ref: 45ce4de65064ffb0e8b1904118cea7e16528cffa
dir: /sys/lib/python/_threading_local.py/
"""Thread-local objects. (Note that this module provides a Python version of the threading.local class. Depending on the version of Python you're using, there may be a faster one available. You should always import the `local` class from `threading`.) Thread-local objects support the management of thread-local data. If you have data that you want to be local to a thread, simply create a thread-local object and use its attributes: >>> mydata = local() >>> mydata.number = 42 >>> mydata.number 42 You can also access the local-object's dictionary: >>> mydata.__dict__ {'number': 42} >>> mydata.__dict__.setdefault('widgets', []) [] >>> mydata.widgets [] What's important about thread-local objects is that their data are local to a thread. If we access the data in a different thread: >>> log = [] >>> def f(): ... items = mydata.__dict__.items() ... items.sort() ... log.append(items) ... mydata.number = 11 ... log.append(mydata.number) >>> import threading >>> thread = threading.Thread(target=f) >>> thread.start() >>> thread.join() >>> log [[], 11] we get different data. Furthermore, changes made in the other thread don't affect data seen in this thread: >>> mydata.number 42 Of course, values you get from a local object, including a __dict__ attribute, are for whatever thread was current at the time the attribute was read. For that reason, you generally don't want to save these values across threads, as they apply only to the thread they came from. You can create custom local objects by subclassing the local class: >>> class MyLocal(local): ... number = 2 ... initialized = False ... def __init__(self, **kw): ... if self.initialized: ... raise SystemError('__init__ called too many times') ... self.initialized = True ... self.__dict__.update(kw) ... def squared(self): ... return self.number ** 2 This can be useful to support default values, methods and initialization. Note that if you define an __init__ method, it will be called each time the local object is used in a separate thread. This is necessary to initialize each thread's dictionary. Now if we create a local object: >>> mydata = MyLocal(color='red') Now we have a default number: >>> mydata.number 2 an initial color: >>> mydata.color 'red' >>> del mydata.color And a method that operates on the data: >>> mydata.squared() 4 As before, we can access the data in a separate thread: >>> log = [] >>> thread = threading.Thread(target=f) >>> thread.start() >>> thread.join() >>> log [[('color', 'red'), ('initialized', True)], 11] without affecting this thread's data: >>> mydata.number 2 >>> mydata.color Traceback (most recent call last): ... AttributeError: 'MyLocal' object has no attribute 'color' Note that subclasses can define slots, but they are not thread local. They are shared across threads: >>> class MyLocal(local): ... __slots__ = 'number' >>> mydata = MyLocal() >>> mydata.number = 42 >>> mydata.color = 'red' So, the separate thread: >>> thread = threading.Thread(target=f) >>> thread.start() >>> thread.join() affects what we see: >>> mydata.number 11 >>> del mydata """ __all__ = ["local"] # We need to use objects from the threading module, but the threading # module may also want to use our `local` class, if support for locals # isn't compiled in to the `thread` module. This creates potential problems # with circular imports. For that reason, we don't import `threading` # until the bottom of this file (a hack sufficient to worm around the # potential problems). Note that almost all platforms do have support for # locals in the `thread` module, and there is no circular import problem # then, so problems introduced by fiddling the order of imports here won't # manifest on most boxes. class _localbase(object): __slots__ = '_local__key', '_local__args', '_local__lock' def __new__(cls, *args, **kw): self = object.__new__(cls) key = '_local__key', 'thread.local.' + str(id(self)) object.__setattr__(self, '_local__key', key) object.__setattr__(self, '_local__args', (args, kw)) object.__setattr__(self, '_local__lock', RLock()) if args or kw and (cls.__init__ is object.__init__): raise TypeError("Initialization arguments are not supported") # We need to create the thread dict in anticipation of # __init__ being called, to make sure we don't call it # again ourselves. dict = object.__getattribute__(self, '__dict__') currentThread().__dict__[key] = dict return self def _patch(self): key = object.__getattribute__(self, '_local__key') d = currentThread().__dict__.get(key) if d is None: d = {} currentThread().__dict__[key] = d object.__setattr__(self, '__dict__', d) # we have a new instance dict, so call out __init__ if we have # one cls = type(self) if cls.__init__ is not object.__init__: args, kw = object.__getattribute__(self, '_local__args') cls.__init__(self, *args, **kw) else: object.__setattr__(self, '__dict__', d) class local(_localbase): def __getattribute__(self, name): lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__getattribute__(self, name) finally: lock.release() def __setattr__(self, name, value): lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__setattr__(self, name, value) finally: lock.release() def __delattr__(self, name): lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__delattr__(self, name) finally: lock.release() def __del__(self): import threading key = object.__getattribute__(self, '_local__key') try: threads = list(threading.enumerate()) except: # If enumerate fails, as it seems to do during # shutdown, we'll skip cleanup under the assumption # that there is nothing to clean up. return for thread in threads: try: __dict__ = thread.__dict__ except AttributeError: # Thread is dying, rest in peace. continue if key in __dict__: try: del __dict__[key] except KeyError: pass # didn't have anything in this thread from threading import currentThread, RLock