protected_->max_lpc_order < 10) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_10; else if(encoder->protected_->max_lpc_order < 14) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_power9_vsx_lag_14; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation; } else #endif if (encoder->private_->cpuinfo.ppc.arch_2_07) { if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_8; else if(encoder->protected_->max_lpc_order < 10) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_10; else if(encoder->protected_->max_lpc_order < 14) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_power8_vsx_lag_14; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation; } #endif #endif /* defined(FLAC__CPU_PPC64) && defined(FLAC__USE_VSX) */ #if defined FLAC__CPU_ARM64 && FLAC__HAS_NEONINTRIN #if FLAC__HAS_A64NEONINTRIN if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_neon_lag_8; else if(encoder->protected_->max_lpc_order < 10) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_neon_lag_10; else if(encoder->protected_->max_lpc_order < 14) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_neon_lag_14; else encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation; #endif encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_neon; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_neon; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_neon; #endif /* defined FLAC__CPU_ARM64 && FLAC__HAS_NEONINTRIN */ if(encoder->private_->cpuinfo.use_asm) { # ifdef FLAC__CPU_IA32 FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_IA32); # ifdef FLAC__HAS_NASM encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_asm_ia32; /* OPT_IA32: was really necessary for GCC < 4.9 */ if (encoder->private_->cpuinfo.x86.mmx) { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx; } else { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32; } if (encoder->private_->cpuinfo.x86.mmx && encoder->private_->cpuinfo.x86.cmov) encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov; # endif /* FLAC__HAS_NASM */ # if FLAC__HAS_X86INTRIN # ifdef FLAC__SSE2_SUPPORTED if (encoder->private_->cpuinfo.x86.sse2) { if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_8; else if(encoder->protected_->max_lpc_order < 10) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_10; else if(encoder->protected_->max_lpc_order < 14) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_14; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse2; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2; } # endif # ifdef FLAC__SSE4_1_SUPPORTED if (encoder->private_->cpuinfo.x86.sse41) { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41; } # endif # ifdef FLAC__AVX2_SUPPORTED if (encoder->private_->cpuinfo.x86.avx2) { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2; } # endif # ifdef FLAC__SSE2_SUPPORTED if (encoder->private_->cpuinfo.x86.sse2) { encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_intrin_sse2; encoder->private_->local_fixed_compute_best_predictor_wide = FLAC__fixed_compute_best_predictor_wide_intrin_sse2; } # endif # ifdef FLAC__SSSE3_SUPPORTED if (encoder->private_->cpuinfo.x86.ssse3) { encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_intrin_ssse3; encoder->private_->local_fixed_compute_best_predictor_wide = FLAC__fixed_compute_best_predictor_wide_intrin_ssse3; } # endif # endif /* FLAC__HAS_X86INTRIN */ # elif defined FLAC__CPU_X86_64 FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_X86_64); # if FLAC__HAS_X86INTRIN # ifdef FLAC__SSE2_SUPPORTED if(encoder->private_->cpuinfo.x86.sse2) { /* For fuzzing */ if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_8; else if(encoder->protected_->max_lpc_order < 10) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_10; else if(encoder->protected_->max_lpc_order < 14) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_14; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2; } # endif # ifdef FLAC__SSE4_1_SUPPORTED if(encoder->private_->cpuinfo.x86.sse41) { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41; } # endif # ifdef FLAC__AVX2_SUPPORTED if(encoder->private_->cpuinfo.x86.avx2) { encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2; encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2; } # endif # ifdef FLAC__FMA_SUPPORTED if(encoder->private_->cpuinfo.x86.fma) { if(encoder->protected_->max_lpc_order < 8) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_fma_lag_8; else if(encoder->protected_->max_lpc_order < 12) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_fma_lag_12; else if(encoder->protected_->max_lpc_order < 16) encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_fma_lag_16; } # endif # ifdef FLAC__SSE2_SUPPORTED if(encoder->private_->cpuinfo.x86.sse2) { /* For fuzzing */ encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_intrin_sse2; encoder->private_->local_fixed_compute_best_predictor_wide = FLAC__fixed_compute_best_predictor_wide_intrin_sse2; } # endif # ifdef FLAC__SSSE3_SUPPORTED if (encoder->private_->cpuinfo.x86.ssse3) { encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor_intrin_ssse3; encoder->private_->local_fixed_compute_best_predictor_wide = FLAC__fixed_compute_best_predictor_wide_intrin_ssse3; } # endif # endif /* FLAC__HAS_X86INTRIN */ # endif /* FLAC__CPU_... */ } # endif /* !FLAC__NO_ASM */ #endif /* !FLAC__INTEGER_ONLY_LIBRARY */ #if !defined FLAC__NO_ASM && FLAC__HAS_X86INTRIN if(encoder->private_->cpuinfo.use_asm) { # if defined FLAC__CPU_IA32 # ifdef FLAC__SSE2_SUPPORTED if (encoder->private_->cpuinfo.x86.sse2) encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_sse2; # endif # ifdef FLAC__SSSE3_SUPPORTED if (encoder->private_->cpuinfo.x86.ssse3) encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_ssse3; # endif # ifdef FLAC__AVX2_SUPPORTED if (encoder->private_->cpuinfo.x86.avx2) encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_avx2; # endif # elif defined FLAC__CPU_X86_64 # ifdef FLAC__SSE2_SUPPORTED encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_sse2; # endif # ifdef FLAC__SSSE3_SUPPORTED if(encoder->private_->cpuinfo.x86.ssse3) encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_ssse3; # endif # ifdef FLAC__AVX2_SUPPORTED if(encoder->private_->cpuinfo.x86.avx2) encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_avx2; # endif # endif /* FLAC__CPU_... */ } #endif /* !FLAC__NO_ASM && FLAC__HAS_X86INTRIN */ /* set state to OK; from here on, errors are fatal and we'll override the state then */ encoder->protected_->state = FLAC__STREAM_ENCODER_OK; #if FLAC__HAS_OGG encoder->private_->is_ogg = is_ogg; if(is_ogg && !FLAC__ogg_encoder_aspect_init(&encoder->protected_->ogg_encoder_aspect)) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } #endif encoder->private_->read_callback = read_callback; encoder->private_->write_callback = write_callback; encoder->private_->seek_callback = seek_callback; encoder->private_->tell_callback = tell_callback; encoder->private_->metadata_callback = metadata_callback; encoder->private_->client_data = client_data; if(!resize_buffers_(encoder, encoder->protected_->blocksize)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!FLAC__bitwriter_init(encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } /* * Set up the verify stuff if necessary */ if(encoder->protected_->verify) { /* * First, set up the fifo which will hold the * original signal to compare against */ encoder->private_->verify.input_fifo.size = encoder->protected_->blocksize+OVERREAD_; for(i = 0; i < encoder->protected_->channels; i++) { if(0 == (encoder->private_->verify.input_fifo.data[i] = safe_malloc_mul_2op_p(sizeof(FLAC__int32), /*times*/encoder->private_->verify.input_fifo.size))) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } encoder->private_->verify.input_fifo.tail = 0; /* * Now set up a stream decoder for verification */ if(0 == encoder->private_->verify.decoder) { encoder->private_->verify.decoder = FLAC__stream_decoder_new(); if(0 == encoder->private_->verify.decoder) { encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } if(FLAC__stream_decoder_init_stream(encoder->private_->verify.decoder, verify_read_callback_, /*seek_callback=*/0, /*tell_callback=*/0, /*length_callback=*/0, /*eof_callback=*/0, verify_write_callback_, verify_metadata_callback_, verify_error_callback_, /*client_data=*/encoder) != FLAC__STREAM_DECODER_INIT_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } encoder->private_->verify.error_stats.absolute_sample = 0; encoder->private_->verify.error_stats.frame_number = 0; encoder->private_->verify.error_stats.channel = 0; encoder->private_->verify.error_stats.sample = 0; encoder->private_->verify.error_stats.expected = 0; encoder->private_->verify.error_stats.got = 0; /* * These must be done before we write any metadata, because that * calls the write_callback, which uses these values. */ encoder->private_->first_seekpoint_to_check = 0; encoder->private_->samples_written = 0; encoder->protected_->streaminfo_offset = 0; encoder->protected_->seektable_offset = 0; encoder->protected_->audio_offset = 0; /* * write the stream header */ if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_MAGIC; if(!FLAC__bitwriter_write_raw_uint32(encoder->private_->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!write_bitbuffer_(encoder, 0, /*is_last_block=*/false)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } /* * write the STREAMINFO metadata block */ if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_METADATA; encoder->private_->streaminfo.type = FLAC__METADATA_TYPE_STREAMINFO; encoder->private_->streaminfo.is_last = false; /* we will have at a minimum a VORBIS_COMMENT afterwards */ encoder->private_->streaminfo.length = FLAC__STREAM_METADATA_STREAMINFO_LENGTH; encoder->private_->streaminfo.data.stream_info.min_blocksize = encoder->protected_->blocksize; /* this encoder uses the same blocksize for the whole stream */ encoder->private_->streaminfo.data.stream_info.max_blocksize = encoder->protected_->blocksize; encoder->private_->streaminfo.data.stream_info.min_framesize = 0; /* we don't know this yet; have to fill it in later */ encoder->private_->streaminfo.data.stream_info.max_framesize = 0; /* we don't know this yet; have to fill it in later */ encoder->private_->streaminfo.data.stream_info.sample_rate = encoder->protected_->sample_rate; encoder->private_->streaminfo.data.stream_info.channels = encoder->protected_->channels; encoder->private_->streaminfo.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample; encoder->private_->streaminfo.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; /* we will replace this later with the real total */ memset(encoder->private_->streaminfo.data.stream_info.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */ if(encoder->protected_->do_md5) FLAC__MD5Init(&encoder->private_->md5context); if(!FLAC__add_metadata_block(&encoder->private_->streaminfo, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!write_bitbuffer_(encoder, 0, /*is_last_block=*/false)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } /* * Now that the STREAMINFO block is written, we can init this to an * absurdly-high value... */ encoder->private_->streaminfo.data.stream_info.min_framesize = (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1; /* ... and clear this to 0 */ encoder->private_->streaminfo.data.stream_info.total_samples = 0; /* * Check to see if the supplied metadata contains a VORBIS_COMMENT; * if not, we will write an empty one (FLAC__add_metadata_block() * automatically supplies the vendor string). * * WATCHOUT: the Ogg FLAC mapping requires us to write this block after * the STREAMINFO. (In the case that metadata_has_vorbis_comment is * true it will have already insured that the metadata list is properly * ordered.) */ if(!metadata_has_vorbis_comment) { FLAC__StreamMetadata vorbis_comment; vorbis_comment.type = FLAC__METADATA_TYPE_VORBIS_COMMENT; vorbis_comment.is_last = (encoder->protected_->num_metadata_blocks == 0); vorbis_comment.length = 4 + 4; /* MAGIC NUMBER */ vorbis_comment.data.vorbis_comment.vendor_string.length = 0; vorbis_comment.data.vorbis_comment.vendor_string.entry = 0; vorbis_comment.data.vorbis_comment.num_comments = 0; vorbis_comment.data.vorbis_comment.comments = 0; if(!FLAC__add_metadata_block(&vorbis_comment, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!write_bitbuffer_(encoder, 0, /*is_last_block=*/false)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } /* * write the user's metadata blocks */ for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) { encoder->protected_->metadata[i]->is_last = (i == encoder->protected_->num_metadata_blocks - 1); if(!FLAC__add_metadata_block(encoder->protected_->metadata[i], encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(!write_bitbuffer_(encoder, 0, /*is_last_block=*/false)) { /* the above function sets the state for us in case of an error */ return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } } /* now that all the metadata is written, we save the stream offset */ if(encoder->private_->tell_callback && encoder->private_->tell_callback(encoder, &encoder->protected_->audio_offset, encoder->private_->client_data) == FLAC__STREAM_ENCODER_TELL_STATUS_ERROR) { /* FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED just means we didn't get the offset; no error */ encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } if(encoder->protected_->verify) encoder->private_->verify.state_hint = ENCODER_IN_AUDIO; return FLAC__STREAM_ENCODER_INIT_STATUS_OK; } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_stream( FLAC__StreamEncoder *encoder, FLAC__StreamEncoderWriteCallback write_callback, FLAC__StreamEncoderSeekCallback seek_callback, FLAC__StreamEncoderTellCallback tell_callback, FLAC__StreamEncoderMetadataCallback metadata_callback, void *client_data ) { return init_stream_internal_( encoder, /*read_callback=*/0, write_callback, seek_callback, tell_callback, metadata_callback, client_data, /*is_ogg=*/false ); } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_stream( FLAC__StreamEncoder *encoder, FLAC__StreamEncoderReadCallback read_callback, FLAC__StreamEncoderWriteCallback write_callback, FLAC__StreamEncoderSeekCallback seek_callback, FLAC__StreamEncoderTellCallback tell_callback, FLAC__StreamEncoderMetadataCallback metadata_callback, void *client_data ) { return init_stream_internal_( encoder, read_callback, write_callback, seek_callback, tell_callback, metadata_callback, client_data, /*is_ogg=*/true ); } static FLAC__StreamEncoderInitStatus init_FILE_internal_( FLAC__StreamEncoder *encoder, FILE *file, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data, FLAC__bool is_ogg ) { FLAC__StreamEncoderInitStatus init_status; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != file); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED; /* double protection */ if(file == 0) { encoder->protected_->state = FLAC__STREAM_ENCODER_IO_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } /* * To make sure that our file does not go unclosed after an error, we * must assign the FILE pointer before any further error can occur in * this routine. */ if(file == stdout) file = get_binary_stdout_(); /* just to be safe */ #ifdef _WIN32 /* * Windows can suffer quite badly from disk fragmentation. This can be * reduced significantly by setting the output buffer size to be 10MB. */ if(GetFileType((HANDLE)_get_osfhandle(_fileno(file))) == FILE_TYPE_DISK) setvbuf(file, NULL, _IOFBF, 10*1024*1024); #endif encoder->private_->file = file; encoder->private_->progress_callback = progress_callback; encoder->private_->bytes_written = 0; encoder->private_->samples_written = 0; encoder->private_->frames_written = 0; init_status = init_stream_internal_( encoder, encoder->private_->file == stdout? 0 : is_ogg? file_read_callback_ : 0, file_write_callback_, encoder->private_->file == stdout? 0 : file_seek_callback_, encoder->private_->file == stdout? 0 : file_tell_callback_, /*metadata_callback=*/0, client_data, is_ogg ); if(init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK) { /* the above function sets the state for us in case of an error */ return init_status; } { uint32_t blocksize = FLAC__stream_encoder_get_blocksize(encoder); FLAC__ASSERT(blocksize != 0); encoder->private_->total_frames_estimate = (uint32_t)((FLAC__stream_encoder_get_total_samples_estimate(encoder) + blocksize - 1) / blocksize); } return init_status; } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_FILE( FLAC__StreamEncoder *encoder, FILE *file, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data ) { return init_FILE_internal_(encoder, file, progress_callback, client_data, /*is_ogg=*/false); } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_FILE( FLAC__StreamEncoder *encoder, FILE *file, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data ) { return init_FILE_internal_(encoder, file, progress_callback, client_data, /*is_ogg=*/true); } static FLAC__StreamEncoderInitStatus init_file_internal_( FLAC__StreamEncoder *encoder, const char *filename, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data, FLAC__bool is_ogg ) { FILE *file; FLAC__ASSERT(0 != encoder); /* * To make sure that our file does not go unclosed after an error, we * have to do the same entrance checks here that are later performed * in FLAC__stream_encoder_init_FILE() before the FILE* is assigned. */ if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED; file = filename? flac_fopen(filename, "w+b") : stdout; if(file == 0) { encoder->protected_->state = FLAC__STREAM_ENCODER_IO_ERROR; return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR; } return init_FILE_internal_(encoder, file, progress_callback, client_data, is_ogg); } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_file( FLAC__StreamEncoder *encoder, const char *filename, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data ) { return init_file_internal_(encoder, filename, progress_callback, client_data, /*is_ogg=*/false); } FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_file( FLAC__StreamEncoder *encoder, const char *filename, FLAC__StreamEncoderProgressCallback progress_callback, void *client_data ) { return init_file_internal_(encoder, filename, progress_callback, client_data, /*is_ogg=*/true); } FLAC_API FLAC__bool FLAC__stream_encoder_finish(FLAC__StreamEncoder *encoder) { FLAC__bool error = false; if (encoder == NULL) return false; FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state == FLAC__STREAM_ENCODER_UNINITIALIZED){ if(encoder->protected_->metadata){ // True in case FLAC__stream_encoder_set_metadata was used but init failed free(encoder->protected_->metadata); encoder->protected_->metadata = 0; encoder->protected_->num_metadata_blocks = 0; } if(0 != encoder->private_->file) { if(encoder->private_->file != stdout) fclose(encoder->private_->file); encoder->private_->file = 0; } return true; } if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) { if(encoder->private_->current_sample_number != 0) { encoder->protected_->blocksize = encoder->private_->current_sample_number; if(!process_frame_(encoder, /*is_last_block=*/true)) error = true; } } if(encoder->protected_->do_md5) FLAC__MD5Final(encoder->private_->streaminfo.data.stream_info.md5sum, &encoder->private_->md5context); if(!encoder->private_->is_being_deleted) { if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK) { if(encoder->private_->seek_callback) { #if FLAC__HAS_OGG if(encoder->private_->is_ogg) update_ogg_metadata_(encoder); else #endif update_metadata_(encoder); /* check if an error occurred while updating metadata */ if(encoder->protected_->state != FLAC__STREAM_ENCODER_OK) error = true; } if(encoder->private_->metadata_callback) encoder->private_->metadata_callback(encoder, &encoder->private_->streaminfo, encoder->private_->client_data); } if(encoder->protected_->verify && 0 != encoder->private_->verify.decoder && !FLAC__stream_decoder_finish(encoder->private_->verify.decoder)) { if(!error) encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA; error = true; } } if(0 != encoder->private_->file) { if(encoder->private_->file != stdout) fclose(encoder->private_->file); encoder->private_->file = 0; } #if FLAC__HAS_OGG if(encoder->private_->is_ogg) FLAC__ogg_encoder_aspect_finish(&encoder->protected_->ogg_encoder_aspect); #endif free_(encoder); set_defaults_(encoder); if(!error) encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED; return !error; } FLAC_API FLAC__bool FLAC__stream_encoder_set_ogg_serial_number(FLAC__StreamEncoder *encoder, long value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #if FLAC__HAS_OGG /* can't check encoder->private_->is_ogg since that's not set until init time */ FLAC__ogg_encoder_aspect_set_serial_number(&encoder->protected_->ogg_encoder_aspect, value); return true; #else (void)value; return false; #endif } FLAC_API FLAC__bool FLAC__stream_encoder_set_verify(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #ifndef FLAC__MANDATORY_VERIFY_WHILE_ENCODING encoder->protected_->verify = value; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_streamable_subset(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->streamable_subset = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_md5(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_md5 = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_channels(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->channels = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_bits_per_sample(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->bits_per_sample = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_sample_rate(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->sample_rate = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_compression_level(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__bool ok = true; FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; if(value >= sizeof(compression_levels_)/sizeof(compression_levels_[0])) value = sizeof(compression_levels_)/sizeof(compression_levels_[0]) - 1; ok &= FLAC__stream_encoder_set_do_mid_side_stereo (encoder, compression_levels_[value].do_mid_side_stereo); ok &= FLAC__stream_encoder_set_loose_mid_side_stereo (encoder, compression_levels_[value].loose_mid_side_stereo); #ifndef FLAC__INTEGER_ONLY_LIBRARY #if 1 ok &= FLAC__stream_encoder_set_apodization (encoder, compression_levels_[value].apodization); #else /* equivalent to -A tukey(0.5) */ encoder->protected_->num_apodizations = 1; encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY; encoder->protected_->apodizations[0].parameters.tukey.p = 0.5; #endif #endif ok &= FLAC__stream_encoder_set_max_lpc_order (encoder, compression_levels_[value].max_lpc_order); ok &= FLAC__stream_encoder_set_qlp_coeff_precision (encoder, compression_levels_[value].qlp_coeff_precision); ok &= FLAC__stream_encoder_set_do_qlp_coeff_prec_search (encoder, compression_levels_[value].do_qlp_coeff_prec_search); ok &= FLAC__stream_encoder_set_do_escape_coding (encoder, compression_levels_[value].do_escape_coding); ok &= FLAC__stream_encoder_set_do_exhaustive_model_search (encoder, compression_levels_[value].do_exhaustive_model_search); ok &= FLAC__stream_encoder_set_min_residual_partition_order(encoder, compression_levels_[value].min_residual_partition_order); ok &= FLAC__stream_encoder_set_max_residual_partition_order(encoder, compression_levels_[value].max_residual_partition_order); ok &= FLAC__stream_encoder_set_rice_parameter_search_dist (encoder, compression_levels_[value].rice_parameter_search_dist); return ok; } FLAC_API FLAC__bool FLAC__stream_encoder_set_blocksize(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->blocksize = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_mid_side_stereo = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_loose_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->loose_mid_side_stereo = value; return true; } /*@@@@add to tests*/ FLAC_API FLAC__bool FLAC__stream_encoder_set_apodization(FLAC__StreamEncoder *encoder, const char *specification) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); FLAC__ASSERT(0 != specification); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #ifdef FLAC__INTEGER_ONLY_LIBRARY (void)specification; /* silently ignore since we haven't integerized; will always use a rectangular window */ #else encoder->protected_->num_apodizations = 0; while(1) { const char *s = strchr(specification, ';'); const size_t n = s? (size_t)(s - specification) : strlen(specification); if (n==8 && 0 == strncmp("bartlett" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BARTLETT; else if(n==13 && 0 == strncmp("bartlett_hann", specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BARTLETT_HANN; else if(n==8 && 0 == strncmp("blackman" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BLACKMAN; else if(n==26 && 0 == strncmp("blackman_harris_4term_92db", specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BLACKMAN_HARRIS_4TERM_92DB_SIDELOBE; else if(n==6 && 0 == strncmp("connes" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_CONNES; else if(n==7 && 0 == strncmp("flattop" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_FLATTOP; else if(n>7 && 0 == strncmp("gauss(" , specification, 6)) { FLAC__real stddev = (FLAC__real)strtod(specification+6, 0); if (stddev > 0.0 && stddev <= 0.5) { encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.gauss.stddev = stddev; encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_GAUSS; } } else if(n==7 && 0 == strncmp("hamming" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_HAMMING; else if(n==4 && 0 == strncmp("hann" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_HANN; else if(n==13 && 0 == strncmp("kaiser_bessel", specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_KAISER_BESSEL; else if(n==7 && 0 == strncmp("nuttall" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_NUTTALL; else if(n==9 && 0 == strncmp("rectangle" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_RECTANGLE; else if(n==8 && 0 == strncmp("triangle" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TRIANGLE; else if(n>7 && 0 == strncmp("tukey(" , specification, 6)) { FLAC__real p = (FLAC__real)strtod(specification+6, 0); if (p >= 0.0 && p <= 1.0) { encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.tukey.p = p; encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TUKEY; } } else if(n>15 && 0 == strncmp("partial_tukey(", specification, 14)) { FLAC__int32 tukey_parts = (FLAC__int32)strtod(specification+14, 0); const char *si_1 = strchr(specification, '/'); FLAC__real overlap = si_1?flac_min((FLAC__real)strtod(si_1+1, 0),0.99f):0.1f; FLAC__real overlap_units = 1.0f/(1.0f - overlap) - 1.0f; const char *si_2 = strchr((si_1?(si_1+1):specification), '/'); FLAC__real tukey_p = si_2?(FLAC__real)strtod(si_2+1, 0):0.2f; if (tukey_parts <= 1) { encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.tukey.p = tukey_p; encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TUKEY; }else if (encoder->protected_->num_apodizations + tukey_parts < 32){ FLAC__int32 m; for(m = 0; m < tukey_parts; m++){ encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.p = tukey_p; encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.start = m/(tukey_parts+overlap_units); encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.end = (m+1+overlap_units)/(tukey_parts+overlap_units); encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_PARTIAL_TUKEY; } } } else if(n>16 && 0 == strncmp("punchout_tukey(", specification, 15)) { FLAC__int32 tukey_parts = (FLAC__int32)strtod(specification+15, 0); const char *si_1 = strchr(specification, '/'); FLAC__real overlap = si_1?flac_min((FLAC__real)strtod(si_1+1, 0),0.99f):0.2f; FLAC__real overlap_units = 1.0f/(1.0f - overlap) - 1.0f; const char *si_2 = strchr((si_1?(si_1+1):specification), '/'); FLAC__real tukey_p = si_2?(FLAC__real)strtod(si_2+1, 0):0.2f; if (tukey_parts <= 1) { encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.tukey.p = tukey_p; encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TUKEY; }else if (encoder->protected_->num_apodizations + tukey_parts < 32){ FLAC__int32 m; for(m = 0; m < tukey_parts; m++){ encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.p = tukey_p; encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.start = m/(tukey_parts+overlap_units); encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.end = (m+1+overlap_units)/(tukey_parts+overlap_units); encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_PUNCHOUT_TUKEY; } } } else if(n>17 && 0 == strncmp("subdivide_tukey(", specification, 16)){ FLAC__int32 parts = (FLAC__int32)strtod(specification+16, 0); if(parts > 1){ const char *si_1 = strchr(specification, '/'); FLAC__real p = si_1?(FLAC__real)strtod(si_1+1, 0):5e-1; if(p > 1) p = 1; else if(p < 0) p = 0; encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.subdivide_tukey.parts = parts; encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.subdivide_tukey.p = p/parts; encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_SUBDIVIDE_TUKEY; } } else if(n==5 && 0 == strncmp("welch" , specification, n)) encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_WELCH; if (encoder->protected_->num_apodizations == 32) break; if (s) specification = s+1; else break; } if(encoder->protected_->num_apodizations == 0) { encoder->protected_->num_apodizations = 1; encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY; encoder->protected_->apodizations[0].parameters.tukey.p = 0.5; } #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_max_lpc_order(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->max_lpc_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_qlp_coeff_precision(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->qlp_coeff_precision = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_qlp_coeff_prec_search(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_qlp_coeff_prec_search = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_escape_coding(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION /* was deprecated since FLAC 1.0.4 (24-Sep-2002), but is needed for * full spec coverage, so this should be reenabled at some point. * For now only enable while fuzzing */ encoder->protected_->do_escape_coding = value; #else (void)value; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_do_exhaustive_model_search(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->do_exhaustive_model_search = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_min_residual_partition_order(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->min_residual_partition_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_max_residual_partition_order(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->max_residual_partition_order = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_rice_parameter_search_dist(FLAC__StreamEncoder *encoder, uint32_t value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; #if 0 /*@@@ deprecated: */ encoder->protected_->rice_parameter_search_dist = value; #else (void)value; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_total_samples_estimate(FLAC__StreamEncoder *encoder, FLAC__uint64 value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; value = flac_min(value, (FLAC__U64L(1) << FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN) - 1); encoder->protected_->total_samples_estimate = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata(FLAC__StreamEncoder *encoder, FLAC__StreamMetadata **metadata, uint32_t num_blocks) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; if(0 == metadata) num_blocks = 0; if(0 == num_blocks) metadata = 0; /* realloc() does not do exactly what we want so... */ if(encoder->protected_->metadata) { free(encoder->protected_->metadata); encoder->protected_->metadata = 0; encoder->protected_->num_metadata_blocks = 0; } if(num_blocks) { FLAC__StreamMetadata **m; if(0 == (m = safe_malloc_mul_2op_p(sizeof(m[0]), /*times*/num_blocks))) return false; memcpy(m, metadata, sizeof(m[0]) * num_blocks); encoder->protected_->metadata = m; encoder->protected_->num_metadata_blocks = num_blocks; } #if FLAC__HAS_OGG if(!FLAC__ogg_encoder_aspect_set_num_metadata(&encoder->protected_->ogg_encoder_aspect, num_blocks)) return false; #endif return true; } FLAC_API FLAC__bool FLAC__stream_encoder_set_limit_min_bitrate(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->protected_->limit_min_bitrate = value; return true; } /* * These four functions are not static, but not publicly exposed in * include/FLAC/ either. They are used by the test suite and in fuzzing */ FLAC_API FLAC__bool FLAC__stream_encoder_disable_instruction_set(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_mmx = value & 1; encoder->private_->disable_sse2 = value & 2; encoder->private_->disable_ssse3 = value & 4; encoder->private_->disable_sse41 = value & 8; encoder->private_->disable_avx2 = value & 16; encoder->private_->disable_fma = value & 32; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_disable_constant_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_constant_subframes = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_disable_fixed_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_fixed_subframes = value; return true; } FLAC_API FLAC__bool FLAC__stream_encoder_disable_verbatim_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED) return false; encoder->private_->disable_verbatim_subframes = value; return true; } FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_get_state(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->state; } FLAC_API FLAC__StreamDecoderState FLAC__stream_encoder_get_verify_decoder_state(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->verify) return FLAC__stream_decoder_get_state(encoder->private_->verify.decoder); else return FLAC__STREAM_DECODER_UNINITIALIZED; } FLAC_API const char *FLAC__stream_encoder_get_resolved_state_string(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR) return FLAC__StreamEncoderStateString[encoder->protected_->state]; else return FLAC__stream_decoder_get_resolved_state_string(encoder->private_->verify.decoder); } FLAC_API void FLAC__stream_encoder_get_verify_decoder_error_stats(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_sample, uint32_t *frame_number, uint32_t *channel, uint32_t *sample, FLAC__int32 *expected, FLAC__int32 *got) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(0 != absolute_sample) *absolute_sample = encoder->private_->verify.error_stats.absolute_sample; if(0 != frame_number) *frame_number = encoder->private_->verify.error_stats.frame_number; if(0 != channel) *channel = encoder->private_->verify.error_stats.channel; if(0 != sample) *sample = encoder->private_->verify.error_stats.sample; if(0 != expected) *expected = encoder->private_->verify.error_stats.expected; if(0 != got) *got = encoder->private_->verify.error_stats.got; } FLAC_API FLAC__bool FLAC__stream_encoder_get_verify(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->verify; } FLAC_API FLAC__bool FLAC__stream_encoder_get_streamable_subset(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->streamable_subset; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_md5(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_md5; } FLAC_API uint32_t FLAC__stream_encoder_get_channels(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->channels; } FLAC_API uint32_t FLAC__stream_encoder_get_bits_per_sample(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->bits_per_sample; } FLAC_API uint32_t FLAC__stream_encoder_get_sample_rate(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->sample_rate; } FLAC_API uint32_t FLAC__stream_encoder_get_blocksize(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->blocksize; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_mid_side_stereo(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_mid_side_stereo; } FLAC_API FLAC__bool FLAC__stream_encoder_get_loose_mid_side_stereo(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->loose_mid_side_stereo; } FLAC_API uint32_t FLAC__stream_encoder_get_max_lpc_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->max_lpc_order; } FLAC_API uint32_t FLAC__stream_encoder_get_qlp_coeff_precision(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->qlp_coeff_precision; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_qlp_coeff_prec_search(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_qlp_coeff_prec_search; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_escape_coding(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_escape_coding; } FLAC_API FLAC__bool FLAC__stream_encoder_get_do_exhaustive_model_search(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->do_exhaustive_model_search; } FLAC_API uint32_t FLAC__stream_encoder_get_min_residual_partition_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->min_residual_partition_order; } FLAC_API uint32_t FLAC__stream_encoder_get_max_residual_partition_order(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->max_residual_partition_order; } FLAC_API uint32_t FLAC__stream_encoder_get_rice_parameter_search_dist(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->rice_parameter_search_dist; } FLAC_API FLAC__uint64 FLAC__stream_encoder_get_total_samples_estimate(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->total_samples_estimate; } FLAC_API FLAC__bool FLAC__stream_encoder_get_limit_min_bitrate(const FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); return encoder->protected_->limit_min_bitrate; } FLAC_API FLAC__bool FLAC__stream_encoder_process(FLAC__StreamEncoder *encoder, const FLAC__int32 * const buffer[], uint32_t samples) { uint32_t i, j = 0, k = 0, channel; const uint32_t channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize, bps = encoder->protected_->bits_per_sample; const FLAC__int32 sample_max = INT32_MAX >> (32 - encoder->protected_->bits_per_sample); const FLAC__int32 sample_min = INT32_MIN >> (32 - encoder->protected_->bits_per_sample); FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_OK) return false; do { const uint32_t n = flac_min(blocksize+OVERREAD_-encoder->private_->current_sample_number, samples-j); if(encoder->protected_->verify) append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, n); for(channel = 0; channel < channels; channel++) { for(i = encoder->private_->current_sample_number, k = j; i <= blocksize && k < samples; i++, k++) { if(buffer[channel][k] < sample_min || buffer[channel][k] > sample_max){ encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return false; } } if (buffer[channel] == NULL) { return false; } memcpy(&encoder->private_->integer_signal[channel][encoder->private_->current_sample_number], &buffer[channel][j], sizeof(buffer[channel][0]) * n); } if(encoder->protected_->do_mid_side_stereo) { FLAC__ASSERT(channels == 2); /* "i <= blocksize" to overread 1 sample; see comment in OVERREAD_ decl */ if(bps < 32) for(i = encoder->private_->current_sample_number; i <= blocksize && j < samples; i++, j++) { encoder->private_->integer_signal_mid_side[1][i] = buffer[0][j] - buffer[1][j]; encoder->private_->integer_signal_mid_side[0][i] = (buffer[0][j] + buffer[1][j]) >> 1; /* NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! */ } else for(i = encoder->private_->current_sample_number; i <= blocksize && j < samples; i++, j++) { encoder->private_->integer_signal_33bit_side[i] = (FLAC__int64)buffer[0][j] - (FLAC__int64)buffer[1][j]; encoder->private_->integer_signal_mid_side[0][i] = ((FLAC__int64)buffer[0][j] + (FLAC__int64)buffer[1][j]) >> 1; /* NOTE: not the same as 'mid = (buffer[0][j] + buffer[1][j]) / 2' ! */ } } else j += n; encoder->private_->current_sample_number += n; /* we only process if we have a full block + 1 extra sample; final block is always handled by FLAC__stream_encoder_finish() */ if(encoder->private_->current_sample_number > blocksize) { FLAC__ASSERT(encoder->private_->current_sample_number == blocksize+OVERREAD_); FLAC__ASSERT(OVERREAD_ == 1); /* assert we only overread 1 sample which simplifies the rest of the code below */ if(!process_frame_(encoder, /*is_last_block=*/false)) return false; /* move unprocessed overread samples to beginnings of arrays */ for(channel = 0; channel < channels; channel++) encoder->private_->integer_signal[channel][0] = encoder->private_->integer_signal[channel][blocksize]; if(encoder->protected_->do_mid_side_stereo) { encoder->private_->integer_signal_mid_side[0][0] = encoder->private_->integer_signal_mid_side[0][blocksize]; if(bps < 32) encoder->private_->integer_signal_mid_side[1][0] = encoder->private_->integer_signal_mid_side[1][blocksize]; else encoder->private_->integer_signal_33bit_side[0] = encoder->private_->integer_signal_33bit_side[blocksize]; } encoder->private_->current_sample_number = 1; } } while(j < samples); return true; } FLAC_API FLAC__bool FLAC__stream_encoder_process_interleaved(FLAC__StreamEncoder *encoder, const FLAC__int32 buffer[], uint32_t samples) { uint32_t i, j, k, channel; const uint32_t channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize, bps = encoder->protected_->bits_per_sample; const FLAC__int32 sample_max = INT32_MAX >> (32 - encoder->protected_->bits_per_sample); const FLAC__int32 sample_min = INT32_MIN >> (32 - encoder->protected_->bits_per_sample); FLAC__ASSERT(0 != encoder); FLAC__ASSERT(0 != encoder->private_); FLAC__ASSERT(0 != encoder->protected_); if(encoder->protected_->state != FLAC__STREAM_ENCODER_OK) return false; j = k = 0; /* * we have several flavors of the same basic loop, optimized for * different conditions: */ if(encoder->protected_->do_mid_side_stereo && channels == 2) { /* * stereo coding: unroll channel loop */ do { if(encoder->protected_->verify) append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, flac_min(blocksize+OVERREAD_-encoder->private_->current_sample_number, samples-j)); /* "i <= blocksize" to overread 1 sample; see comment in OVERREAD_ decl */ for(i = encoder->private_->current_sample_number; i <= blocksize && j < samples; i++, j++) { if(buffer[k] < sample_min || buffer[k] > sample_max || buffer[k+1] < sample_min || buffer[k+1] > sample_max){ encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return false; } encoder->private_->integer_signal[0][i] = buffer[k++]; encoder->private_->integer_signal[1][i] = buffer[k++]; if(bps < 32){ encoder->private_->integer_signal_mid_side[1][i] = encoder->private_->integer_signal[0][i] - encoder->private_->integer_signal[1][i]; encoder->private_->integer_signal_mid_side[0][i] = (encoder->private_->integer_signal[0][i] + encoder->private_->integer_signal[1][i]) >> 1; } else { encoder->private_->integer_signal_33bit_side[i] = (FLAC__int64)encoder->private_->integer_signal[0][i] - (FLAC__int64)encoder->private_->integer_signal[1][i]; encoder->private_->integer_signal_mid_side[0][i] = ((FLAC__int64)encoder->private_->integer_signal[0][i] + (FLAC__int64)encoder->private_->integer_signal[1][i]) >> 1; } } encoder->private_->current_sample_number = i; /* we only process if we have a full block + 1 extra sample; final block is always handled by FLAC__stream_encoder_finish() */ if(i > blocksize) { if(!process_frame_(encoder, /*is_last_block=*/false)) return false; /* move unprocessed overread samples to beginnings of arrays */ FLAC__ASSERT(i == blocksize+OVERREAD_); FLAC__ASSERT(OVERREAD_ == 1); /* assert we only overread 1 sample which simplifies the rest of the code below */ encoder->private_->integer_signal[0][0] = encoder->private_->integer_signal[0][blocksize]; encoder->private_->integer_signal[1][0] = encoder->private_->integer_signal[1][blocksize]; encoder->private_->integer_signal_mid_side[0][0] = encoder->private_->integer_signal_mid_side[0][blocksize]; if(bps < 32) encoder->private_->integer_signal_mid_side[1][0] = encoder->private_->integer_signal_mid_side[1][blocksize]; else encoder->private_->integer_signal_33bit_side[0] = encoder->private_->integer_signal_33bit_side[blocksize]; encoder->private_->current_sample_number = 1; } } while(j < samples); } else { /* * independent channel coding: buffer each channel in inner loop */ do { if(encoder->protected_->verify) append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, flac_min(blocksize+OVERREAD_-encoder->private_->current_sample_number, samples-j)); /* "i <= blocksize" to overread 1 sample; see comment in OVERREAD_ decl */ for(i = encoder->private_->current_sample_number; i <= blocksize && j < samples; i++, j++) { for(channel = 0; channel < channels; channel++){ if(buffer[k] < sample_min || buffer[k] > sample_max){ encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return false; } encoder->private_->integer_signal[channel][i] = buffer[k++]; } } encoder->private_->current_sample_number = i; /* we only process if we have a full block + 1 extra sample; final block is always handled by FLAC__stream_encoder_finish() */ if(i > blocksize) { if(!process_frame_(encoder, /*is_last_block=*/false)) return false; /* move unprocessed overread samples to beginnings of arrays */ FLAC__ASSERT(i == blocksize+OVERREAD_); FLAC__ASSERT(OVERREAD_ == 1); /* assert we only overread 1 sample which simplifies the rest of the code below */ for(channel = 0; channel < channels; channel++) encoder->private_->integer_signal[channel][0] = encoder->private_->integer_signal[channel][blocksize]; encoder->private_->current_sample_number = 1; } } while(j < samples); } return true; } /*********************************************************************** * * Private class methods * ***********************************************************************/ void set_defaults_(FLAC__StreamEncoder *encoder) { FLAC__ASSERT(0 != encoder); #ifdef FLAC__MANDATORY_VERIFY_WHILE_ENCODING encoder->protected_->verify = true; #else encoder->protected_->verify = false; #endif encoder->protected_->streamable_subset = true; encoder->protected_->do_md5 = true; encoder->protected_->do_mid_side_stereo = false; encoder->protected_->loose_mid_side_stereo = false; encoder->protected_->channels = 2; encoder->protected_->bits_per_sample = 16; encoder->protected_->sample_rate = 44100; encoder->protected_->blocksize = 0; #ifndef FLAC__INTEGER_ONLY_LIBRARY encoder->protected_->num_apodizations = 1; encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY; encoder->protected_->apodizations[0].parameters.tukey.p = 0.5; #endif encoder->protected_->max_lpc_order = 0; encoder->protected_->qlp_coeff_precision = 0; encoder->protected_->do_qlp_coeff_prec_search = false; encoder->protected_->do_exhaustive_model_search = false; encoder->protected_->do_escape_coding = false; encoder->protected_->min_residual_partition_order = 0; encoder->protected_->max_residual_partition_order = 0; encoder->protected_->rice_parameter_search_dist = 0; encoder->protected_->total_samples_estimate = 0; encoder->protected_->limit_min_bitrate = false; encoder->protected_->metadata = 0; encoder->protected_->num_metadata_blocks = 0; encoder->private_->seek_table = 0; encoder->private_->disable_mmx = false; encoder->private_->disable_sse2 = false; encoder->private_->disable_ssse3 = false; encoder->private_->disable_sse41 = false; encoder->private_->disable_avx2 = false; encoder->private_->disable_constant_subframes = false; encoder->private_->disable_fixed_subframes = false; encoder->private_->disable_verbatim_subframes = false; encoder->private_->is_ogg = false; encoder->private_->read_callback = 0; encoder->private_->write_callback = 0; encoder->private_->seek_callback = 0; encoder->private_->tell_callback = 0; encoder->private_->metadata_callback = 0; encoder->private_->progress_callback = 0; encoder->private_->client_data = 0; #if FLAC__HAS_OGG FLAC__ogg_encoder_aspect_set_defaults(&encoder->protected_->ogg_encoder_aspect); #endif FLAC__stream_encoder_set_compression_level(encoder, 5); } void free_(FLAC__StreamEncoder *encoder) { uint32_t i, channel; FLAC__ASSERT(0 != encoder); if(encoder->protected_->metadata) { free(encoder->protected_->metadata); encoder->protected_->metadata = 0; encoder->protected_->num_metadata_blocks = 0; } for(i = 0; i < encoder->protected_->channels; i++) { if(0 != encoder->private_->integer_signal_unaligned[i]) { free(encoder->private_->integer_signal_unaligned[i]); encoder->private_->integer_signal_unaligned[i] = 0; } #ifndef FLAC__INTEGER_ONLY_LIBRARY if(0 != encoder->private_->real_signal_unaligned[i]) { free(encoder->private_->real_signal_unaligned[i]); encoder->private_->real_signal_unaligned[i] = 0; } #endif } for(i = 0; i < 2; i++) { if(0 != encoder->private_->integer_signal_mid_side_unaligned[i]) { free(encoder->private_->integer_signal_mid_side_unaligned[i]); encoder->private_->integer_signal_mid_side_unaligned[i] = 0; } #ifndef FLAC__INTEGER_ONLY_LIBRARY if(0 != encoder->private_->real_signal_mid_side_unaligned[i]) { free(encoder->private_->real_signal_mid_side_unaligned[i]); encoder->private_->real_signal_mid_side_unaligned[i] = 0; } #endif } if(0 != encoder->private_->integer_signal_33bit_side_unaligned){ free(encoder->private_->integer_signal_33bit_side_unaligned); encoder->private_->integer_signal_33bit_side_unaligned = 0; } #ifndef FLAC__INTEGER_ONLY_LIBRARY for(i = 0; i < encoder->protected_->num_apodizations; i++) { if(0 != encoder->private_->window_unaligned[i]) { free(encoder->private_->window_unaligned[i]); encoder->private_->window_unaligned[i] = 0; } } if(0 != encoder->private_->windowed_signal_unaligned) { free(encoder->private_->windowed_signal_unaligned); encoder->private_->windowed_signal_unaligned = 0; } #endif for(channel = 0; channel < encoder->protected_->channels; channel++) { for(i = 0; i < 2; i++) { if(0 != encoder->private_->residual_workspace_unaligned[channel][i]) { free(encoder->private_->residual_workspace_unaligned[channel][i]); encoder->private_->residual_workspace_unaligned[channel][i] = 0; } } } for(channel = 0; channel < 2; channel++) { for(i = 0; i < 2; i++) { if(0 != encoder->private_->residual_workspace_mid_side_unaligned[channel][i]) { free(encoder->private_->residual_workspace_mid_side_unaligned[channel][i]); encoder->private_->residual_workspace_mid_side_unaligned[channel][i] = 0; } } } if(0 != encoder->private_->abs_residual_partition_sums_unaligned) { free(encoder->private_->abs_residual_partition_sums_unaligned); encoder->private_->abs_residual_partition_sums_unaligned = 0; } if(0 != encoder->private_->raw_bits_per_partition_unaligned) { free(encoder->private_->raw_bits_per_partition_unaligned); encoder->private_->raw_bits_per_partition_unaligned = 0; } if(encoder->protected_->verify) { for(i = 0; i < encoder->protected_->channels; i++) { if(0 != encoder->private_->verify.input_fifo.data[i]) { free(encoder->private_->verify.input_fifo.data[i]); encoder->private_->verify.input_fifo.data[i] = 0; } } } FLAC__bitwriter_free(encoder->private_->frame); } FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, uint32_t new_blocksize) { FLAC__bool ok; uint32_t i, channel; FLAC__ASSERT(new_blocksize > 0); FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); FLAC__ASSERT(encoder->private_->current_sample_number == 0); /* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */ if(new_blocksize <= encoder->private_->input_capacity) return true; ok = true; /* WATCHOUT: FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx() and ..._intrin_sse2() * require that the input arrays (in our case the integer signals) * have a buffer of up to 3 zeroes in front (at negative indices) for * alignment purposes; we use 4 in front to keep the data well-aligned. */ for(i = 0; ok && i < encoder->protected_->channels; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize+4+OVERREAD_, &encoder->private_->integer_signal_unaligned[i], &encoder->private_->integer_signal[i]); if(ok) { memset(encoder->private_->integer_signal[i], 0, sizeof(FLAC__int32)*4); encoder->private_->integer_signal[i] += 4; } } for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize+4+OVERREAD_, &encoder->private_->integer_signal_mid_side_unaligned[i], &encoder->private_->integer_signal_mid_side[i]); if(ok) { memset(encoder->private_->integer_signal_mid_side[i], 0, sizeof(FLAC__int32)*4); encoder->private_->integer_signal_mid_side[i] += 4; } } ok = ok && FLAC__memory_alloc_aligned_int64_array(new_blocksize+4+OVERREAD_, &encoder->private_->integer_signal_33bit_side_unaligned, &encoder->private_->integer_signal_33bit_side); #ifndef FLAC__INTEGER_ONLY_LIBRARY if(ok && encoder->protected_->max_lpc_order > 0) { for(i = 0; ok && i < encoder->protected_->num_apodizations; i++) ok = ok && FLAC__memory_alloc_aligned_real_array(new_blocksize, &encoder->private_->window_unaligned[i], &encoder->private_->window[i]); ok = ok && FLAC__memory_alloc_aligned_real_array(new_blocksize, &encoder->private_->windowed_signal_unaligned, &encoder->private_->windowed_signal); } #endif for(channel = 0; ok && channel < encoder->protected_->channels; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize, &encoder->private_->residual_workspace_unaligned[channel][i], &encoder->private_->residual_workspace[channel][i]); } } for(channel = 0; ok && channel < encoder->protected_->channels; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(&encoder->private_->partitioned_rice_contents_workspace[channel][i], encoder->protected_->max_residual_partition_order); ok = ok && FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(&encoder->private_->partitioned_rice_contents_workspace[channel][i], encoder->protected_->max_residual_partition_order); } } for(channel = 0; ok && channel < 2; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize, &encoder->private_->residual_workspace_mid_side_unaligned[channel][i], &encoder->private_->residual_workspace_mid_side[channel][i]); } } for(channel = 0; ok && channel < 2; channel++) { for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(&encoder->private_->partitioned_rice_contents_workspace_mid_side[channel][i], encoder->protected_->max_residual_partition_order); } } for(i = 0; ok && i < 2; i++) { ok = ok && FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(&encoder->private_->partitioned_rice_contents_extra[i], encoder->protected_->max_residual_partition_order); } /* the *2 is an approximation to the series 1 + 1/2 + 1/4 + ... that sums tree occupies in a flat array */ /*@@@ new_blocksize*2 is too pessimistic, but to fix, we need smarter logic because a smaller new_blocksize can actually increase the # of partitions; would require moving this out into a separate function, then checking its capacity against the need of the current blocksize&min/max_partition_order (and maybe predictor order) */ ok = ok && FLAC__memory_alloc_aligned_uint64_array(new_blocksize * 2, &encoder->private_->abs_residual_partition_sums_unaligned, &encoder->private_->abs_residual_partition_sums); if(encoder->protected_->do_escape_coding) ok = ok && FLAC__memory_alloc_aligned_unsigned_array(new_blocksize * 2, &encoder->private_->raw_bits_per_partition_unaligned, &encoder->private_->raw_bits_per_partition); /* now adjust the windows if the blocksize has changed */ #ifndef FLAC__INTEGER_ONLY_LIBRARY if(ok && new_blocksize != encoder->private_->input_capacity && encoder->protected_->max_lpc_order > 0) { for(i = 0; ok && i < encoder->protected_->num_apodizations; i++) { switch(encoder->protected_->apodizations[i].type) { case FLAC__APODIZATION_BARTLETT: FLAC__window_bartlett(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_BARTLETT_HANN: FLAC__window_bartlett_hann(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_BLACKMAN: FLAC__window_blackman(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_BLACKMAN_HARRIS_4TERM_92DB_SIDELOBE: FLAC__window_blackman_harris_4term_92db_sidelobe(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_CONNES: FLAC__window_connes(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_FLATTOP: FLAC__window_flattop(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_GAUSS: FLAC__window_gauss(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.gauss.stddev); break; case FLAC__APODIZATION_HAMMING: FLAC__window_hamming(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_HANN: FLAC__window_hann(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_KAISER_BESSEL: FLAC__window_kaiser_bessel(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_NUTTALL: FLAC__window_nuttall(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_RECTANGLE: FLAC__window_rectangle(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_TRIANGLE: FLAC__window_triangle(encoder->private_->window[i], new_blocksize); break; case FLAC__APODIZATION_TUKEY: FLAC__window_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.tukey.p); break; case FLAC__APODIZATION_PARTIAL_TUKEY: FLAC__window_partial_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.multiple_tukey.p, encoder->protected_->apodizations[i].parameters.multiple_tukey.start, encoder->protected_->apodizations[i].parameters.multiple_tukey.end); break; case FLAC__APODIZATION_PUNCHOUT_TUKEY: FLAC__window_punchout_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.multiple_tukey.p, encoder->protected_->apodizations[i].parameters.multiple_tukey.start, encoder->protected_->apodizations[i].parameters.multiple_tukey.end); break; case FLAC__APODIZATION_SUBDIVIDE_TUKEY: FLAC__window_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.tukey.p); break; case FLAC__APODIZATION_WELCH: FLAC__window_welch(encoder->private_->window[i], new_blocksize); break; default: FLAC__ASSERT(0); /* double protection */ FLAC__window_hann(encoder->private_->window[i], new_blocksize); break; } } } #endif if(ok) encoder->private_->input_capacity = new_blocksize; else encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return ok; } FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, uint32_t samples, FLAC__bool is_last_block) { const FLAC__byte *buffer; size_t bytes; FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(encoder->private_->frame)); if(!FLAC__bitwriter_get_buffer(encoder->private_->frame, &buffer, &bytes)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } if(encoder->protected_->verify) { encoder->private_->verify.output.data = buffer; encoder->private_->verify.output.bytes = bytes; if(encoder->private_->verify.state_hint == ENCODER_IN_MAGIC) { encoder->private_->verify.needs_magic_hack = true; } else { if(!FLAC__stream_decoder_process_single(encoder->private_->verify.decoder) || (!is_last_block && (FLAC__stream_encoder_get_verify_decoder_state(encoder) == FLAC__STREAM_DECODER_END_OF_STREAM)) || encoder->protected_->state == FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR /* Happens when error callback was used */) { FLAC__bitwriter_release_buffer(encoder->private_->frame); FLAC__bitwriter_clear(encoder->private_->frame); if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA) encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; return false; } } } if(write_frame_(encoder, buffer, bytes, samples, is_last_block) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { FLAC__bitwriter_release_buffer(encoder->private_->frame); FLAC__bitwriter_clear(encoder->private_->frame); encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return false; } FLAC__bitwriter_release_buffer(encoder->private_->frame); FLAC__bitwriter_clear(encoder->private_->frame); if(samples > 0) { encoder->private_->streaminfo.data.stream_info.min_framesize = flac_min(bytes, encoder->private_->streaminfo.data.stream_info.min_framesize); encoder->private_->streaminfo.data.stream_info.max_framesize = flac_max(bytes, encoder->private_->streaminfo.data.stream_info.max_framesize); } return true; } FLAC__StreamEncoderWriteStatus write_frame_(FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, uint32_t samples, FLAC__bool is_last_block) { FLAC__StreamEncoderWriteStatus status; FLAC__uint64 output_position = 0; #if FLAC__HAS_OGG == 0 (void)is_last_block; #endif /* FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED just means we didn't get the offset; no error */ if(encoder->private_->tell_callback && encoder->private_->tell_callback(encoder, &output_position, encoder->private_->client_data) == FLAC__STREAM_ENCODER_TELL_STATUS_ERROR) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR; } /* * Watch for the STREAMINFO block and first SEEKTABLE block to go by and store their offsets. */ if(samples == 0) { FLAC__MetadataType type = (buffer[0] & 0x7f); if(type == FLAC__METADATA_TYPE_STREAMINFO) encoder->protected_->streaminfo_offset = output_position; else if(type == FLAC__METADATA_TYPE_SEEKTABLE && encoder->protected_->seektable_offset == 0) encoder->protected_->seektable_offset = output_position; } /* * Mark the current seek point if hit (if audio_offset == 0 that * means we're still writing metadata and haven't hit the first * frame yet) */ if(0 != encoder->private_->seek_table && encoder->protected_->audio_offset > 0 && encoder->private_->seek_table->num_points > 0) { const uint32_t blocksize = FLAC__stream_encoder_get_blocksize(encoder); const FLAC__uint64 frame_first_sample = encoder->private_->samples_written; const FLAC__uint64 frame_last_sample = frame_first_sample + (FLAC__uint64)blocksize - 1; FLAC__uint64 test_sample; uint32_t i; for(i = encoder->private_->first_seekpoint_to_check; i < encoder->private_->seek_table->num_points; i++) { test_sample = encoder->private_->seek_table->points[i].sample_number; if(test_sample > frame_last_sample) { break; } else if(test_sample >= frame_first_sample) { encoder->private_->seek_table->points[i].sample_number = frame_first_sample; encoder->private_->seek_table->points[i].stream_offset = output_position - encoder->protected_->audio_offset; encoder->private_->seek_table->points[i].frame_samples = blocksize; encoder->private_->first_seekpoint_to_check++; /* DO NOT: "break;" and here's why: * The seektable template may contain more than one target * sample for any given frame; we will keep looping, generating * duplicate seekpoints for them, and we'll clean it up later, * just before writing the seektable back to the metadata. */ } else { encoder->private_->first_seekpoint_to_check++; } } } #if FLAC__HAS_OGG if(encoder->private_->is_ogg) { status = FLAC__ogg_encoder_aspect_write_callback_wrapper( &encoder->protected_->ogg_encoder_aspect, buffer, bytes, samples, encoder->private_->current_frame_number, is_last_block, (FLAC__OggEncoderAspectWriteCallbackProxy)encoder->private_->write_callback, encoder, encoder->private_->client_data ); } else #endif status = encoder->private_->write_callback(encoder, buffer, bytes, samples, encoder->private_->current_frame_number, encoder->private_->client_data); if(status == FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->private_->bytes_written += bytes; encoder->private_->samples_written += samples; /* we keep a high watermark on the number of frames written because * when the encoder goes back to write metadata, 'current_frame' * will drop back to 0. */ encoder->private_->frames_written = flac_max(encoder->private_->frames_written, encoder->private_->current_frame_number+1); } else encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return status; } /* Gets called when the encoding process has finished so that we can update the STREAMINFO and SEEKTABLE blocks. */ void update_metadata_(const FLAC__StreamEncoder *encoder) { FLAC__byte b[flac_max(6u, FLAC__STREAM_METADATA_SEEKPOINT_LENGTH)]; const FLAC__StreamMetadata *metadata = &encoder->private_->streaminfo; FLAC__uint64 samples = metadata->data.stream_info.total_samples; const uint32_t min_framesize = metadata->data.stream_info.min_framesize; const uint32_t max_framesize = metadata->data.stream_info.max_framesize; const uint32_t bps = metadata->data.stream_info.bits_per_sample; FLAC__StreamEncoderSeekStatus seek_status; FLAC__ASSERT(metadata->type == FLAC__METADATA_TYPE_STREAMINFO); /* All this is based on intimate knowledge of the stream header * layout, but a change to the header format that would break this * would also break all streams encoded in the previous format. */ /* * Write MD5 signature */ { const uint32_t md5_offset = FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN + FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN + FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN + FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN ) / 8; if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + md5_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) { if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR) encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } if(encoder->private_->write_callback(encoder, metadata->data.stream_info.md5sum, 16, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } } /* * Write total samples */ { const uint32_t total_samples_byte_offset = FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN + FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN + FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN - 4 ) / 8; if(samples > (FLAC__U64L(1) << FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN)) samples = 0; b[0] = ((FLAC__byte)(bps-1) << 4) | (FLAC__byte)((samples >> 32) & 0x0F); b[1] = (FLAC__byte)((samples >> 24) & 0xFF); b[2] = (FLAC__byte)((samples >> 16) & 0xFF); b[3] = (FLAC__byte)((samples >> 8) & 0xFF); b[4] = (FLAC__byte)(samples & 0xFF); if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + total_samples_byte_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) { if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR) encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } if(encoder->private_->write_callback(encoder, b, 5, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } } /* * Write min/max framesize */ { const uint32_t min_framesize_offset = FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN ) / 8; b[0] = (FLAC__byte)((min_framesize >> 16) & 0xFF); b[1] = (FLAC__byte)((min_framesize >> 8) & 0xFF); b[2] = (FLAC__byte)(min_framesize & 0xFF); b[3] = (FLAC__byte)((max_framesize >> 16) & 0xFF); b[4] = (FLAC__byte)((max_framesize >> 8) & 0xFF); b[5] = (FLAC__byte)(max_framesize & 0xFF); if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + min_framesize_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) { if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR) encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } if(encoder->private_->write_callback(encoder, b, 6, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } } /* * Write seektable */ if(0 != encoder->private_->seek_table && encoder->private_->seek_table->num_points > 0 && encoder->protected_->seektable_offset > 0) { uint32_t i; FLAC__format_seektable_sort(encoder->private_->seek_table); FLAC__ASSERT(FLAC__format_seektable_is_legal(encoder->private_->seek_table)); if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->seektable_offset + FLAC__STREAM_METADATA_HEADER_LENGTH, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) { if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR) encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } for(i = 0; i < encoder->private_->seek_table->num_points; i++) { FLAC__uint64 xx; uint32_t x; xx = encoder->private_->seek_table->points[i].sample_number; b[7] = (FLAC__byte)xx; xx >>= 8; b[6] = (FLAC__byte)xx; xx >>= 8; b[5] = (FLAC__byte)xx; xx >>= 8; b[4] = (FLAC__byte)xx; xx >>= 8; b[3] = (FLAC__byte)xx; xx >>= 8; b[2] = (FLAC__byte)xx; xx >>= 8; b[1] = (FLAC__byte)xx; xx >>= 8; b[0] = (FLAC__byte)xx; xx >>= 8; xx = encoder->private_->seek_table->points[i].stream_offset; b[15] = (FLAC__byte)xx; xx >>= 8; b[14] = (FLAC__byte)xx; xx >>= 8; b[13] = (FLAC__byte)xx; xx >>= 8; b[12] = (FLAC__byte)xx; xx >>= 8; b[11] = (FLAC__byte)xx; xx >>= 8; b[10] = (FLAC__byte)xx; xx >>= 8; b[9] = (FLAC__byte)xx; xx >>= 8; b[8] = (FLAC__byte)xx; xx >>= 8; x = encoder->private_->seek_table->points[i].frame_samples; b[17] = (FLAC__byte)x; x >>= 8; b[16] = (FLAC__byte)x; x >>= 8; if(encoder->private_->write_callback(encoder, b, 18, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) { encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR; return; } } } } #if FLAC__HAS_OGG /* Gets called when the encoding process has finished so that we can update the STREAMINFO and SEEKTABLE blocks. */ void update_ogg_metadata_(FLAC__StreamEncoder *encoder) { /* the # of bytes in the 1st packet that precede the STREAMINFO */ static const uint32_t FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH = FLAC__OGG_MAPPING_PACKET_TYPE_LENGTH + FLAC__OGG_MAPPING_MAGIC_LENGTH + FLAC__OGG_MAPPING_VERSION_MAJOR_LENGTH + FLAC__OGG_MAPPING_VERSION_MINOR_LENGTH + FLAC__OGG_MAPPING_NUM_HEADERS_LENGTH + FLAC__STREAM_SYNC_LENGTH ; FLAC__byte b[flac_max(6u, FLAC__STREAM_METADATA_SEEKPOINT_LENGTH)]; const FLAC__StreamMetadata *metadata = &encoder->private_->streaminfo; const FLAC__uint64 samples = metadata->data.stream_info.total_samples; const uint32_t min_framesize = metadata->data.stream_info.min_framesize; const uint32_t max_framesize = metadata->data.stream_info.max_framesize; ogg_page page; FLAC__ASSERT(metadata->type == FLAC__METADATA_TYPE_STREAMINFO); FLAC__ASSERT(0 != encoder->private_->seek_callback); /* Pre-check that client supports seeking, since we don't want the * ogg_helper code to ever have to deal with this condition. */ if(encoder->private_->seek_callback(encoder, 0, encoder->private_->client_data) == FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED) return; /* All this is based on intimate knowledge of the stream header * layout, but a change to the header format that would break this * would also break all streams encoded in the previous format. */ /** ** Write STREAMINFO stats **/ simple_ogg_page__init(&page); if(!simple_ogg_page__get_at(encoder, encoder->protected_->streaminfo_offset, &page, encoder->private_->seek_callback, encoder->private_->read_callback, encoder->private_->client_data)) { simple_ogg_page__clear(&page); return; /* state already set */ } /* * Write MD5 signature */ { const uint32_t md5_offset = FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH + FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN + FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN + FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN + FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN ) / 8; if(md5_offset + 16 > (uint32_t)page.body_len) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; simple_ogg_page__clear(&page); return; } memcpy(page.body + md5_offset, metadata->data.stream_info.md5sum, 16); } /* * Write total samples */ { const uint32_t total_samples_byte_offset = FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH + FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN + FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN + FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN - 4 ) / 8; if(total_samples_byte_offset + 5 > (uint32_t)page.body_len) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; simple_ogg_page__clear(&page); return; } b[0] = (FLAC__byte)page.body[total_samples_byte_offset] & 0xF0; b[0] |= (FLAC__byte)((samples >> 32) & 0x0F); b[1] = (FLAC__byte)((samples >> 24) & 0xFF); b[2] = (FLAC__byte)((samples >> 16) & 0xFF); b[3] = (FLAC__byte)((samples >> 8) & 0xFF); b[4] = (FLAC__byte)(samples & 0xFF); memcpy(page.body + total_samples_byte_offset, b, 5); } /* * Write min/max framesize */ { const uint32_t min_framesize_offset = FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH + FLAC__STREAM_METADATA_HEADER_LENGTH + ( FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN + FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN ) / 8; if(min_framesize_offset + 6 > (uint32_t)page.body_len) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; simple_ogg_page__clear(&page); return; } b[0] = (FLAC__byte)((min_framesize >> 16) & 0xFF); b[1] = (FLAC__byte)((min_framesize >> 8) & 0xFF); b[2] = (FLAC__byte)(min_framesize & 0xFF); b[3] = (FLAC__byte)((max_framesize >> 16) & 0xFF); b[4] = (FLAC__byte)((max_framesize >> 8) & 0xFF); b[5] = (FLAC__byte)(max_framesize & 0xFF); memcpy(page.body + min_framesize_offset, b, 6); } if(!simple_ogg_page__set_at(encoder, encoder->protected_->streaminfo_offset, &page, encoder->private_->seek_callback, encoder->private_->write_callback, encoder->private_->client_data)) { simple_ogg_page__clear(&page); return; /* state already set */ } simple_ogg_page__clear(&page); /* * Write seektable */ if(0 != encoder->private_->seek_table && encoder->private_->seek_table->num_points > 0 && encoder->protected_->seektable_offset > 0) { uint32_t i; FLAC__byte *p; FLAC__format_seektable_sort(encoder->private_->seek_table); FLAC__ASSERT(FLAC__format_seektable_is_legal(encoder->private_->seek_table)); simple_ogg_page__init(&page); if(!simple_ogg_page__get_at(encoder, encoder->protected_->seektable_offset, &page, encoder->private_->seek_callback, encoder->private_->read_callback, encoder->private_->client_data)) { simple_ogg_page__clear(&page); return; /* state already set */ } if((FLAC__STREAM_METADATA_HEADER_LENGTH + 18*encoder->private_->seek_table->num_points) != (uint32_t)page.body_len) { encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR; simple_ogg_page__clear(&page); return; } for(i = 0, p = page.body + FLAC__STREAM_METADATA_HEADER_LENGTH; i < encoder->private_->seek_table->num_points; i++, p += 18) { FLAC__uint64 xx; uint32_t x; xx = encoder->private_->seek_table->points[i].sample_number; b[7] = (FLAC__byte)xx; xx >>= 8; b[6] = (FLAC__byte)xx; xx >>= 8; b[5] = (FLAC__byte)xx; xx >>= 8; b[4] = (FLAC__byte)xx; xx >>= 8; b[3] = (FLAC__byte)xx; xx >>= 8; b[2] = (FLAC__byte)xx; xx >>= 8; b[1] = (FLAC__byte)xx; xx >>= 8; b[0] = (FLAC__byte)xx; xx >>= 8; xx = encoder->private_->seek_table->points[i].stream_offset; b[15] = (FLAC__byte)xx; xx >>= 8; b[14] = (FLAC__byte)xx; xx >>= 8; b[13] = (FLAC__byte)xx; xx >>= 8; b[12] = (FLAC__byte)xx; xx >>= 8; b[11] = (FLAC__byte)xx; xx >>= 8; b[10] = (FLAC__byte)xx; xx >>= 8; b[9] = (FLAC__byte)xx; xx >>= 8; b[8] = (FLAC__byte)xx; xx >>= 8; x = encoder->private_->seek_table->points[i].frame_samples; b[17] = (FLAC__byte)x; x >>= 8; b[16] = (FLAC__byte)x; x >>= 8; memcpy(p, b, 18); } if(!simple_ogg_page__set_at(encoder, encoder->protected_->seektable_offset, &page, encoder->private_->seek_callback, encoder->private_->write_callback, encoder->private_->client_data)) { simple_ogg_page__clear(&page); return; /* state already set */ } simple_ogg_page__clear(&page); } } #endif FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_block) { FLAC__uint16 crc; FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK); /* * Accumulate raw signal to the MD5 signature */ if(encoder->protected_->do_md5 && !FLAC__MD5Accumulate(&encoder->private_->md5context, (const FLAC__int32 * const *)encoder->private_->integer_signal, encoder->protected_->channels, encoder->protected_->blocksize, (encoder->protected_->bits_per_sample+7) / 8)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * Process the frame header and subframes into the frame bitbuffer */ if(!process_subframes_(encoder)) { /* the above function sets the state for us in case of an error */ return false; } /* * Zero-pad the frame to a byte_boundary */ if(!FLAC__bitwriter_zero_pad_to_byte_boundary(encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * CRC-16 the whole thing */ FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(encoder->private_->frame)); if( !FLAC__bitwriter_get_write_crc16(encoder->private_->frame, &crc) || !FLAC__bitwriter_write_raw_uint32(encoder->private_->frame, crc, FLAC__FRAME_FOOTER_CRC_LEN) ) { encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR; return false; } /* * Write it */ if(!write_bitbuffer_(encoder, encoder->protected_->blocksize, is_last_block)) { /* the above function sets the state for us in case of an error */ return false; } /* * Get ready for the next frame */ encoder->private_->current_sample_number = 0; encoder->private_->current_frame_number++; encoder->private_->streaminfo.data.stream_info.total_samples += (FLAC__uint64)encoder->protected_->blocksize; return true; } FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder) { FLAC__FrameHeader frame_header; uint32_t channel, min_partition_order = encoder->protected_->min_residual_partition_order, max_partition_order; FLAC__bool do_independent, do_mid_side, backup_disable_constant_subframes = encoder->private_->disable_constant_subframes, all_subframes_constant = true; /* * Calculate the min,max Rice partition orders */ max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize(encoder->protected_->blocksize); max_partition_order = flac_min(max_partition_order, encoder->protected_->max_residual_partition_order); min_partition_order = flac_min(min_partition_order, max_partition_order); /* * Setup the frame */ frame_header.blocksize = encoder->protected_->blocksize; frame_header.sample_rate = encoder->protected_->sample_rate; frame_header.channels = encoder->protected_->channels; frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */ frame_header.bits_per_sample = encoder->protected_->bits_per_sample; frame_header.number_type = FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER; frame_header.number.frame_number = encoder->private_->current_frame_number; /* * Figure out what channel assignments to try */ if(encoder->protected_->do_mid_side_stereo) { if(encoder->protected_->loose_mid_side_stereo) { if(encoder->private_->loose_mid_side_stereo_frame_count == 0) { do_independent = true; do_mid_side = true; } else { do_independent = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT); do_mid_side = !do_independent; } } else { do_independent = true; do_mid_side = true; } } else { do_independent = true; do_mid_side = false; } FLAC__ASSERT(do_independent || do_mid_side); /* * Check for wasted bits; set effective bps for each subframe */ if(do_independent) { for(channel = 0; channel < encoder->protected_->channels; channel++) { uint32_t w = get_wasted_bits_(encoder->private_->integer_signal[channel], encoder->protected_->blocksize); if (w > encoder->protected_->bits_per_sample) { w = encoder->protected_->bits_per_sample; } encoder->private_->subframe_workspace[channel][0].wasted_bits = encoder->private_->subframe_workspace[channel][1].wasted_bits = w; encoder->private_->subframe_bps[channel] = encoder->protected_->bits_per_sample - w; } } if(do_mid_side) { FLAC__ASSERT(encoder->protected_->channels == 2); for(channel = 0; channel < 2; channel++) { uint32_t w; if(encoder->protected_->bits_per_sample < 32 || channel == 0) w = get_wasted_bits_(encoder->private_->integer_signal_mid_side[channel], encoder->protected_->blocksize); else w = get_wasted_bits_wide_(encoder->private_->integer_signal_33bit_side, encoder->private_->integer_signal_mid_side[channel], encoder->protected_->blocksize); if (w > encoder->protected_->bits_per_sample) { w = encoder->protected_->bits_per_sample; } encoder->private_->subframe_workspace_mid_side[channel][0].wasted_bits = encoder->private_->subframe_workspace_mid_side[channel][1].wasted_bits = w; encoder->private_->subframe_bps_mid_side[channel] = encoder->protected_->bits_per_sample - w + (channel==0? 0:1); } } /* * First do a normal encoding pass of each independent channel */ if(do_independent) { for(channel = 0; channel < encoder->protected_->channels; channel++) { if(encoder->protected_->limit_min_bitrate && all_subframes_constant && (channel + 1) == encoder->protected_->channels){ /* This frame contains only constant subframes at this point. * To prevent the frame from becoming too small, make sure * the last subframe isn't constant */ encoder->private_->disable_constant_subframes = true; } if(! process_subframe_( encoder, min_partition_order, max_partition_order, &frame_header, encoder->private_->subframe_bps[channel], encoder->private_->integer_signal[channel], encoder->private_->subframe_workspace_ptr[channel], encoder->private_->partitioned_rice_contents_workspace_ptr[channel], encoder->private_->residual_workspace[channel], encoder->private_->best_subframe+channel, encoder->private_->best_subframe_bits+channel ) ) return false; if(encoder->private_->subframe_workspace[channel][encoder->private_->best_subframe[channel]].type != FLAC__SUBFRAME_TYPE_CONSTANT) all_subframes_constant = false; } } /* * Now do mid and side channels if requested */ if(do_mid_side) { FLAC__ASSERT(encoder->protected_->channels == 2); for(channel = 0; channel < 2; channel++) { void *integer_signal_; if(encoder->private_->subframe_bps_mid_side[channel] <= 32) integer_signal_ = encoder->private_->integer_signal_mid_side[channel]; else integer_signal_ = encoder->private_->integer_signal_33bit_side; if(! process_subframe_( encoder, min_partition_order, max_partition_order, &frame_header, encoder->private_->subframe_bps_mid_side[channel], integer_signal_, encoder->private_->subframe_workspace_ptr_mid_side[channel], encoder->private_->partitioned_rice_contents_workspace_ptr_mid_side[channel], encoder->private_->residual_workspace_mid_side[channel], encoder->private_->best_subframe_mid_side+channel, encoder->private_->best_subframe_bits_mid_side+channel ) ) return false; } } /* * Compose the frame bitbuffer */ if(do_mid_side) { uint32_t left_bps = 0, right_bps = 0; /* initialized only to prevent superfluous compiler warning */ FLAC__Subframe *left_subframe = 0, *right_subframe = 0; /* initialized only to prevent superfluous compiler warning */ FLAC__ChannelAssignment channel_assignment; FLAC__ASSERT(encoder->protected_->channels == 2); if(encoder->protected_->loose_mid_side_stereo && encoder->private_->loose_mid_side_stereo_frame_count > 0) { channel_assignment = (encoder->private_->last_channel_assignment == FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT? FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT : FLAC__CHANNEL_ASSIGNMENT_MID_SIDE); } else { uint32_t bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */ uint32_t min_bits; int ca; FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT == 0); FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE == 1); FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE == 2); FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_MID_SIDE == 3); FLAC__ASSERT(do_independent && do_mid_side); /* We have to figure out which channel assignent results in the smallest frame */ bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits [1]; bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->private_->best_subframe_bits [0] + encoder->private_->best_subframe_bits_mid_side[1]; bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->private_->best_subframe_bits [1] + encoder->private_->best_subframe_bits_mid_side[1]; bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->private_->best_subframe_bits_mid_side[0] + encoder->private_->best_subframe_bits_mid_side[1]; channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; min_bits = bits[channel_assignment]; /* When doing loose mid-side stereo, ignore left-side * and right-side options */ ca = encoder->protected_->loose_mid_side_stereo ? 3 : 1; for( ; ca <= 3; ca++) { if(bits[ca] < min_bits) { min_bits = bits[ca]; channel_assignment = (FLAC__ChannelAssignment)ca; } } } frame_header.channel_assignment = channel_assignment; if(!FLAC__frame_add_header(&frame_header, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } switch(channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: left_subframe = &encoder->private_->subframe_workspace [0][encoder->private_->best_subframe [0]]; right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: left_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; right_subframe = &encoder->private_->subframe_workspace [1][encoder->private_->best_subframe [1]]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: left_subframe = &encoder->private_->subframe_workspace_mid_side[0][encoder->private_->best_subframe_mid_side[0]]; right_subframe = &encoder->private_->subframe_workspace_mid_side[1][encoder->private_->best_subframe_mid_side[1]]; break; default: FLAC__ASSERT(0); } switch(channel_assignment) { case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT: left_bps = encoder->private_->subframe_bps [0]; right_bps = encoder->private_->subframe_bps [1]; break; case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE: left_bps = encoder->private_->subframe_bps [0]; right_bps = encoder->private_->subframe_bps_mid_side[1]; break; case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE: left_bps = encoder->private_->subframe_bps_mid_side[1]; right_bps = encoder->private_->subframe_bps [1]; break; case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE: left_bps = encoder->private_->subframe_bps_mid_side[0]; right_bps = encoder->private_->subframe_bps_mid_side[1]; break; default: FLAC__ASSERT(0); } /* note that encoder_add_subframe_ sets the state for us in case of an error */ if(!add_subframe_(encoder, frame_header.blocksize, left_bps , left_subframe , encoder->private_->frame)) return false; if(!add_subframe_(encoder, frame_header.blocksize, right_bps, right_subframe, encoder->private_->frame)) return false; } else { if(!FLAC__frame_add_header(&frame_header, encoder->private_->frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } for(channel = 0; channel < encoder->protected_->channels; channel++) { if(!add_subframe_(encoder, frame_header.blocksize, encoder->private_->subframe_bps[channel], &encoder->private_->subframe_workspace[channel][encoder->private_->best_subframe[channel]], encoder->private_->frame)) { /* the above function sets the state for us in case of an error */ return false; } } } if(encoder->protected_->loose_mid_side_stereo) { encoder->private_->loose_mid_side_stereo_frame_count++; if(encoder->private_->loose_mid_side_stereo_frame_count >= encoder->private_->loose_mid_side_stereo_frames) encoder->private_->loose_mid_side_stereo_frame_count = 0; } encoder->private_->last_channel_assignment = frame_header.channel_assignment; encoder->private_->disable_constant_subframes = backup_disable_constant_subframes; return true; } static inline void set_next_subdivide_tukey(FLAC__int32 parts, uint32_t * apodizations, uint32_t * current_depth, uint32_t * current_part){ // current_part is interleaved: even are partial, odd are punchout if(*current_depth == 2){ // For depth 2, we only do partial, no punchout as that is almost redundant if(*current_part == 0){ *current_part = 2; }else{ /* *current_path == 2 */ *current_part = 0; (*current_depth)++; } }else if((*current_part) < (2*(*current_depth)-1)){ (*current_part)++; }else{ /* (*current_part) >= (2*(*current_depth)-1) */ *current_part = 0; (*current_depth)++; } /* Now check if we are done with this SUBDIVIDE_TUKEY apodization */ if(*current_depth > (uint32_t) parts){ (*apodizations)++; *current_depth = 1; *current_part = 0; } } FLAC__bool process_subframe_( FLAC__StreamEncoder *encoder, uint32_t min_partition_order, uint32_t max_partition_order, const FLAC__FrameHeader *frame_header, uint32_t subframe_bps, const void *integer_signal, FLAC__Subframe *subframe[2], FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2], FLAC__int32 *residual[2], uint32_t *best_subframe, uint32_t *best_bits ) { #ifndef FLAC__INTEGER_ONLY_LIBRARY float fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; #else FLAC__fixedpoint fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]; #endif #ifndef FLAC__INTEGER_ONLY_LIBRARY double lpc_residual_bits_per_sample; double autoc[FLAC__MAX_LPC_ORDER+1]; /* WATCHOUT: the size is important even though encoder->protected_->max_lpc_order might be less; some asm and x86 intrinsic routines need all the space */ double autoc_root[FLAC__MAX_LPC_ORDER+1]; /* This is for subdivide_tukey apodization */ double lpc_error[FLAC__MAX_LPC_ORDER]; uint32_t min_lpc_order, max_lpc_order, lpc_order; uint32_t min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision; #endif uint32_t min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order; uint32_t _candidate_bits, _best_bits; uint32_t _best_subframe; /* only use RICE2 partitions if stream bps > 16 */ const uint32_t rice_parameter_limit = FLAC__stream_encoder_get_bits_per_sample(encoder) > 16? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER; FLAC__ASSERT(frame_header->blocksize > 0); /* verbatim subframe is the baseline against which we measure other compressed subframes */ _best_subframe = 0; if(encoder->private_->disable_verbatim_subframes && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) _best_bits = UINT32_MAX; else _best_bits = evaluate_verbatim_subframe_(encoder, integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); *best_bits = _best_bits; if(frame_header->blocksize > FLAC__MAX_FIXED_ORDER) { uint32_t signal_is_constant = false; /* The next formula determines when to use a 64-bit accumulator * for the error of a fixed predictor, and when a 32-bit one. As * the error of a 4th order predictor for a given sample is the * sum of 17 sample values (1+4+6+4+1) and there are blocksize - * order error values to be summed, the maximum total error is * maximum_sample_value * (blocksize - order) * 17. As ilog2(x) * calculates floor(2log(x)), the result must be 31 or lower */ if(subframe_bps < 28){ if(subframe_bps + FLAC__bitmath_ilog2((frame_header->blocksize-FLAC__MAX_FIXED_ORDER)*17) < 32) guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor(((FLAC__int32 *)integer_signal)+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample); else guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor_wide(((FLAC__int32 *)integer_signal)+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample); } else if(subframe_bps <= 32) guess_fixed_order = FLAC__fixed_compute_best_predictor_limit_residual(((FLAC__int32 *)integer_signal),frame_header->blocksize, fixed_residual_bits_per_sample); else guess_fixed_order = FLAC__fixed_compute_best_predictor_limit_residual_33bit(((FLAC__int64 *)integer_signal),frame_header->blocksize, fixed_residual_bits_per_sample); /* check for constant subframe */ if( !encoder->private_->disable_constant_subframes && #ifndef FLAC__INTEGER_ONLY_LIBRARY fixed_residual_bits_per_sample[1] == 0.0 #else fixed_residual_bits_per_sample[1] == FLAC__FP_ZERO #endif ) { /* the above means it's possible all samples are the same value; now double-check it: */ uint32_t i; signal_is_constant = true; if(subframe_bps <= 32){ const FLAC__int32 *integer_signal_ = integer_signal; for(i = 1; i < frame_header->blocksize; i++) { if(integer_signal_[0] != integer_signal_[i]) { signal_is_constant = false; break; } } } else { const FLAC__int64 *integer_signal_ = integer_signal; for(i = 1; i < frame_header->blocksize; i++) { if(integer_signal_[0] != integer_signal_[i]) { signal_is_constant = false; break; } } } } if(signal_is_constant) { if(subframe_bps <= 32) _candidate_bits = evaluate_constant_subframe_(encoder, ((FLAC__int32 *)integer_signal)[0], frame_header->blocksize, subframe_bps, subframe[!_best_subframe]); else _candidate_bits = evaluate_constant_subframe_(encoder, ((FLAC__int64 *)integer_signal)[0], frame_header->blocksize, subframe_bps, subframe[!_best_subframe]); if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } else { if(!encoder->private_->disable_fixed_subframes || (encoder->protected_->max_lpc_order == 0 && _best_bits == UINT_MAX)) { /* encode fixed */ if(encoder->protected_->do_exhaustive_model_search) { min_fixed_order = 0; max_fixed_order = FLAC__MAX_FIXED_ORDER; } else { min_fixed_order = max_fixed_order = guess_fixed_order; } if(max_fixed_order >= frame_header->blocksize) max_fixed_order = frame_header->blocksize - 1; for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) { #ifndef FLAC__INTEGER_ONLY_LIBRARY if(fixed_residual_bits_per_sample[fixed_order] >= (float)subframe_bps) continue; /* don't even try */ #else if(FLAC__fixedpoint_trunc(fixed_residual_bits_per_sample[fixed_order]) >= (int)subframe_bps) continue; /* don't even try */ #endif _candidate_bits = evaluate_fixed_subframe_( encoder, integer_signal, residual[!_best_subframe], encoder->private_->abs_residual_partition_sums, encoder->private_->raw_bits_per_partition, frame_header->blocksize, subframe_bps, fixed_order, rice_parameter_limit, min_partition_order, max_partition_order, encoder->protected_->do_escape_coding, encoder->protected_->rice_parameter_search_dist, subframe[!_best_subframe], partitioned_rice_contents[!_best_subframe] ); if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } } #ifndef FLAC__INTEGER_ONLY_LIBRARY /* encode lpc */ if(encoder->protected_->max_lpc_order > 0) { if(encoder->protected_->max_lpc_order >= frame_header->blocksize) max_lpc_order = frame_header->blocksize-1; else max_lpc_order = encoder->protected_->max_lpc_order; if(max_lpc_order > 0) { uint32_t a, b = 1, c = 0; for (a = 0; a < encoder->protected_->num_apodizations;) { uint32_t max_lpc_order_this_apodization = max_lpc_order; if(b == 1){ /* window full subblock */ if(subframe_bps <= 32) FLAC__lpc_window_data(integer_signal, encoder->private_->window[a], encoder->private_->windowed_signal, frame_header->blocksize); else FLAC__lpc_window_data_wide(integer_signal, encoder->private_->window[a], encoder->private_->windowed_signal, frame_header->blocksize); encoder->private_->local_lpc_compute_autocorrelation(encoder->private_->windowed_signal, frame_header->blocksize, max_lpc_order_this_apodization+1, autoc); if(encoder->protected_->apodizations[a].type == FLAC__APODIZATION_SUBDIVIDE_TUKEY){ for(uint32_t i = 0; i < max_lpc_order_this_apodization; i++) autoc_root[i] = autoc[i]; b++; }else{ a++; } } else { /* window part of subblock */ if(max_lpc_order_this_apodization >= frame_header->blocksize/b) { max_lpc_order_this_apodization = frame_header->blocksize/b - 1; if(frame_header->blocksize/b > 0) max_lpc_order_this_apodization = frame_header->blocksize/b - 1; else { set_next_subdivide_tukey(encoder->protected_->apodizations[a].parameters.subdivide_tukey.parts, &a, &b, &c); continue; } } if(!(c % 2)){ /* on even c, evaluate the (c/2)th partial window of size blocksize/b */ if(subframe_bps <= 32) FLAC__lpc_window_data_partial(integer_signal, encoder->private_->window[a], encoder->private_->windowed_signal, frame_header->blocksize, frame_header->blocksize/b/2, (c/2*frame_header->blocksize)/b); else FLAC__lpc_window_data_partial(integer_signal, encoder->private_->window[a], encoder->private_->windowed_signal, frame_header->blocksize, frame_header->blocksize/b/2, (c/2*frame_header->blocksize)/b); encoder->private_->local_lpc_compute_autocorrelation(encoder->private_->windowed_signal, frame_header->blocksize/b, max_lpc_order_this_apodization+1, autoc); }else{ /* on uneven c, evaluate the root window (over the whole block) minus the previous partial window * similar to tukey_punchout apodization but more efficient */ for(uint32_t i = 0; i < max_lpc_order_this_apodization; i++) autoc[i] = autoc_root[i] - autoc[i]; } /* Next function sets a, b and c appropriate for next iteration */ set_next_subdivide_tukey(encoder->protected_->apodizations[a].parameters.subdivide_tukey.parts, &a, &b, &c); } /* if autoc[0] == 0.0, the signal is constant and we usually won't get here, but it can happen */ if(autoc[0] != 0.0) { FLAC__lpc_compute_lp_coefficients(autoc, &max_lpc_order_this_apodization, encoder->private_->lp_coeff, lpc_error); if(encoder->protected_->do_exhaustive_model_search) { min_lpc_order = 1; } else { const uint32_t guess_lpc_order = FLAC__lpc_compute_best_order( lpc_error, max_lpc_order_this_apodization, frame_header->blocksize, subframe_bps + ( encoder->protected_->do_qlp_coeff_prec_search? FLAC__MIN_QLP_COEFF_PRECISION : /* have to guess; use the min possible size to avoid accidentally favoring lower orders */ encoder->protected_->qlp_coeff_precision ) ); min_lpc_order = max_lpc_order_this_apodization = guess_lpc_order; } if(max_lpc_order_this_apodization >= frame_header->blocksize) max_lpc_order_this_apodization = frame_header->blocksize - 1; for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order_this_apodization; lpc_order++) { lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize-lpc_order); if(lpc_residual_bits_per_sample >= (double)subframe_bps) continue; /* don't even try */ if(encoder->protected_->do_qlp_coeff_prec_search) { min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION; /* try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps(+1bps for side channel) streams */ if(subframe_bps <= 17) { max_qlp_coeff_precision = flac_min(32 - subframe_bps - FLAC__bitmath_ilog2(lpc_order), FLAC__MAX_QLP_COEFF_PRECISION); max_qlp_coeff_precision = flac_max(max_qlp_coeff_precision, min_qlp_coeff_precision); } else max_qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION; } else { min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->protected_->qlp_coeff_precision; } for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) { _candidate_bits = evaluate_lpc_subframe_( encoder, integer_signal, residual[!_best_subframe], encoder->private_->abs_residual_partition_sums, encoder->private_->raw_bits_per_partition, encoder->private_->lp_coeff[lpc_order-1], frame_header->blocksize, subframe_bps, lpc_order, qlp_coeff_precision, rice_parameter_limit, min_partition_order, max_partition_order, encoder->protected_->do_escape_coding, encoder->protected_->rice_parameter_search_dist, subframe[!_best_subframe], partitioned_rice_contents[!_best_subframe] ); if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */ if(_candidate_bits < _best_bits) { _best_subframe = !_best_subframe; _best_bits = _candidate_bits; } } } } } } } } #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */ } } /* under rare circumstances this can happen when all but lpc subframe types are disabled: */ if(_best_bits == UINT32_MAX) { FLAC__ASSERT(_best_subframe == 0); _best_bits = evaluate_verbatim_subframe_(encoder, integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]); } *best_subframe = _best_subframe; *best_bits = _best_bits; return true; } FLAC__bool add_subframe_( FLAC__StreamEncoder *encoder, uint32_t blocksize, uint32_t subframe_bps, const FLAC__Subframe *subframe, FLAC__BitWriter *frame ) { switch(subframe->type) { case FLAC__SUBFRAME_TYPE_CONSTANT: if(!FLAC__subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } break; case FLAC__SUBFRAME_TYPE_FIXED: if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } break; case FLAC__SUBFRAME_TYPE_LPC: if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } break; case FLAC__SUBFRAME_TYPE_VERBATIM: if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), blocksize, subframe_bps, subframe->wasted_bits, frame)) { encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR; return false; } break; default: FLAC__ASSERT(0); } return true; } #define SPOTCHECK_ESTIMATE 0 #if SPOTCHECK_ESTIMATE static void spotcheck_subframe_estimate_( FLAC__StreamEncoder *encoder, uint32_t blocksize, uint32_t subframe_bps, const FLAC__Subframe *subframe, uint32_t estimate ) { FLAC__bool ret; FLAC__BitWriter *frame = FLAC__bitwriter_new(); if(frame == 0) { fprintf(stderr, "EST: can't allocate frame\n"); return; } if(!FLAC__bitwriter_init(frame)) { fprintf(stderr, "EST: can't init frame\n"); return; } ret = add_subframe_(encoder, blocksize, subframe_bps, subframe, frame); FLAC__ASSERT(ret); { const uint32_t actual = FLAC__bitwriter_get_input_bits_unconsumed(frame); if(estimate != actual) fprintf(stderr, "EST: bad, frame#%u sub#%%d type=%8s est=%u, actual=%u, delta=%d\n", encoder->private_->current_frame_number, FLAC__SubframeTypeString[subframe->type], estimate, actual, (int)actual-(int)estimate); } FLAC__bitwriter_delete(frame); } #endif uint32_t evaluate_constant_subframe_( FLAC__StreamEncoder *encoder, const FLAC__int64 signal, uint32_t blocksize, uint32_t subframe_bps, FLAC__Subframe *subframe ) { uint32_t estimate; subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT; subframe->data.constant.value = signal; estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + subframe_bps; #if SPOTCHECK_ESTIMATE spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate); #else (void)encoder, (void)blocksize; #endif return estimate; } uint32_t evaluate_fixed_subframe_( FLAC__StreamEncoder *encoder, const void *signal, FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t raw_bits_per_partition[], uint32_t blocksize, uint32_t subframe_bps, uint32_t order, uint32_t rice_parameter_limit, uint32_t min_partition_order, uint32_t max_partition_order, FLAC__bool do_escape_coding, uint32_t rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ) { uint32_t i, residual_bits, estimate; const uint32_t residual_samples = blocksize - order; if((subframe_bps + order) <= 32) FLAC__fixed_compute_residual(((FLAC__int32 *)signal)+order, residual_samples, order, residual); else if(subframe_bps <= 32) FLAC__fixed_compute_residual_wide(((FLAC__int32 *)signal)+order, residual_samples, order, residual); else FLAC__fixed_compute_residual_wide_33bit(((FLAC__int64 *)signal)+order, residual_samples, order, residual); subframe->type = FLAC__SUBFRAME_TYPE_FIXED; subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents; subframe->data.fixed.residual = residual; residual_bits = find_best_partition_order_( encoder->private_, residual, abs_residual_partition_sums, raw_bits_per_partition, residual_samples, order, rice_parameter_limit, min_partition_order, max_partition_order, subframe_bps, do_escape_coding, rice_parameter_search_dist, &subframe->data.fixed.entropy_coding_method ); subframe->data.fixed.order = order; if(subframe_bps <= 32) for(i = 0; i < order; i++) subframe->data.fixed.warmup[i] = ((FLAC__int32 *)signal)[i]; else for(i = 0; i < order; i++) subframe->data.fixed.warmup[i] = ((FLAC__int64 *)signal)[i]; estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + (order * subframe_bps); if(residual_bits < UINT32_MAX - estimate) // To make sure estimate doesn't overflow estimate += residual_bits; else estimate = UINT32_MAX; #if SPOTCHECK_ESTIMATE spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate); #endif return estimate; } #ifndef FLAC__INTEGER_ONLY_LIBRARY uint32_t evaluate_lpc_subframe_( FLAC__StreamEncoder *encoder, const void *signal, FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t raw_bits_per_partition[], const FLAC__real lp_coeff[], uint32_t blocksize, uint32_t subframe_bps, uint32_t order, uint32_t qlp_coeff_precision, uint32_t rice_parameter_limit, uint32_t min_partition_order, uint32_t max_partition_order, FLAC__bool do_escape_coding, uint32_t rice_parameter_search_dist, FLAC__Subframe *subframe, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents ) { FLAC__int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; /* WATCHOUT: the size is important; some x86 intrinsic routines need more than lpc order elements */ uint32_t i, residual_bits, estimate; int quantization, ret; const uint32_t residual_samples = blocksize - order; /* try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps(+1bps for side channel) streams */ if(subframe_bps <= 17) { FLAC__ASSERT(order > 0); FLAC__ASSERT(order <= FLAC__MAX_LPC_ORDER); qlp_coeff_precision = flac_min(qlp_coeff_precision, 32 - subframe_bps - FLAC__bitmath_ilog2(order)); } ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, qlp_coeff, &quantization); if(ret != 0) return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */ if(FLAC__lpc_max_residual_bps(subframe_bps, qlp_coeff, order, quantization) > 32) { if(subframe_bps <= 32){ if(!FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual(((FLAC__int32 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual)) return 0; } else if(!FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual_33bit(((FLAC__int64 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual)) return 0; } else if(FLAC__lpc_max_prediction_before_shift_bps(subframe_bps, qlp_coeff, order) <= 32) if(subframe_bps <= 16 && qlp_coeff_precision <= 16) encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit(((FLAC__int32 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual); else encoder->private_->local_lpc_compute_residual_from_qlp_coefficients(((FLAC__int32 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual); else encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit(((FLAC__int32 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual); subframe->type = FLAC__SUBFRAME_TYPE_LPC; subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE; subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents; subframe->data.lpc.residual = residual; residual_bits = find_best_partition_order_( encoder->private_, residual, abs_residual_partition_sums, raw_bits_per_partition, residual_samples, order, rice_parameter_limit, min_partition_order, max_partition_order, subframe_bps, do_escape_coding, rice_parameter_search_dist, &subframe->data.lpc.entropy_coding_method ); subframe->data.lpc.order = order; subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision; subframe->data.lpc.quantization_level = quantization; memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(FLAC__int32)*FLAC__MAX_LPC_ORDER); if(subframe_bps <= 32) for(i = 0; i < order; i++) subframe->data.lpc.warmup[i] = ((FLAC__int32 *)signal)[i]; else for(i = 0; i < order; i++) subframe->data.lpc.warmup[i] = ((FLAC__int64 *)signal)[i]; estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps)); if(residual_bits < UINT32_MAX - estimate) // To make sure estimate doesn't overflow estimate += residual_bits; else estimate = UINT32_MAX; #if SPOTCHECK_ESTIMATE spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate); #endif return estimate; } #endif uint32_t evaluate_verbatim_subframe_( FLAC__StreamEncoder *encoder, const void *signal, uint32_t blocksize, uint32_t subframe_bps, FLAC__Subframe *subframe ) { uint32_t estimate; subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM; if(subframe_bps <= 32){ subframe->data.verbatim.data_type = FLAC__VERBATIM_SUBFRAME_DATA_TYPE_INT32; subframe->data.verbatim.data.int32 = signal; } else { subframe->data.verbatim.data_type = FLAC__VERBATIM_SUBFRAME_DATA_TYPE_INT64; subframe->data.verbatim.data.int64 = signal; } estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + (blocksize * subframe_bps); #if SPOTCHECK_ESTIMATE spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate); #else (void)encoder; #endif return estimate; } uint32_t find_best_partition_order_( FLAC__StreamEncoderPrivate *private_, const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t raw_bits_per_partition[], uint32_t residual_samples, uint32_t predictor_order, uint32_t rice_parameter_limit, uint32_t min_partition_order, uint32_t max_partition_order, uint32_t bps, FLAC__bool do_escape_coding, uint32_t rice_parameter_search_dist, FLAC__EntropyCodingMethod *best_ecm ) { uint32_t residual_bits, best_residual_bits = 0; uint32_t best_parameters_index = 0; uint32_t best_partition_order = 0; const uint32_t blocksize = residual_samples + predictor_order; max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(max_partition_order, blocksize, predictor_order); min_partition_order = flac_min(min_partition_order, max_partition_order); private_->local_precompute_partition_info_sums(residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order, bps); if(do_escape_coding) precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order); { int partition_order; uint32_t sum; for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) { if(! set_partitioned_rice_( #ifdef EXACT_RICE_BITS_CALCULATION residual, #endif abs_residual_partition_sums+sum, raw_bits_per_partition+sum, residual_samples, predictor_order, rice_parameter_limit, rice_parameter_search_dist, (uint32_t)partition_order, do_escape_coding, &private_->partitioned_rice_contents_extra[!best_parameters_index], &residual_bits ) ) { FLAC__ASSERT(best_residual_bits != 0); break; } sum += 1u << partition_order; if(best_residual_bits == 0 || residual_bits < best_residual_bits) { best_residual_bits = residual_bits; best_parameters_index = !best_parameters_index; best_partition_order = partition_order; } } } best_ecm->data.partitioned_rice.order = best_partition_order; { /* * We are allowed to de-const the pointer based on our special * knowledge; it is const to the outside world. */ FLAC__EntropyCodingMethod_PartitionedRiceContents* prc = (FLAC__EntropyCodingMethod_PartitionedRiceContents*)best_ecm->data.partitioned_rice.contents; uint32_t partition; /* save best parameters and raw_bits */ memcpy(prc->parameters, private_->partitioned_rice_contents_extra[best_parameters_index].parameters, (uint32_t)sizeof(uint32_t)*(1<<(best_partition_order))); if(do_escape_coding) memcpy(prc->raw_bits, private_->partitioned_rice_contents_extra[best_parameters_index].raw_bits, (uint32_t)sizeof(uint32_t)*(1<<(best_partition_order))); /* * Now need to check if the type should be changed to * FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2 based on the * size of the rice parameters. */ for(partition = 0; partition < (1u<<best_partition_order); partition++) { if(prc->parameters[partition] >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) { best_ecm->type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2; break; } } } return best_residual_bits; } void precompute_partition_info_sums_( const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t residual_samples, uint32_t predictor_order, uint32_t min_partition_order, uint32_t max_partition_order, uint32_t bps ) { const uint32_t default_partition_samples = (residual_samples + predictor_order) >> max_partition_order; uint32_t partitions = 1u << max_partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); /* first do max_partition_order */ { const uint32_t threshold = 32 - FLAC__bitmath_ilog2(default_partition_samples); uint32_t partition, residual_sample, end = (uint32_t)(-(int)predictor_order); /* WATCHOUT: "bps + FLAC__MAX_EXTRA_RESIDUAL_BPS" is the maximum assumed size of the average residual magnitude */ if(bps + FLAC__MAX_EXTRA_RESIDUAL_BPS < threshold) { for(partition = residual_sample = 0; partition < partitions; partition++) { FLAC__uint32 abs_residual_partition_sum = 0; end += default_partition_samples; for( ; residual_sample < end; residual_sample++) abs_residual_partition_sum += abs(residual[residual_sample]); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */ abs_residual_partition_sums[partition] = abs_residual_partition_sum; } } else { /* have to pessimistically use 64 bits for accumulator */ for(partition = residual_sample = 0; partition < partitions; partition++) { FLAC__uint64 abs_residual_partition_sum64 = 0; end += default_partition_samples; for( ; residual_sample < end; residual_sample++) abs_residual_partition_sum64 += abs(residual[residual_sample]); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */ abs_residual_partition_sums[partition] = abs_residual_partition_sum64; } } } /* now merge partitions for lower orders */ { uint32_t from_partition = 0, to_partition = partitions; int partition_order; for(partition_order = (int)max_partition_order - 1; partition_order >= (int)min_partition_order; partition_order--) { uint32_t i; partitions >>= 1; for(i = 0; i < partitions; i++) { abs_residual_partition_sums[to_partition++] = abs_residual_partition_sums[from_partition ] + abs_residual_partition_sums[from_partition+1]; from_partition += 2; } } } } void precompute_partition_info_escapes_( const FLAC__int32 residual[], uint32_t raw_bits_per_partition[], uint32_t residual_samples, uint32_t predictor_order, uint32_t min_partition_order, uint32_t max_partition_order ) { int partition_order; uint32_t from_partition, to_partition = 0; const uint32_t blocksize = residual_samples + predictor_order; /* first do max_partition_order */ for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) { FLAC__int32 r; FLAC__uint32 rmax; uint32_t partition, partition_sample, partition_samples, residual_sample; const uint32_t partitions = 1u << partition_order; const uint32_t default_partition_samples = blocksize >> partition_order; FLAC__ASSERT(default_partition_samples > predictor_order); for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = default_partition_samples; if(partition == 0) partition_samples -= predictor_order; rmax = 0; for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) { r = residual[residual_sample++]; /* OPT: maybe faster: rmax |= r ^ (r>>31) */ if(r < 0) rmax |= ~r; else rmax |= r; } /* now we know all residual values are in the range [-rmax-1,rmax] */ raw_bits_per_partition[partition] = rmax? FLAC__bitmath_ilog2(rmax) + 2 : 1; } to_partition = partitions; break; /*@@@ yuck, should remove the 'for' loop instead */ } /* now merge partitions for lower orders */ for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) { uint32_t m; uint32_t i; const uint32_t partitions = 1u << partition_order; for(i = 0; i < partitions; i++) { m = raw_bits_per_partition[from_partition]; from_partition++; raw_bits_per_partition[to_partition] = flac_max(m, raw_bits_per_partition[from_partition]); from_partition++; to_partition++; } } } #ifdef EXACT_RICE_BITS_CALCULATION static inline uint32_t count_rice_bits_in_partition_( const uint32_t rice_parameter, const uint32_t partition_samples, const FLAC__int32 *residual ) { uint32_t i; uint64_t partition_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + /* actually could end up being FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN but err on side of 16bps */ (1+rice_parameter) * partition_samples /* 1 for unary stop bit + rice_parameter for the binary portion */ ; for(i = 0; i < partition_samples; i++) partition_bits += ( (FLAC__uint32)((residual[i]<<1)^(residual[i]>>31)) >> rice_parameter ); return (uint32_t)(flac_min(partition_bits,UINT32_MAX)); // To make sure the return value doesn't overflow } #else static inline uint32_t count_rice_bits_in_partition_( const uint32_t rice_parameter, const uint32_t partition_samples, const FLAC__uint64 abs_residual_partition_sum ) { return (uint32_t)(flac_min( // To make sure the return value doesn't overflow FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + /* actually could end up being FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN but err on side of 16bps */ (1+rice_parameter) * partition_samples + /* 1 for unary stop bit + rice_parameter for the binary portion */ ( rice_parameter? (abs_residual_partition_sum >> (rice_parameter-1)) /* rice_parameter-1 because the real coder sign-folds instead of using a sign bit */ : (abs_residual_partition_sum << 1) /* can't shift by negative number, so reverse */ ) - (partition_samples >> 1),UINT32_MAX)); /* -(partition_samples>>1) to subtract out extra contributions to the abs_residual_partition_sum. * The actual number of bits used is closer to the sum(for all i in the partition) of abs(residual[i])>>(rice_parameter-1) * By using the abs_residual_partition sum, we also add in bits in the LSBs that would normally be shifted out. * So the subtraction term tries to guess how many extra bits were contributed. * If the LSBs are randomly distributed, this should average to 0.5 extra bits per sample. */ ; } #endif FLAC__bool set_partitioned_rice_( #ifdef EXACT_RICE_BITS_CALCULATION const FLAC__int32 residual[], #endif const FLAC__uint64 abs_residual_partition_sums[], const uint32_t raw_bits_per_partition[], const uint32_t residual_samples, const uint32_t predictor_order, const uint32_t rice_parameter_limit, const uint32_t rice_parameter_search_dist, const uint32_t partition_order, const FLAC__bool search_for_escapes, FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents, uint32_t *bits ) { uint32_t rice_parameter, partition_bits; uint32_t best_partition_bits, best_rice_parameter = 0; uint32_t bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN; uint32_t *parameters, *raw_bits; uint32_t partition, residual_sample; uint32_t partition_samples; const uint32_t partitions = 1u << partition_order; FLAC__uint64 mean, k; #ifdef ENABLE_RICE_PARAMETER_SEARCH uint32_t min_rice_parameter, max_rice_parameter; #else (void)rice_parameter_search_dist; #endif FLAC__ASSERT(rice_parameter_limit <= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER); parameters = partitioned_rice_contents->parameters; raw_bits = partitioned_rice_contents->raw_bits; for(partition = residual_sample = 0; partition < partitions; partition++) { partition_samples = (residual_samples+predictor_order) >> partition_order; if(partition == 0) { if(partition_samples <= predictor_order) return false; else partition_samples -= predictor_order; } mean = abs_residual_partition_sums[partition]; /* we are basically calculating the size in bits of the * average residual magnitude in the partition: * rice_parameter = floor(log2(mean/partition_samples)) * 'mean' is not a good name for the variable, it is * actually the sum of magnitudes of all residual values * in the partition, so the actual mean is * mean/partition_samples */ #if 0 /* old simple code */ for(rice_parameter = 0, k = partition_samples; k < mean; rice_parameter++, k <<= 1) ; #else #if defined FLAC__CPU_X86_64 /* and other 64-bit arch, too */ if(mean <= 0x80000000/512) { /* 512: more or less optimal for both 16- and 24-bit input */ #else if(mean <= 0x80000000/8) { /* 32-bit arch: use 32-bit math if possible */ #endif FLAC__uint32 k2, mean2 = (FLAC__uint32) mean; rice_parameter = 0; k2 = partition_samples; while(k2*8 < mean2) { /* requires: mean <= (2^31)/8 */ rice_parameter += 4; k2 <<= 4; /* tuned for 16-bit input */ } while(k2 < mean2) { /* requires: mean <= 2^31 */ rice_parameter++; k2 <<= 1; } } else { rice_parameter = 0; k = partition_samples; if(mean <= FLAC__U64L(0x8000000000000000)/128) /* usually mean is _much_ smaller than this value */ while(k*128 < mean) { /* requires: mean <= (2^63)/128 */ rice_parameter += 8; k <<= 8; /* tuned for 24-bit input */ } while(k < mean) { /* requires: mean <= 2^63 */ rice_parameter++; k <<= 1; } } #endif if(rice_parameter >= rice_parameter_limit) { #ifndef NDEBUG fprintf(stderr, "clipping rice_parameter (%u -> %u) @6\n", rice_parameter, rice_parameter_limit - 1); #endif rice_parameter = rice_parameter_limit - 1; } best_partition_bits = UINT32_MAX; #ifdef ENABLE_RICE_PARAMETER_SEARCH if(rice_parameter_search_dist) { if(rice_parameter < rice_parameter_search_dist) min_rice_parameter = 0; else min_rice_parameter = rice_parameter - rice_parameter_search_dist; max_rice_parameter = rice_parameter + rice_parameter_search_dist; if(max_rice_parameter >= rice_parameter_limit) { #ifndef NDEBUG fprintf(stderr, "clipping rice_parameter (%u -> %u) @7\n", max_rice_parameter, rice_parameter_limit - 1); #endif max_rice_parameter = rice_parameter_limit - 1; } } else min_rice_parameter = max_rice_parameter = rice_parameter; for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) { #endif #ifdef EXACT_RICE_BITS_CALCULATION partition_bits = count_rice_bits_in_partition_(rice_parameter, partition_samples, residual+residual_sample); #else partition_bits = count_rice_bits_in_partition_(rice_parameter, partition_samples, abs_residual_partition_sums[partition]); #endif if(partition_bits < best_partition_bits) { best_rice_parameter = rice_parameter; best_partition_bits = partition_bits; } #ifdef ENABLE_RICE_PARAMETER_SEARCH } #endif if(search_for_escapes) { partition_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples; if(partition_bits <= best_partition_bits && raw_bits_per_partition[partition] < 32) { raw_bits[partition] = raw_bits_per_partition[partition]; best_rice_parameter = 0; /* will be converted to appropriate escape parameter later */ best_partition_bits = partition_bits; } else raw_bits[partition] = 0; } parameters[partition] = best_rice_parameter; if(best_partition_bits < UINT32_MAX - bits_) // To make sure _bits doesn't overflow bits_ += best_partition_bits; else bits_ = UINT32_MAX; residual_sample += partition_samples; } *bits = bits_; return true; } uint32_t get_wasted_bits_(FLAC__int32 signal[], uint32_t samples) { uint32_t i, shift; FLAC__int32 x = 0; for(i = 0; i < samples && !(x&1); i++) x |= signal[i]; if(x == 0) { shift = 0; } else { for(shift = 0; !(x&1); shift++) x >>= 1; } if(shift > 0) { for(i = 0; i < samples; i++) signal[i] >>= shift; } return shift; } uint32_t get_wasted_bits_wide_(FLAC__int64 signal_wide[], FLAC__int32 signal[], uint32_t samples) { uint32_t i, shift; FLAC__int64 x = 0; for(i = 0; i < samples && !(x&1); i++) x |= signal_wide[i]; if(x == 0) { shift = 1; } else { for(shift = 0; !(x&1); shift++) x >>= 1; } if(shift > 0) { for(i = 0; i < samples; i++) signal[i] = (FLAC__int32)(signal_wide[i] >> shift); } return shift; } void append_to_verify_fifo_(verify_input_fifo *fifo, const FLAC__int32 * const input[], uint32_t input_offset, uint32_t channels, uint32_t wide_samples) { uint32_t channel; for(channel = 0; channel < channels; channel++) memcpy(&fifo->data[channel][fifo->tail], &input[channel][input_offset], sizeof(FLAC__int32) * wide_samples); fifo->tail += wide_samples; FLAC__ASSERT(fifo->tail <= fifo->size); } void append_to_verify_fifo_interleaved_(verify_input_fifo *fifo, const FLAC__int32 input[], uint32_t input_offset, uint32_t channels, uint32_t wide_samples) { uint32_t channel; uint32_t sample, wide_sample; uint32_t tail = fifo->tail; sample = input_offset * channels; for(wide_sample = 0; wide_sample < wide_samples; wide_sample++) { for(channel = 0; channel < channels; channel++) fifo->data[channel][tail] = input[sample++]; tail++; } fifo->tail = tail; FLAC__ASSERT(fifo->tail <= fifo->size); } FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data; const size_t encoded_bytes = encoder->private_->verify.output.bytes; (void)decoder; if(encoder->private_->verify.needs_magic_hack) { FLAC__ASSERT(*bytes >= FLAC__STREAM_SYNC_LENGTH); *bytes = FLAC__STREAM_SYNC_LENGTH; memcpy(buffer, FLAC__STREAM_SYNC_STRING, *bytes); encoder->private_->verify.needs_magic_hack = false; } else { if(encoded_bytes == 0) { /* * If we get here, a FIFO underflow has occurred, * which means there is a bug somewhere. */ FLAC__ASSERT(0); return FLAC__STREAM_DECODER_READ_STATUS_ABORT; } else if(encoded_bytes < *bytes) *bytes = encoded_bytes; memcpy(buffer, encoder->private_->verify.output.data, *bytes); encoder->private_->verify.output.data += *bytes; encoder->private_->verify.output.bytes -= *bytes; } return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE; } FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder *)client_data; uint32_t channel; const uint32_t channels = frame->header.channels; const uint32_t blocksize = frame->header.blocksize; const uint32_t bytes_per_block = sizeof(FLAC__int32) * blocksize; (void)decoder; if(encoder->protected_->state == FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR) { /* This is set when verify_error_callback_ was called */ return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT; } for(channel = 0; channel < channels; channel++) { if(0 != memcmp(buffer[channel], encoder->private_->verify.input_fifo.data[channel], bytes_per_block)) { uint32_t i, sample = 0; FLAC__int32 expect = 0, got = 0; for(i = 0; i < blocksize; i++) { if(buffer[channel][i] != encoder->private_->verify.input_fifo.data[channel][i]) { sample = i; expect = (FLAC__int32)encoder->private_->verify.input_fifo.data[channel][i]; got = (FLAC__int32)buffer[channel][i]; break; } } FLAC__ASSERT(i < blocksize); FLAC__ASSERT(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER); encoder->private_->verify.error_stats.absolute_sample = frame->header.number.sample_number + sample; encoder->private_->verify.error_stats.frame_number = (uint32_t)(frame->header.number.sample_number / blocksize); encoder->private_->verify.error_stats.channel = channel; encoder->private_->verify.error_stats.sample = sample; encoder->private_->verify.error_stats.expected = expect; encoder->private_->verify.error_stats.got = got; encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA; return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT; } } /* dequeue the frame from the fifo */ encoder->private_->verify.input_fifo.tail -= blocksize; FLAC__ASSERT(encoder->private_->verify.input_fifo.tail <= OVERREAD_); for(channel = 0; channel < channels; channel++) memmove(&encoder->private_->verify.input_fifo.data[channel][0], &encoder->private_->verify.input_fifo.data[channel][blocksize], encoder->private_->verify.input_fifo.tail * sizeof(encoder->private_->verify.input_fifo.data[0][0])); return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE; } void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data) { (void)decoder, (void)metadata, (void)client_data; } void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data) { FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data; (void)decoder, (void)status; encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR; } FLAC__StreamEncoderReadStatus file_read_callback_(const FLAC__StreamEncoder *encoder, FLAC__byte buffer[], size_t *bytes, void *client_data) { (void)client_data; *bytes = fread(buffer, 1, *bytes, encoder->private_->file); if (*bytes == 0) { if (feof(encoder->private_->file)) return FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM; else if (ferror(encoder->private_->file)) return FLAC__STREAM_ENCODER_READ_STATUS_ABORT; } return FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE; } FLAC__StreamEncoderSeekStatus file_seek_callback_(const FLAC__StreamEncoder *encoder, FLAC__uint64 absolute_byte_offset, void *client_data) { (void)client_data; if(fseeko(encoder->private_->file, (FLAC__off_t)absolute_byte_offset, SEEK_SET) < 0) return FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR; else return FLAC__STREAM_ENCODER_SEEK_STATUS_OK; } FLAC__StreamEncoderTellStatus file_tell_callback_(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_byte_offset, void *client_data) { FLAC__off_t offset; (void)client_data; offset = ftello(encoder->private_->file); if(offset < 0) { return FLAC__STREAM_ENCODER_TELL_STATUS_ERROR; } else { *absolute_byte_offset = (FLAC__uint64)offset; return FLAC__STREAM_ENCODER_TELL_STATUS_OK; } } #ifdef FLAC__VALGRIND_TESTING static size_t local__fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream) { size_t ret = fwrite(ptr, size, nmemb, stream); if(!ferror(stream)) fflush(stream); return ret; } #else #define local__fwrite fwrite #endif FLAC__StreamEncoderWriteStatus file_write_callback_(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, uint32_t samples, uint32_t current_frame, void *client_data) { (void)client_data, (void)current_frame; if(local__fwrite(buffer, sizeof(FLAC__byte), bytes, encoder->private_->file) == bytes) { FLAC__bool call_it = 0 != encoder->private_->progress_callback && ( #if FLAC__HAS_OGG /* We would like to be able to use 'samples > 0' in the * clause here but currently because of the nature of our * Ogg writing implementation, 'samples' is always 0 (see * ogg_encoder_aspect.c). The downside is extra progress * callbacks. */ encoder->private_->is_ogg? true : #endif samples > 0 ); if(call_it) { /* NOTE: We have to add +bytes, +samples, and +1 to the stats * because at this point in the callback chain, the stats * have not been updated. Only after we return and control * gets back to write_frame_() are the stats updated */ encoder->private_->progress_callback(encoder, encoder->private_->bytes_written+bytes, encoder->private_->samples_written+samples, encoder->private_->frames_written+(samples?1:0), encoder->private_->total_frames_estimate, encoder->private_->client_data); } return FLAC__STREAM_ENCODER_WRITE_STATUS_OK; } else return FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR; } /* * This will forcibly set stdout to binary mode (for OSes that require it) */ FILE *get_binary_stdout_(void) { /* if something breaks here it is probably due to the presence or * absence of an underscore before the identifiers 'setmode', * 'fileno', and/or 'O_BINARY'; check your system header files. */ #if defined _MSC_VER || defined __MINGW32__ _setmode(_fileno(stdout), _O_BINARY); #elif defined __EMX__ setmode(fileno(stdout), O_BINARY); #endif return stdout; }