ref: 3b7e03a30ed29ee0666c00568bf67b8179c28d12
dir: /sys/src/games/opl3/opl3.c/
#include <u.h> #include <libc.h> typedef struct Op Op; typedef struct Chan Chan; #define Clk 14318180.0 #define FREQ_SH 16 #define EG_SH 16 #define LFO_SH 24 #define TIMER_SH 16 #define FREQ_MASK ((1 << FREQ_SH) - 1) #define ENV_BITS 10 #define ENV_LEN (1 << ENV_BITS) #define ENV_STEP (128.0 / ENV_LEN) #define MAX_ATT_INDEX ((1 << ENV_BITS - 1) - 1) #define MIN_ATT_INDEX 0 #define SIN_BITS 10 #define SIN_LEN (1 << SIN_BITS) #define SIN_MASK (SIN_LEN - 1) #define TL_RES_LEN 256 enum{ EG_OFF, EG_REL, EG_SUS, EG_DEC, EG_ATT, }; struct Op { u32int ar; /* attack rate: AR<<2 */ u32int dr; /* decay rate: DR<<2 */ u32int rr; /* release rate:RR<<2 */ u8int KSR; /* key scale rate */ u8int ksl; /* keyscale level */ u8int ksr; /* key scale rate: kcode>>KSR */ u8int mul; /* multiple: mul_tab[ML] */ /* Phase Generator */ u32int Cnt; /* frequency counter */ u32int Incr; /* frequency counter step */ u8int FB; /* feedback shift value */ s32int *connect; /* slot output pointer */ s32int op1_out[2]; /* slot1 output for feedback */ u8int CON; /* connection (algorithm) type */ /* Envelope Generator */ u8int eg_type; /* percussive/non-percussive mode */ u8int state; /* phase type */ u32int TL; /* total level: TL << 2 */ s32int TLL; /* adjusted now TL */ s32int volume; /* envelope counter */ u32int sl; /* sustain level: sl_tab[SL] */ u32int eg_m_ar; /* (attack state) */ u8int eg_sh_ar; /* (attack state) */ u8int eg_sel_ar; /* (attack state) */ u32int eg_m_dr; /* (decay state) */ u8int eg_sh_dr; /* (decay state) */ u8int eg_sel_dr; /* (decay state) */ u32int eg_m_rr; /* (release state) */ u8int eg_sh_rr; /* (release state) */ u8int eg_sel_rr; /* (release state) */ u32int key; u32int AMmask; /* LFO Amplitude Modulation enable mask */ u8int vib; /* LFO Phase Modulation enable flag (active high)*/ u8int waveform_number; uint wavetable; }; struct Chan { Op SLOT[2]; u32int block_fnum; /* block+fnum */ u32int fc; /* Freq. Increment base */ u32int ksl_base; /* KeyScaleLevel Base step */ u8int kcode; /* key code (for key scaling) */ u8int extended; }; static Chan chs[18]; static u32int pan[18*4]; /* channels output masks (0xffffffff = enable); 4 masks per one channel */ static u32int pan_ctrl_value[18]; /* output control values 1 per one channel (1 value contains 4 masks) */ static int chanout[18]; static int phase_modulation, phase_modulation2; /* phase modulation input (SLOT 2 and 3/4) */ static u32int eg_cnt; /* global envelope generator counter */ static u32int eg_timer; /* global envelope generator counter works at frequency = chipclock/288 (288=8*36) */ static u32int eg_timer_add; /* step of eg_timer */ static u32int eg_timer_overflow; /* envelope generator timer overlfows every 1 sample (on real chip) */ static u32int fn_tab[1024]; static u32int LFO_AM; static s32int LFO_PM; static u8int lfo_am_depth, lfo_pm_depth_range; static u32int lfo_am_cnt, lfo_am_inc, lfo_pm_cnt, lfo_pm_inc; static u32int noise_rng, noise_p, noise_f; static int OPL3_mode, nts; static u8int rhythm; static int slot_array[32]= { 0, 2, 4, 1, 3, 5,-1,-1, 6, 8,10, 7, 9,11,-1,-1, 12,14,16,13,15,17,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1 }; /* key scale level */ /* table is 3dB/octave , DV converts this into 6dB/octave */ /* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */ #define DV (0.1875/2.0) static u32int ksl_tab[8*16]= { /* OCT 0 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, /* OCT 1 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, /* OCT 2 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, /* OCT 3 */ 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, /* OCT 4 */ 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 10.875/DV,11.250/DV,11.625/DV,12.000/DV, /* OCT 5 */ 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 13.875/DV,14.250/DV,14.625/DV,15.000/DV, /* OCT 6 */ 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 16.875/DV,17.250/DV,17.625/DV,18.000/DV, /* OCT 7 */ 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 19.875/DV,20.250/DV,20.625/DV,21.000/DV }; #undef DV /* 0 / 3.0 / 1.5 / 6.0 dB/OCT */ static u32int ksl_shift[4] = { 31, 1, 2, 0 }; /* sustain level table (3dB per step) */ /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ #define SC(db) (u32int) (db * (2.0/ENV_STEP)) static u32int sl_tab[16]={ SC(0),SC(1),SC(2),SC(3),SC(4),SC(5),SC(6),SC(7), SC(8),SC(9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) }; #undef SC #define RATE_STEPS (8) static uchar eg_inc[15*RATE_STEPS]={ /*cycle:0 1 2 3 4 5 6 7*/ /* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */ /* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */ /* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */ /* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */ /* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */ /* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */ /* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */ /* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */ /* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */ /* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */ /*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */ /*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */ /*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 for decay */ /*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 for attack (zero time) */ /*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */ }; #define O(a) (a*RATE_STEPS) /* note that there is no O(13) in this table - it's directly in the code */ static uchar eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */ /* 16 infinite time rates */ O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), /* rates 00-12 */ O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), O(0),O(1),O(2),O(3), /* rate 13 */ O(4),O(5),O(6),O(7), /* rate 14 */ O(8),O(9),O(10),O(11), /* rate 15 */ O(12),O(12),O(12),O(12), /* 16 dummy rates (same as 15 3) */ O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), }; #undef O /*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */ /*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */ /*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */ #define O(a) (a*1) static uchar eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */ /* 16 infinite time rates */ O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), /* rates 00-12 */ O(12),O(12),O(12),O(12), O(11),O(11),O(11),O(11), O(10),O(10),O(10),O(10), O(9),O(9),O(9),O(9), O(8),O(8),O(8),O(8), O(7),O(7),O(7),O(7), O(6),O(6),O(6),O(6), O(5),O(5),O(5),O(5), O(4),O(4),O(4),O(4), O(3),O(3),O(3),O(3), O(2),O(2),O(2),O(2), O(1),O(1),O(1),O(1), O(0),O(0),O(0),O(0), /* rate 13 */ O(0),O(0),O(0),O(0), /* rate 14 */ O(0),O(0),O(0),O(0), /* rate 15 */ O(0),O(0),O(0),O(0), /* 16 dummy rates (same as 15 3) */ O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), }; #undef O /* multiple table */ #define ML 2 static u8int mul_tab[16]= { /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */ ML/2, 1*ML, 2*ML, 3*ML, 4*ML, 5*ML, 6*ML, 7*ML, 8*ML, 9*ML,10*ML,10*ML,12*ML,12*ML,15*ML,15*ML }; #undef ML #define TL_TAB_LEN (13*2*TL_RES_LEN) static int tl_tab[TL_TAB_LEN]; #define ENV_QUIET (TL_TAB_LEN>>4) static uint sin_tab[SIN_LEN * 8]; #define LFO_AM_TAB_ELEMENTS 210 static u8int lfo_am_table[LFO_AM_TAB_ELEMENTS] = { 0,0,0,0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8, 9,9,9,9, 10,10,10,10, 11,11,11,11, 12,12,12,12, 13,13,13,13, 14,14,14,14, 15,15,15,15, 16,16,16,16, 17,17,17,17, 18,18,18,18, 19,19,19,19, 20,20,20,20, 21,21,21,21, 22,22,22,22, 23,23,23,23, 24,24,24,24, 25,25,25,25, 26,26,26, 25,25,25,25, 24,24,24,24, 23,23,23,23, 22,22,22,22, 21,21,21,21, 20,20,20,20, 19,19,19,19, 18,18,18,18, 17,17,17,17, 16,16,16,16, 15,15,15,15, 14,14,14,14, 13,13,13,13, 12,12,12,12, 11,11,11,11, 10,10,10,10, 9,9,9,9, 8,8,8,8, 7,7,7,7, 6,6,6,6, 5,5,5,5, 4,4,4,4, 3,3,3,3, 2,2,2,2, 1,1,1,1 }; /* LFO Phase Modulation table (verified on real YM3812) */ static s8int lfo_pm_table[8*8*2] = { /* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ 4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ 5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ 6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ 7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/ }; #define SLOT7_1 (&chs[7].SLOT[0]) #define SLOT7_2 (&chs[7].SLOT[1]) #define SLOT8_1 (&chs[8].SLOT[0]) #define SLOT8_2 (&chs[8].SLOT[1]) static void advance_lfo(void) { u8int tmp; lfo_am_cnt += lfo_am_inc; if(lfo_am_cnt >= ((u32int)LFO_AM_TAB_ELEMENTS<<LFO_SH)) lfo_am_cnt -= ((u32int)LFO_AM_TAB_ELEMENTS<<LFO_SH); tmp = lfo_am_table[lfo_am_cnt >> LFO_SH]; if(lfo_am_depth) LFO_AM = tmp; else LFO_AM = tmp>>2; lfo_pm_cnt += lfo_pm_inc; LFO_PM = (lfo_pm_cnt>>LFO_SH & 7) | lfo_pm_depth_range; } static void advance(void) { Chan *CH; Op *op; int i; eg_timer += eg_timer_add; while (eg_timer >= eg_timer_overflow){ eg_timer -= eg_timer_overflow; eg_cnt++; for (i=0; i<9*2*2; i++){ CH = &chs[i/2]; op = &CH->SLOT[i&1]; switch(op->state){ case EG_ATT: if(!(eg_cnt & op->eg_m_ar)){ op->volume += (s32int)(~op->volume * (eg_inc[op->eg_sel_ar + ((eg_cnt>>op->eg_sh_ar)&7)]) ) >>3; if(op->volume <= MIN_ATT_INDEX){ op->volume = MIN_ATT_INDEX; op->state = EG_DEC; } } break; case EG_DEC: if(!(eg_cnt & op->eg_m_dr)){ op->volume += eg_inc[op->eg_sel_dr + ((eg_cnt>>op->eg_sh_dr)&7)]; if(op->volume >= op->sl) op->state = EG_SUS; } break; case EG_SUS: if(op->eg_type) { }else{ if(!(eg_cnt & op->eg_m_rr)){ op->volume += eg_inc[op->eg_sel_rr + ((eg_cnt>>op->eg_sh_rr)&7)]; if(op->volume >= MAX_ATT_INDEX) op->volume = MAX_ATT_INDEX; } } break; case EG_REL: if(!(eg_cnt & op->eg_m_rr)){ op->volume += eg_inc[op->eg_sel_rr + ((eg_cnt>>op->eg_sh_rr)&7)]; if(op->volume >= MAX_ATT_INDEX){ op->volume = MAX_ATT_INDEX; op->state = EG_OFF; } } break; } } } for (i=0; i<9*2*2; i++){ CH = &chs[i/2]; op = &CH->SLOT[i&1]; if(op->vib){ u8int block; uint block_fnum = CH->block_fnum; uint fnum_lfo = (block_fnum&0x0380) >> 7; int lfo_fn_table_index_offset = lfo_pm_table[LFO_PM + 16*fnum_lfo]; if(lfo_fn_table_index_offset){ block_fnum += lfo_fn_table_index_offset; block = (block_fnum&0x1c00) >> 10; op->Cnt += (fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul; }else op->Cnt += op->Incr; }else op->Cnt += op->Incr; } noise_p += noise_f; i = noise_p >> FREQ_SH; noise_p &= FREQ_MASK; while (i){ if(noise_rng & 1) noise_rng ^= 0x800302; noise_rng >>= 1; i--; } } static int op_calc(u32int phase, uint env, int pm, uint wave_tab) { u32int p; p = (env<<4) + sin_tab[wave_tab + ((((int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH) & SIN_MASK)]; if(p >= TL_TAB_LEN) return 0; return tl_tab[p]; } static int op_calc1(u32int phase, uint env, int pm, uint wave_tab) { u32int p; p = (env<<4) + sin_tab[wave_tab + ((((int)((phase & ~FREQ_MASK) + pm))>>FREQ_SH) & SIN_MASK)]; if(p >= TL_TAB_LEN) return 0; return tl_tab[p]; } #define volume_calc(OP) ((OP)->TLL + ((u32int)(OP)->volume) + (LFO_AM & (OP)->AMmask)) static void chan_calc(Chan *CH) { Op *SLOT; uint env; int out; phase_modulation = 0; phase_modulation2= 0; SLOT = &CH->SLOT[0]; env = volume_calc(SLOT); out = SLOT->op1_out[0] + SLOT->op1_out[1]; SLOT->op1_out[0] = SLOT->op1_out[1]; SLOT->op1_out[1] = 0; if(env < ENV_QUIET){ if(!SLOT->FB) out = 0; SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable); } *SLOT->connect += SLOT->op1_out[1]; SLOT++; env = volume_calc(SLOT); if(env < ENV_QUIET) *SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable); } static void chan_calc_ext(Chan *CH) { Op *SLOT; uint env; phase_modulation = 0; SLOT = &CH->SLOT[0]; env = volume_calc(SLOT); if(env < ENV_QUIET) *SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation2, SLOT->wavetable); SLOT++; env = volume_calc(SLOT); if(env < ENV_QUIET) *SLOT->connect += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable); } static void chan_calc_rhythm(Chan *CH, uint noise) { Op *SLOT; int out; uint env; phase_modulation = 0; SLOT = &CH[6].SLOT[0]; env = volume_calc(SLOT); out = SLOT->op1_out[0] + SLOT->op1_out[1]; SLOT->op1_out[0] = SLOT->op1_out[1]; if(!SLOT->CON) phase_modulation = SLOT->op1_out[0]; SLOT->op1_out[1] = 0; if(env < ENV_QUIET){ if(!SLOT->FB) out = 0; SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable); } SLOT++; env = volume_calc(SLOT); if(env < ENV_QUIET) chanout[6] += op_calc(SLOT->Cnt, env, phase_modulation, SLOT->wavetable) * 2; env = volume_calc(SLOT7_1); if(env < ENV_QUIET){ uchar bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; uchar bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; uchar bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; uchar res1 = (bit2 ^ bit7) | bit3; u32int phase = res1 ? (0x200|(0xd0>>2)) : 0xd0; uchar bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; uchar bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; uchar res2 = (bit3e ^ bit5e); if(res2) phase = (0x200|(0xd0>>2)); if(phase&0x200){ if(noise) phase = 0x200|0xd0; }else { if(noise) phase = 0xd0>>2; } chanout[7] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2; } env = volume_calc(SLOT7_2); if(env < ENV_QUIET){ uchar bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1; u32int phase = bit8 ? 0x200 : 0x100; if(noise) phase ^= 0x100; chanout[7] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2; } env = volume_calc(SLOT8_1); if(env < ENV_QUIET) chanout[8] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2; env = volume_calc(SLOT8_2); if(env < ENV_QUIET){ uchar bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; uchar bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; uchar bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; uchar res1 = (bit2 ^ bit7) | bit3; u32int phase = res1 ? 0x300 : 0x100; uchar bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; uchar bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; uchar res2 = (bit3e ^ bit5e); if(res2) phase = 0x300; chanout[8] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2; } } static void FM_KEYON(Op *SLOT, u32int key_set) { if(!SLOT->key){ SLOT->Cnt = 0; SLOT->state = EG_ATT; } SLOT->key |= key_set; } static void FM_KEYOFF(Op *SLOT, u32int key_clr) { if(SLOT->key){ SLOT->key &= key_clr; if(!SLOT->key){ if(SLOT->state>EG_REL) SLOT->state = EG_REL; } } } /* update phase increment counter of operator (also update the EG rates if necessary) */ static void CALC_FCSLOT(Chan *CH, Op *SLOT) { int ksr; SLOT->Incr = CH->fc * SLOT->mul; ksr = CH->kcode >> SLOT->KSR; if(SLOT->ksr != ksr){ SLOT->ksr = ksr; if((SLOT->ar + SLOT->ksr) < 16+60){ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr]; SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr]; }else{ SLOT->eg_sh_ar = 0; SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr]; SLOT->eg_m_dr = (1<<SLOT->eg_sh_dr)-1; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr]; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr]; SLOT->eg_m_rr = (1<<SLOT->eg_sh_rr)-1; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr]; } } static void set_mul(int slot, int v) { Chan *CH = &chs[slot/2]; Op *SLOT = &CH->SLOT[slot&1]; SLOT->mul = mul_tab[v&0x0f]; SLOT->KSR = (v&0x10) ? 0 : 2; SLOT->eg_type = (v&0x20); SLOT->vib = (v&0x40); SLOT->AMmask = (v&0x80) ? ~0 : 0; if(OPL3_mode & 1){ int chan_no = slot/2; switch(chan_no){ case 0: case 1: case 2: case 9: case 10: case 11: CALC_FCSLOT(CH,SLOT); break; case 3: case 4: case 5: case 12: case 13: case 14: if((CH-3)->extended) CALC_FCSLOT(CH-3,SLOT); else CALC_FCSLOT(CH,SLOT); break; default: CALC_FCSLOT(CH,SLOT); break; } }else{ CALC_FCSLOT(CH,SLOT); } } static void set_ksl_tl(int slot, int v) { Chan *CH = &chs[slot/2]; Op *SLOT = &CH->SLOT[slot&1]; SLOT->ksl = ksl_shift[v >> 6]; SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */ if(OPL3_mode & 1){ int chan_no = slot/2; switch(chan_no){ case 0: case 1: case 2: case 9: case 10: case 11: SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); break; case 3: case 4: case 5: case 12: case 13: case 14: if((CH-3)->extended) SLOT->TLL = SLOT->TL + ((CH-3)->ksl_base>>SLOT->ksl); else SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); break; default: SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); break; } }else SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } static void set_ar_dr(int slot, int v) { Chan *CH = &chs[slot/2]; Op *SLOT = &CH->SLOT[slot&1]; SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0; if((SLOT->ar + SLOT->ksr) < 16+60){ SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr]; SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr]; }else{ SLOT->eg_sh_ar = 0; SLOT->eg_m_ar = (1<<SLOT->eg_sh_ar)-1; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr]; SLOT->eg_m_dr = (1<<SLOT->eg_sh_dr)-1; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr]; } static void set_sl_rr(int slot, int v) { Chan *CH = &chs[slot/2]; Op *SLOT = &CH->SLOT[slot&1]; SLOT->sl = sl_tab[v>>4]; SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr]; SLOT->eg_m_rr = (1<<SLOT->eg_sh_rr)-1; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr]; } void opl3wr(int r, int v) { Chan *CH; uint ch_offset = 0; int slot; int block_fnum; v &= 0xff; if(r&0x100){ switch(r){ case 0x101: return; case 0x104: CH = &chs[0]; CH->extended = (v>>0) & 1; CH++; CH->extended = (v>>1) & 1; CH++; CH->extended = (v>>2) & 1; CH = &chs[9]; CH->extended = (v>>3) & 1; CH++; CH->extended = (v>>4) & 1; CH++; CH->extended = (v>>5) & 1; return; case 0x105: OPL3_mode = v & 1; return; } ch_offset = 9; } r &= 0xff; v &= 0xff; switch(r&0xe0){ case 0x00: switch(r&0x1f){ case 0x08: nts = v; break; } break; case 0x20: slot = slot_array[r&0x1f]; if(slot < 0) return; set_mul(slot + ch_offset*2, v); break; case 0x40: slot = slot_array[r&0x1f]; if(slot < 0) return; set_ksl_tl(slot + ch_offset*2, v); break; case 0x60: slot = slot_array[r&0x1f]; if(slot < 0) return; set_ar_dr(slot + ch_offset*2, v); break; case 0x80: slot = slot_array[r&0x1f]; if(slot < 0) return; set_sl_rr(slot + ch_offset*2, v); break; case 0xa0: if(r == 0xbd){ if(ch_offset != 0) return; lfo_am_depth = v & 0x80; lfo_pm_depth_range = (v&0x40) ? 8 : 0; rhythm = v & 0x3f; if(rhythm & 0x20){ if(v&0x10){ FM_KEYON (&chs[6].SLOT[0], 2); FM_KEYON (&chs[6].SLOT[1], 2); }else{ FM_KEYOFF(&chs[6].SLOT[0],~2); FM_KEYOFF(&chs[6].SLOT[1],~2); } if(v&0x01) FM_KEYON (&chs[7].SLOT[0], 2); else FM_KEYOFF(&chs[7].SLOT[0],~2); if(v&0x08) FM_KEYON (&chs[7].SLOT[1], 2); else FM_KEYOFF(&chs[7].SLOT[1],~2); if(v&0x04) FM_KEYON (&chs[8].SLOT[0], 2); else FM_KEYOFF(&chs[8].SLOT[0],~2); if(v&0x02) FM_KEYON (&chs[8].SLOT[1], 2); else FM_KEYOFF(&chs[8].SLOT[1],~2); }else{ FM_KEYOFF(&chs[6].SLOT[0],~2); FM_KEYOFF(&chs[6].SLOT[1],~2); FM_KEYOFF(&chs[7].SLOT[0],~2); FM_KEYOFF(&chs[7].SLOT[1],~2); FM_KEYOFF(&chs[8].SLOT[0],~2); FM_KEYOFF(&chs[8].SLOT[1],~2); } return; } if((r&0x0f) > 8) return; CH = &chs[(r&0x0f) + ch_offset]; if(!(r&0x10)){ block_fnum = (CH->block_fnum&0x1f00) | v; }else{ block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); if(OPL3_mode & 1){ int chan_no = (r&0x0f) + ch_offset; switch(chan_no){ case 0: case 1: case 2: case 9: case 10: case 11: if(CH->extended){ if(v&0x20){ FM_KEYON (&CH->SLOT[0], 1); FM_KEYON (&CH->SLOT[1], 1); FM_KEYON (&(CH+3)->SLOT[0], 1); FM_KEYON (&(CH+3)->SLOT[1], 1); }else{ FM_KEYOFF(&CH->SLOT[0],~1); FM_KEYOFF(&CH->SLOT[1],~1); FM_KEYOFF(&(CH+3)->SLOT[0],~1); FM_KEYOFF(&(CH+3)->SLOT[1],~1); } }else{ if(v&0x20){ FM_KEYON (&CH->SLOT[0], 1); FM_KEYON (&CH->SLOT[1], 1); }else{ FM_KEYOFF(&CH->SLOT[0],~1); FM_KEYOFF(&CH->SLOT[1],~1); } } break; case 3: case 4: case 5: case 12: case 13: case 14: if((CH-3)->extended){ }else{ if(v&0x20){ FM_KEYON (&CH->SLOT[0], 1); FM_KEYON (&CH->SLOT[1], 1); }else{ FM_KEYOFF(&CH->SLOT[0],~1); FM_KEYOFF(&CH->SLOT[1],~1); } } break; default: if(v&0x20){ FM_KEYON (&CH->SLOT[0], 1); FM_KEYON (&CH->SLOT[1], 1); }else{ FM_KEYOFF(&CH->SLOT[0],~1); FM_KEYOFF(&CH->SLOT[1],~1); } break; } }else{ if(v&0x20){ FM_KEYON (&CH->SLOT[0], 1); FM_KEYON (&CH->SLOT[1], 1); }else{ FM_KEYOFF(&CH->SLOT[0],~1); FM_KEYOFF(&CH->SLOT[1],~1); } } } if(CH->block_fnum != block_fnum){ u8int block = block_fnum >> 10; CH->block_fnum = block_fnum; CH->ksl_base = ksl_tab[block_fnum>>6]; CH->fc = fn_tab[block_fnum&0x03ff] >> (7-block); CH->kcode = (CH->block_fnum&0x1c00)>>9; if(nts&0x40) CH->kcode |= (CH->block_fnum&0x100)>>8; else CH->kcode |= (CH->block_fnum&0x200)>>9; if(OPL3_mode & 1){ int chan_no = (r&0x0f) + ch_offset; switch(chan_no){ case 0: case 1: case 2: case 9: case 10: case 11: if(CH->extended){ CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl); CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl); (CH+3)->SLOT[0].TLL = (CH+3)->SLOT[0].TL + (CH->ksl_base>>(CH+3)->SLOT[0].ksl); (CH+3)->SLOT[1].TLL = (CH+3)->SLOT[1].TL + (CH->ksl_base>>(CH+3)->SLOT[1].ksl); CALC_FCSLOT(CH,&CH->SLOT[0]); CALC_FCSLOT(CH,&CH->SLOT[1]); CALC_FCSLOT(CH,&(CH+3)->SLOT[0]); CALC_FCSLOT(CH,&(CH+3)->SLOT[1]); }else{ CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl); CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl); CALC_FCSLOT(CH,&CH->SLOT[0]); CALC_FCSLOT(CH,&CH->SLOT[1]); } break; case 3: case 4: case 5: case 12: case 13: case 14: if((CH-3)->extended){ }else{ CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl); CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl); CALC_FCSLOT(CH,&CH->SLOT[0]); CALC_FCSLOT(CH,&CH->SLOT[1]); } break; default: CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl); CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl); CALC_FCSLOT(CH,&CH->SLOT[0]); CALC_FCSLOT(CH,&CH->SLOT[1]); break; } }else{ CH->SLOT[0].TLL = CH->SLOT[0].TL + (CH->ksl_base>>CH->SLOT[0].ksl); CH->SLOT[1].TLL = CH->SLOT[1].TL + (CH->ksl_base>>CH->SLOT[1].ksl); CALC_FCSLOT(CH,&CH->SLOT[0]); CALC_FCSLOT(CH,&CH->SLOT[1]); } } break; case 0xc0: if((r&0xf) > 8) return; CH = &chs[(r&0xf) + ch_offset]; if(OPL3_mode & 1){ int base = ((r&0xf) + ch_offset) * 4; pan[base] = (v & 0x10) ? ~0 : 0; pan[base +1] = (v & 0x20) ? ~0 : 0; pan[base +2] = (v & 0x40) ? ~0 : 0; pan[base +3] = (v & 0x80) ? ~0 : 0; }else{ int base = ((r&0xf) + ch_offset) * 4; pan[base] = ~0; pan[base +1] = ~0; pan[base +2] = ~0; pan[base +3] = ~0; } pan_ctrl_value[(r&0xf) + ch_offset] = v; CH->SLOT[0].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0; CH->SLOT[0].CON = v&1; if(OPL3_mode & 1){ int chan_no = (r&0x0f) + ch_offset; switch(chan_no){ case 0: case 1: case 2: case 9: case 10: case 11: if(CH->extended){ u8int conn = (CH->SLOT[0].CON<<1) | ((CH+3)->SLOT[0].CON<<0); switch(conn){ case 0: CH->SLOT[0].connect = &phase_modulation; CH->SLOT[1].connect = &phase_modulation2; (CH+3)->SLOT[0].connect = &phase_modulation; (CH+3)->SLOT[1].connect = &chanout[chan_no + 3]; break; case 1: CH->SLOT[0].connect = &phase_modulation; CH->SLOT[1].connect = &chanout[chan_no]; (CH+3)->SLOT[0].connect = &phase_modulation; (CH+3)->SLOT[1].connect = &chanout[chan_no + 3]; break; case 2: CH->SLOT[0].connect = &chanout[chan_no]; CH->SLOT[1].connect = &phase_modulation2; (CH+3)->SLOT[0].connect = &phase_modulation; (CH+3)->SLOT[1].connect = &chanout[chan_no + 3]; break; case 3: CH->SLOT[0].connect = &chanout[chan_no]; CH->SLOT[1].connect = &phase_modulation2; (CH+3)->SLOT[0].connect = &chanout[chan_no + 3]; (CH+3)->SLOT[1].connect = &chanout[chan_no + 3]; break; } }else{ CH->SLOT[0].connect = CH->SLOT[0].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation; CH->SLOT[1].connect = &chanout[(r&0xf)+ch_offset]; } break; case 3: case 4: case 5: case 12: case 13: case 14: if((CH-3)->extended){ u8int conn = ((CH-3)->SLOT[0].CON<<1) | (CH->SLOT[0].CON<<0); switch(conn){ case 0: (CH-3)->SLOT[0].connect = &phase_modulation; (CH-3)->SLOT[1].connect = &phase_modulation2; CH->SLOT[0].connect = &phase_modulation; CH->SLOT[1].connect = &chanout[chan_no]; break; case 1: (CH-3)->SLOT[0].connect = &phase_modulation; (CH-3)->SLOT[1].connect = &chanout[chan_no - 3]; CH->SLOT[0].connect = &phase_modulation; CH->SLOT[1].connect = &chanout[chan_no]; break; case 2: (CH-3)->SLOT[0].connect = &chanout[chan_no - 3]; (CH-3)->SLOT[1].connect = &phase_modulation2; CH->SLOT[0].connect = &phase_modulation; CH->SLOT[1].connect = &chanout[chan_no]; break; case 3: (CH-3)->SLOT[0].connect = &chanout[chan_no - 3]; (CH-3)->SLOT[1].connect = &phase_modulation2; CH->SLOT[0].connect = &chanout[chan_no]; CH->SLOT[1].connect = &chanout[chan_no]; break; } }else{ CH->SLOT[0].connect = CH->SLOT[0].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation; CH->SLOT[1].connect = &chanout[(r&0xf)+ch_offset]; } break; default: CH->SLOT[0].connect = CH->SLOT[0].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation; CH->SLOT[1].connect = &chanout[(r&0xf)+ch_offset]; break; } }else{ CH->SLOT[0].connect = CH->SLOT[0].CON ? &chanout[(r&0xf)+ch_offset] : &phase_modulation; CH->SLOT[1].connect = &chanout[(r&0xf)+ch_offset]; } break; case 0xe0: slot = slot_array[r&0x1f]; if(slot < 0) return; slot += ch_offset*2; CH = &chs[slot/2]; v &= 7; CH->SLOT[slot&1].waveform_number = v; if(!(OPL3_mode & 1)) v &= 3; CH->SLOT[slot&1].wavetable = v * SIN_LEN; break; } } void opl3out(uchar *p, int n) { uchar *e; for(e=p+n; p<e; p+=4){ int a,b; advance_lfo(); memset(chanout, 0, sizeof(chanout)); chan_calc(&chs[0]); if(chs[0].extended) chan_calc_ext(&chs[3]); else chan_calc(&chs[3]); chan_calc(&chs[1]); if(chs[1].extended) chan_calc_ext(&chs[4]); else chan_calc(&chs[4]); chan_calc(&chs[2]); if(chs[2].extended) chan_calc_ext(&chs[5]); else chan_calc(&chs[5]); if((rhythm & 0x20) == 0){ chan_calc(&chs[6]); chan_calc(&chs[7]); chan_calc(&chs[8]); }else chan_calc_rhythm(&chs[0], (noise_rng>>0)&1); chan_calc(&chs[9]); if(chs[9].extended) chan_calc_ext(&chs[12]); else chan_calc(&chs[12]); chan_calc(&chs[10]); if(chs[10].extended) chan_calc_ext(&chs[13]); else chan_calc(&chs[13]); chan_calc(&chs[11]); if(chs[11].extended) chan_calc_ext(&chs[14]); else chan_calc(&chs[14]); chan_calc(&chs[15]); chan_calc(&chs[16]); chan_calc(&chs[17]); a = chanout[0] & pan[0]; b = chanout[0] & pan[1]; a += chanout[1] & pan[4]; b += chanout[1] & pan[5]; a += chanout[2] & pan[8]; b += chanout[2] & pan[9]; a += chanout[3] & pan[12]; b += chanout[3] & pan[13]; a += chanout[4] & pan[16]; b += chanout[4] & pan[17]; a += chanout[5] & pan[20]; b += chanout[5] & pan[21]; a += chanout[6] & pan[24]; b += chanout[6] & pan[25]; a += chanout[7] & pan[28]; b += chanout[7] & pan[29]; a += chanout[8] & pan[32]; b += chanout[8] & pan[33]; a += chanout[9] & pan[36]; b += chanout[9] & pan[37]; a += chanout[10] & pan[40]; b += chanout[10] & pan[41]; a += chanout[11] & pan[44]; b += chanout[11] & pan[45]; a += chanout[12] & pan[48]; b += chanout[12] & pan[49]; a += chanout[13] & pan[52]; b += chanout[13] & pan[53]; a += chanout[14] & pan[56]; b += chanout[14] & pan[57]; a += chanout[15] & pan[60]; b += chanout[15] & pan[61]; a += chanout[16] & pan[64]; b += chanout[16] & pan[65]; a += chanout[17] & pan[68]; b += chanout[17] & pan[69]; if(a > 32767) a = 32767; else if(a < -32768) a = -32768; if(b > 32767) b = 32767; else if(b < -32768) b = -32768; p[0] = a; p[1] = a >> 8; p[2] = b; p[3] = b >> 8; advance(); } } static int init_tables(void) { int i, x, n; double o, m; for (x=0; x<TL_RES_LEN; x++){ m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0); m = floor(m); n = (int)m; n >>= 4; if(n&1) n = (n>>1)+1; else n = n>>1; n <<= 1; tl_tab[x*2 + 0] = n; tl_tab[x*2 + 1] = ~tl_tab[x*2 + 0]; for (i=1; i<13; i++){ tl_tab[x*2+0 + i*2*TL_RES_LEN] = tl_tab[x*2+0]>>i; tl_tab[x*2+1 + i*2*TL_RES_LEN] = ~tl_tab[x*2+0 + i*2*TL_RES_LEN]; } } for (i=0; i<SIN_LEN; i++){ m = sin(((i*2)+1) * PI / SIN_LEN); if(m>0.0) o = 8*log(1.0/m)/log(2.0); else o = 8*log(-1.0/m)/log(2.0); o = o / (ENV_STEP/4); n = (int)(2.0*o); if(n&1) n = (n>>1)+1; else n = n>>1; sin_tab[i] = n*2 + (m>=0.0? 0: 1); } for (i=0; i<SIN_LEN; i++){ if(i & (1<<(SIN_BITS-1))) sin_tab[1*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[1*SIN_LEN+i] = sin_tab[i]; sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1)]; if(i & (1<<(SIN_BITS-2))) sin_tab[3*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)]; if(i & (1<<(SIN_BITS-1))) sin_tab[4*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[4*SIN_LEN+i] = sin_tab[i*2]; if(i & (1<<(SIN_BITS-1))) sin_tab[5*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[5*SIN_LEN+i] = sin_tab[(i*2) & (SIN_MASK>>1)]; if(i & (1<<(SIN_BITS-1))) sin_tab[6*SIN_LEN+i] = 1; else sin_tab[6*SIN_LEN+i] = 0; if(i & (1<<(SIN_BITS-1))) x = ((SIN_LEN-1)-i)*16 + 1; else x = i*16; if(x > TL_TAB_LEN) x = TL_TAB_LEN; sin_tab[7*SIN_LEN+i] = x; } return 1; } void opl3init(int rate) { int i, o; double f0; init_tables(); f0 = (Clk / (8.0*36)) / rate; for(i=0 ; i < 1024 ; i++) fn_tab[i] = (u32int)((double)i * 64 * f0 * (1<<(FREQ_SH-10))); lfo_am_inc = (1.0 / 64.0) * (1<<LFO_SH) * f0; lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * f0; noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * f0; eg_timer_add = (1<<EG_SH) * f0; eg_timer_overflow = (1) * (1<<EG_SH); noise_rng = 1; for(i=0xff; i>=0x20; i--) opl3wr(i, 0); for(i=0x1ff; i>=0x120; i--) opl3wr(i, 0); for(i=0; i<9*2; i++){ Chan *CH = &chs[i]; for(o=0; o<2; o++){ CH->SLOT[o].state = EG_OFF; CH->SLOT[o].volume = MAX_ATT_INDEX; } } }