ref: 464763202be7bdafa703c8c2ecfe1f4a5142f26f
dir: /sys/src/ape/lib/openssl/crypto/bn/asm/ppc.pl/
#!/usr/bin/env perl # # Implemented as a Perl wrapper as we want to support several different # architectures with single file. We pick up the target based on the # file name we are asked to generate. # # It should be noted though that this perl code is nothing like # <openssl>/crypto/perlasm/x86*. In this case perl is used pretty much # as pre-processor to cover for platform differences in name decoration, # linker tables, 32-/64-bit instruction sets... # # As you might know there're several PowerPC ABI in use. Most notably # Linux and AIX use different 32-bit ABIs. Good news are that these ABIs # are similar enough to implement leaf(!) functions, which would be ABI # neutral. And that's what you find here: ABI neutral leaf functions. # In case you wonder what that is... # # AIX performance # # MEASUREMENTS WITH cc ON a 200 MhZ PowerPC 604e. # # The following is the performance of 32-bit compiler # generated code: # # OpenSSL 0.9.6c 21 dec 2001 # built on: Tue Jun 11 11:06:51 EDT 2002 # options:bn(64,32) ... #compiler: cc -DTHREADS -DAIX -DB_ENDIAN -DBN_LLONG -O3 # sign verify sign/s verify/s #rsa 512 bits 0.0098s 0.0009s 102.0 1170.6 #rsa 1024 bits 0.0507s 0.0026s 19.7 387.5 #rsa 2048 bits 0.3036s 0.0085s 3.3 117.1 #rsa 4096 bits 2.0040s 0.0299s 0.5 33.4 #dsa 512 bits 0.0087s 0.0106s 114.3 94.5 #dsa 1024 bits 0.0256s 0.0313s 39.0 32.0 # # Same bechmark with this assembler code: # #rsa 512 bits 0.0056s 0.0005s 178.6 2049.2 #rsa 1024 bits 0.0283s 0.0015s 35.3 674.1 #rsa 2048 bits 0.1744s 0.0050s 5.7 201.2 #rsa 4096 bits 1.1644s 0.0179s 0.9 55.7 #dsa 512 bits 0.0052s 0.0062s 191.6 162.0 #dsa 1024 bits 0.0149s 0.0180s 67.0 55.5 # # Number of operations increases by at almost 75% # # Here are performance numbers for 64-bit compiler # generated code: # # OpenSSL 0.9.6g [engine] 9 Aug 2002 # built on: Fri Apr 18 16:59:20 EDT 2003 # options:bn(64,64) ... # compiler: cc -DTHREADS -D_REENTRANT -q64 -DB_ENDIAN -O3 # sign verify sign/s verify/s #rsa 512 bits 0.0028s 0.0003s 357.1 3844.4 #rsa 1024 bits 0.0148s 0.0008s 67.5 1239.7 #rsa 2048 bits 0.0963s 0.0028s 10.4 353.0 #rsa 4096 bits 0.6538s 0.0102s 1.5 98.1 #dsa 512 bits 0.0026s 0.0032s 382.5 313.7 #dsa 1024 bits 0.0081s 0.0099s 122.8 100.6 # # Same benchmark with this assembler code: # #rsa 512 bits 0.0020s 0.0002s 510.4 6273.7 #rsa 1024 bits 0.0088s 0.0005s 114.1 2128.3 #rsa 2048 bits 0.0540s 0.0016s 18.5 622.5 #rsa 4096 bits 0.3700s 0.0058s 2.7 171.0 #dsa 512 bits 0.0016s 0.0020s 610.7 507.1 #dsa 1024 bits 0.0047s 0.0058s 212.5 173.2 # # Again, performance increases by at about 75% # # Mac OS X, Apple G5 1.8GHz (Note this is 32 bit code) # OpenSSL 0.9.7c 30 Sep 2003 # # Original code. # #rsa 512 bits 0.0011s 0.0001s 906.1 11012.5 #rsa 1024 bits 0.0060s 0.0003s 166.6 3363.1 #rsa 2048 bits 0.0370s 0.0010s 27.1 982.4 #rsa 4096 bits 0.2426s 0.0036s 4.1 280.4 #dsa 512 bits 0.0010s 0.0012s 1038.1 841.5 #dsa 1024 bits 0.0030s 0.0037s 329.6 269.7 #dsa 2048 bits 0.0101s 0.0127s 98.9 78.6 # # Same benchmark with this assembler code: # #rsa 512 bits 0.0007s 0.0001s 1416.2 16645.9 #rsa 1024 bits 0.0036s 0.0002s 274.4 5380.6 #rsa 2048 bits 0.0222s 0.0006s 45.1 1589.5 #rsa 4096 bits 0.1469s 0.0022s 6.8 449.6 #dsa 512 bits 0.0006s 0.0007s 1664.2 1376.2 #dsa 1024 bits 0.0018s 0.0023s 545.0 442.2 #dsa 2048 bits 0.0061s 0.0075s 163.5 132.8 # # Performance increase of ~60% # # If you have comments or suggestions to improve code send # me a note at schari@us.ibm.com # $opf = shift; if ($opf =~ /32\.s/) { $BITS= 32; $BNSZ= $BITS/8; $ISA= "\"ppc\""; $LD= "lwz"; # load $LDU= "lwzu"; # load and update $ST= "stw"; # store $STU= "stwu"; # store and update $UMULL= "mullw"; # unsigned multiply low $UMULH= "mulhwu"; # unsigned multiply high $UDIV= "divwu"; # unsigned divide $UCMPI= "cmplwi"; # unsigned compare with immediate $UCMP= "cmplw"; # unsigned compare $CNTLZ= "cntlzw"; # count leading zeros $SHL= "slw"; # shift left $SHR= "srw"; # unsigned shift right $SHRI= "srwi"; # unsigned shift right by immediate $SHLI= "slwi"; # shift left by immediate $CLRU= "clrlwi"; # clear upper bits $INSR= "insrwi"; # insert right $ROTL= "rotlwi"; # rotate left by immediate $TR= "tw"; # conditional trap } elsif ($opf =~ /64\.s/) { $BITS= 64; $BNSZ= $BITS/8; $ISA= "\"ppc64\""; # same as above, but 64-bit mnemonics... $LD= "ld"; # load $LDU= "ldu"; # load and update $ST= "std"; # store $STU= "stdu"; # store and update $UMULL= "mulld"; # unsigned multiply low $UMULH= "mulhdu"; # unsigned multiply high $UDIV= "divdu"; # unsigned divide $UCMPI= "cmpldi"; # unsigned compare with immediate $UCMP= "cmpld"; # unsigned compare $CNTLZ= "cntlzd"; # count leading zeros $SHL= "sld"; # shift left $SHR= "srd"; # unsigned shift right $SHRI= "srdi"; # unsigned shift right by immediate $SHLI= "sldi"; # shift left by immediate $CLRU= "clrldi"; # clear upper bits $INSR= "insrdi"; # insert right $ROTL= "rotldi"; # rotate left by immediate $TR= "td"; # conditional trap } else { die "nonsense $opf"; } ( defined shift || open STDOUT,">$opf" ) || die "can't open $opf: $!"; # function entry points from the AIX code # # There are other, more elegant, ways to handle this. We (IBM) chose # this approach as it plays well with scripts we run to 'namespace' # OpenSSL .i.e. we add a prefix to all the public symbols so we can # co-exist in the same process with other implementations of OpenSSL. # 'cleverer' ways of doing these substitutions tend to hide data we # need to be obvious. # my @items = ("bn_sqr_comba4", "bn_sqr_comba8", "bn_mul_comba4", "bn_mul_comba8", "bn_sub_words", "bn_add_words", "bn_div_words", "bn_sqr_words", "bn_mul_words", "bn_mul_add_words"); if ($opf =~ /linux/) { do_linux(); } elsif ($opf =~ /aix/) { do_aix(); } elsif ($opf =~ /osx/) { do_osx(); } else { do_bsd(); } sub do_linux { $d=&data(); if ($BITS==64) { foreach $t (@items) { $d =~ s/\.$t:/\ \t.section\t".opd","aw"\ \t.align\t3\ \t.globl\t$t\ $t:\ \t.quad\t.$t,.TOC.\@tocbase,0\ \t.size\t$t,24\ \t.previous\n\ \t.type\t.$t,\@function\ \t.globl\t.$t\ .$t:/g; } } else { foreach $t (@items) { $d=~s/\.$t/$t/g; } } # hide internal labels to avoid pollution of name table... $d=~s/Lppcasm_/.Lppcasm_/gm; print $d; } sub do_aix { # AIX assembler is smart enough to please the linker without # making us do something special... print &data(); } # MacOSX 32 bit sub do_osx { $d=&data(); # Change the bn symbol prefix from '.' to '_' foreach $t (@items) { $d=~s/\.$t/_$t/g; } # Change .machine to something OS X asm will accept $d=~s/\.machine.*/.text/g; $d=~s/\#/;/g; # change comment from '#' to ';' print $d; } # BSD (Untested) sub do_bsd { $d=&data(); foreach $t (@items) { $d=~s/\.$t/_$t/g; } print $d; } sub data { local($data)=<<EOF; #-------------------------------------------------------------------- # # # # # File: ppc32.s # # Created by: Suresh Chari # IBM Thomas J. Watson Research Library # Hawthorne, NY # # # Description: Optimized assembly routines for OpenSSL crypto # on the 32 bitPowerPC platform. # # # Version History # # 2. Fixed bn_add,bn_sub and bn_div_words, added comments, # cleaned up code. Also made a single version which can # be used for both the AIX and Linux compilers. See NOTE # below. # 12/05/03 Suresh Chari # (with lots of help from) Andy Polyakov ## # 1. Initial version 10/20/02 Suresh Chari # # # The following file works for the xlc,cc # and gcc compilers. # # NOTE: To get the file to link correctly with the gcc compiler # you have to change the names of the routines and remove # the first .(dot) character. This should automatically # be done in the build process. # # Hand optimized assembly code for the following routines # # bn_sqr_comba4 # bn_sqr_comba8 # bn_mul_comba4 # bn_mul_comba8 # bn_sub_words # bn_add_words # bn_div_words # bn_sqr_words # bn_mul_words # bn_mul_add_words # # NOTE: It is possible to optimize this code more for # specific PowerPC or Power architectures. On the Northstar # architecture the optimizations in this file do # NOT provide much improvement. # # If you have comments or suggestions to improve code send # me a note at schari\@us.ibm.com # #-------------------------------------------------------------------------- # # Defines to be used in the assembly code. # .set r0,0 # we use it as storage for value of 0 .set SP,1 # preserved .set RTOC,2 # preserved .set r3,3 # 1st argument/return value .set r4,4 # 2nd argument/volatile register .set r5,5 # 3rd argument/volatile register .set r6,6 # ... .set r7,7 .set r8,8 .set r9,9 .set r10,10 .set r11,11 .set r12,12 .set r13,13 # not used, nor any other "below" it... .set BO_IF_NOT,4 .set BO_IF,12 .set BO_dCTR_NZERO,16 .set BO_dCTR_ZERO,18 .set BO_ALWAYS,20 .set CR0_LT,0; .set CR0_GT,1; .set CR0_EQ,2 .set CR1_FX,4; .set CR1_FEX,5; .set CR1_VX,6 .set LR,8 # Declare function names to be global # NOTE: For gcc these names MUST be changed to remove # the first . i.e. for example change ".bn_sqr_comba4" # to "bn_sqr_comba4". This should be automatically done # in the build. .globl .bn_sqr_comba4 .globl .bn_sqr_comba8 .globl .bn_mul_comba4 .globl .bn_mul_comba8 .globl .bn_sub_words .globl .bn_add_words .globl .bn_div_words .globl .bn_sqr_words .globl .bn_mul_words .globl .bn_mul_add_words # .text section .machine $ISA # # NOTE: The following label name should be changed to # "bn_sqr_comba4" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_sqr_comba4: # # Optimized version of bn_sqr_comba4. # # void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a) # r3 contains r # r4 contains a # # Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows: # # r5,r6 are the two BN_ULONGs being multiplied. # r7,r8 are the results of the 32x32 giving 64 bit multiply. # r9,r10, r11 are the equivalents of c1,c2, c3. # Here's the assembly # # xor r0,r0,r0 # set r0 = 0. Used in the addze # instructions below #sqr_add_c(a,0,c1,c2,c3) $LD r5,`0*$BNSZ`(r4) $UMULL r9,r5,r5 $UMULH r10,r5,r5 #in first iteration. No need #to add since c1=c2=c3=0. # Note c3(r11) is NOT set to 0 # but will be. $ST r9,`0*$BNSZ`(r3) # r[0]=c1; # sqr_add_c2(a,1,0,c2,c3,c1); $LD r6,`1*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r7,r7,r7 # compute (r7,r8)=2*(r7,r8) adde r8,r8,r8 addze r9,r0 # catch carry if any. # r9= r0(=0) and carry addc r10,r7,r10 # now add to temp result. addze r11,r8 # r8 added to r11 which is 0 addze r9,r9 $ST r10,`1*$BNSZ`(r3) #r[1]=c2; #sqr_add_c(a,1,c3,c1,c2) $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r0 #sqr_add_c2(a,2,0,c3,c1,c2) $LD r6,`2*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r7,r7,r7 adde r8,r8,r8 addze r10,r10 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 $ST r11,`2*$BNSZ`(r3) #r[2]=c3 #sqr_add_c2(a,3,0,c1,c2,c3); $LD r6,`3*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r7,r7,r7 adde r8,r8,r8 addze r11,r0 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 #sqr_add_c2(a,2,1,c1,c2,c3); $LD r5,`1*$BNSZ`(r4) $LD r6,`2*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r7,r7,r7 adde r8,r8,r8 addze r11,r11 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 $ST r9,`3*$BNSZ`(r3) #r[3]=c1 #sqr_add_c(a,2,c2,c3,c1); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r0 #sqr_add_c2(a,3,1,c2,c3,c1); $LD r6,`3*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r7,r7,r7 adde r8,r8,r8 addze r9,r9 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 $ST r10,`4*$BNSZ`(r3) #r[4]=c2 #sqr_add_c2(a,3,2,c3,c1,c2); $LD r5,`2*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r7,r7,r7 adde r8,r8,r8 addze r10,r0 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 $ST r11,`5*$BNSZ`(r3) #r[5] = c3 #sqr_add_c(a,3,c1,c2,c3); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r9,r7,r9 adde r10,r8,r10 $ST r9,`6*$BNSZ`(r3) #r[6]=c1 $ST r10,`7*$BNSZ`(r3) #r[7]=c2 bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_sqr_comba8" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_sqr_comba8: # # This is an optimized version of the bn_sqr_comba8 routine. # Tightly uses the adde instruction # # # void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a) # r3 contains r # r4 contains a # # Freely use registers r5,r6,r7,r8,r9,r10,r11 as follows: # # r5,r6 are the two BN_ULONGs being multiplied. # r7,r8 are the results of the 32x32 giving 64 bit multiply. # r9,r10, r11 are the equivalents of c1,c2, c3. # # Possible optimization of loading all 8 longs of a into registers # doesnt provide any speedup # xor r0,r0,r0 #set r0 = 0.Used in addze #instructions below. #sqr_add_c(a,0,c1,c2,c3); $LD r5,`0*$BNSZ`(r4) $UMULL r9,r5,r5 #1st iteration: no carries. $UMULH r10,r5,r5 $ST r9,`0*$BNSZ`(r3) # r[0]=c1; #sqr_add_c2(a,1,0,c2,c3,c1); $LD r6,`1*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 #add the two register number adde r11,r8,r0 # (r8,r7) to the three register addze r9,r0 # number (r9,r11,r10).NOTE:r0=0 addc r10,r7,r10 #add the two register number adde r11,r8,r11 # (r8,r7) to the three register addze r9,r9 # number (r9,r11,r10). $ST r10,`1*$BNSZ`(r3) # r[1]=c2 #sqr_add_c(a,1,c3,c1,c2); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r0 #sqr_add_c2(a,2,0,c3,c1,c2); $LD r6,`2*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 $ST r11,`2*$BNSZ`(r3) #r[2]=c3 #sqr_add_c2(a,3,0,c1,c2,c3); $LD r6,`3*$BNSZ`(r4) #r6 = a[3]. r5 is already a[0]. $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r0 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 #sqr_add_c2(a,2,1,c1,c2,c3); $LD r5,`1*$BNSZ`(r4) $LD r6,`2*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 $ST r9,`3*$BNSZ`(r3) #r[3]=c1; #sqr_add_c(a,2,c2,c3,c1); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r0 #sqr_add_c2(a,3,1,c2,c3,c1); $LD r6,`3*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 #sqr_add_c2(a,4,0,c2,c3,c1); $LD r5,`0*$BNSZ`(r4) $LD r6,`4*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 $ST r10,`4*$BNSZ`(r3) #r[4]=c2; #sqr_add_c2(a,5,0,c3,c1,c2); $LD r6,`5*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r0 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 #sqr_add_c2(a,4,1,c3,c1,c2); $LD r5,`1*$BNSZ`(r4) $LD r6,`4*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 #sqr_add_c2(a,3,2,c3,c1,c2); $LD r5,`2*$BNSZ`(r4) $LD r6,`3*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 $ST r11,`5*$BNSZ`(r3) #r[5]=c3; #sqr_add_c(a,3,c1,c2,c3); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r0 #sqr_add_c2(a,4,2,c1,c2,c3); $LD r6,`4*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 #sqr_add_c2(a,5,1,c1,c2,c3); $LD r5,`1*$BNSZ`(r4) $LD r6,`5*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 #sqr_add_c2(a,6,0,c1,c2,c3); $LD r5,`0*$BNSZ`(r4) $LD r6,`6*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 $ST r9,`6*$BNSZ`(r3) #r[6]=c1; #sqr_add_c2(a,7,0,c2,c3,c1); $LD r6,`7*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r0 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 #sqr_add_c2(a,6,1,c2,c3,c1); $LD r5,`1*$BNSZ`(r4) $LD r6,`6*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 #sqr_add_c2(a,5,2,c2,c3,c1); $LD r5,`2*$BNSZ`(r4) $LD r6,`5*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 #sqr_add_c2(a,4,3,c2,c3,c1); $LD r5,`3*$BNSZ`(r4) $LD r6,`4*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 $ST r10,`7*$BNSZ`(r3) #r[7]=c2; #sqr_add_c(a,4,c3,c1,c2); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r0 #sqr_add_c2(a,5,3,c3,c1,c2); $LD r6,`5*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 #sqr_add_c2(a,6,2,c3,c1,c2); $LD r5,`2*$BNSZ`(r4) $LD r6,`6*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 #sqr_add_c2(a,7,1,c3,c1,c2); $LD r5,`1*$BNSZ`(r4) $LD r6,`7*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 $ST r11,`8*$BNSZ`(r3) #r[8]=c3; #sqr_add_c2(a,7,2,c1,c2,c3); $LD r5,`2*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r0 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 #sqr_add_c2(a,6,3,c1,c2,c3); $LD r5,`3*$BNSZ`(r4) $LD r6,`6*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 #sqr_add_c2(a,5,4,c1,c2,c3); $LD r5,`4*$BNSZ`(r4) $LD r6,`5*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 $ST r9,`9*$BNSZ`(r3) #r[9]=c1; #sqr_add_c(a,5,c2,c3,c1); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r0 #sqr_add_c2(a,6,4,c2,c3,c1); $LD r6,`6*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 #sqr_add_c2(a,7,3,c2,c3,c1); $LD r5,`3*$BNSZ`(r4) $LD r6,`7*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 $ST r10,`10*$BNSZ`(r3) #r[10]=c2; #sqr_add_c2(a,7,4,c3,c1,c2); $LD r5,`4*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r0 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 #sqr_add_c2(a,6,5,c3,c1,c2); $LD r5,`5*$BNSZ`(r4) $LD r6,`6*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 addc r11,r7,r11 adde r9,r8,r9 addze r10,r10 $ST r11,`11*$BNSZ`(r3) #r[11]=c3; #sqr_add_c(a,6,c1,c2,c3); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r0 #sqr_add_c2(a,7,5,c1,c2,c3) $LD r6,`7*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 addc r9,r7,r9 adde r10,r8,r10 addze r11,r11 $ST r9,`12*$BNSZ`(r3) #r[12]=c1; #sqr_add_c2(a,7,6,c2,c3,c1) $LD r5,`6*$BNSZ`(r4) $UMULL r7,r5,r6 $UMULH r8,r5,r6 addc r10,r7,r10 adde r11,r8,r11 addze r9,r0 addc r10,r7,r10 adde r11,r8,r11 addze r9,r9 $ST r10,`13*$BNSZ`(r3) #r[13]=c2; #sqr_add_c(a,7,c3,c1,c2); $UMULL r7,r6,r6 $UMULH r8,r6,r6 addc r11,r7,r11 adde r9,r8,r9 $ST r11,`14*$BNSZ`(r3) #r[14]=c3; $ST r9, `15*$BNSZ`(r3) #r[15]=c1; bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_mul_comba4" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_mul_comba4: # # This is an optimized version of the bn_mul_comba4 routine. # # void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) # r3 contains r # r4 contains a # r5 contains b # r6, r7 are the 2 BN_ULONGs being multiplied. # r8, r9 are the results of the 32x32 giving 64 multiply. # r10, r11, r12 are the equivalents of c1, c2, and c3. # xor r0,r0,r0 #r0=0. Used in addze below. #mul_add_c(a[0],b[0],c1,c2,c3); $LD r6,`0*$BNSZ`(r4) $LD r7,`0*$BNSZ`(r5) $UMULL r10,r6,r7 $UMULH r11,r6,r7 $ST r10,`0*$BNSZ`(r3) #r[0]=c1 #mul_add_c(a[0],b[1],c2,c3,c1); $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r8,r11 adde r12,r9,r0 addze r10,r0 #mul_add_c(a[1],b[0],c2,c3,c1); $LD r6, `1*$BNSZ`(r4) $LD r7, `0*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r8,r11 adde r12,r9,r12 addze r10,r10 $ST r11,`1*$BNSZ`(r3) #r[1]=c2 #mul_add_c(a[2],b[0],c3,c1,c2); $LD r6,`2*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r8,r12 adde r10,r9,r10 addze r11,r0 #mul_add_c(a[1],b[1],c3,c1,c2); $LD r6,`1*$BNSZ`(r4) $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r8,r12 adde r10,r9,r10 addze r11,r11 #mul_add_c(a[0],b[2],c3,c1,c2); $LD r6,`0*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r8,r12 adde r10,r9,r10 addze r11,r11 $ST r12,`2*$BNSZ`(r3) #r[2]=c3 #mul_add_c(a[0],b[3],c1,c2,c3); $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r8,r10 adde r11,r9,r11 addze r12,r0 #mul_add_c(a[1],b[2],c1,c2,c3); $LD r6,`1*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r8,r10 adde r11,r9,r11 addze r12,r12 #mul_add_c(a[2],b[1],c1,c2,c3); $LD r6,`2*$BNSZ`(r4) $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r8,r10 adde r11,r9,r11 addze r12,r12 #mul_add_c(a[3],b[0],c1,c2,c3); $LD r6,`3*$BNSZ`(r4) $LD r7,`0*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r8,r10 adde r11,r9,r11 addze r12,r12 $ST r10,`3*$BNSZ`(r3) #r[3]=c1 #mul_add_c(a[3],b[1],c2,c3,c1); $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r8,r11 adde r12,r9,r12 addze r10,r0 #mul_add_c(a[2],b[2],c2,c3,c1); $LD r6,`2*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r8,r11 adde r12,r9,r12 addze r10,r10 #mul_add_c(a[1],b[3],c2,c3,c1); $LD r6,`1*$BNSZ`(r4) $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r8,r11 adde r12,r9,r12 addze r10,r10 $ST r11,`4*$BNSZ`(r3) #r[4]=c2 #mul_add_c(a[2],b[3],c3,c1,c2); $LD r6,`2*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r8,r12 adde r10,r9,r10 addze r11,r0 #mul_add_c(a[3],b[2],c3,c1,c2); $LD r6,`3*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r8,r12 adde r10,r9,r10 addze r11,r11 $ST r12,`5*$BNSZ`(r3) #r[5]=c3 #mul_add_c(a[3],b[3],c1,c2,c3); $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r8,r10 adde r11,r9,r11 $ST r10,`6*$BNSZ`(r3) #r[6]=c1 $ST r11,`7*$BNSZ`(r3) #r[7]=c2 bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_mul_comba8" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_mul_comba8: # # Optimized version of the bn_mul_comba8 routine. # # void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) # r3 contains r # r4 contains a # r5 contains b # r6, r7 are the 2 BN_ULONGs being multiplied. # r8, r9 are the results of the 32x32 giving 64 multiply. # r10, r11, r12 are the equivalents of c1, c2, and c3. # xor r0,r0,r0 #r0=0. Used in addze below. #mul_add_c(a[0],b[0],c1,c2,c3); $LD r6,`0*$BNSZ`(r4) #a[0] $LD r7,`0*$BNSZ`(r5) #b[0] $UMULL r10,r6,r7 $UMULH r11,r6,r7 $ST r10,`0*$BNSZ`(r3) #r[0]=c1; #mul_add_c(a[0],b[1],c2,c3,c1); $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 addze r12,r9 # since we didnt set r12 to zero before. addze r10,r0 #mul_add_c(a[1],b[0],c2,c3,c1); $LD r6,`1*$BNSZ`(r4) $LD r7,`0*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 $ST r11,`1*$BNSZ`(r3) #r[1]=c2; #mul_add_c(a[2],b[0],c3,c1,c2); $LD r6,`2*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r0 #mul_add_c(a[1],b[1],c3,c1,c2); $LD r6,`1*$BNSZ`(r4) $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[0],b[2],c3,c1,c2); $LD r6,`0*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 $ST r12,`2*$BNSZ`(r3) #r[2]=c3; #mul_add_c(a[0],b[3],c1,c2,c3); $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r0 #mul_add_c(a[1],b[2],c1,c2,c3); $LD r6,`1*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[2],b[1],c1,c2,c3); $LD r6,`2*$BNSZ`(r4) $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[3],b[0],c1,c2,c3); $LD r6,`3*$BNSZ`(r4) $LD r7,`0*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 $ST r10,`3*$BNSZ`(r3) #r[3]=c1; #mul_add_c(a[4],b[0],c2,c3,c1); $LD r6,`4*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r0 #mul_add_c(a[3],b[1],c2,c3,c1); $LD r6,`3*$BNSZ`(r4) $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[2],b[2],c2,c3,c1); $LD r6,`2*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[1],b[3],c2,c3,c1); $LD r6,`1*$BNSZ`(r4) $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[0],b[4],c2,c3,c1); $LD r6,`0*$BNSZ`(r4) $LD r7,`4*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 $ST r11,`4*$BNSZ`(r3) #r[4]=c2; #mul_add_c(a[0],b[5],c3,c1,c2); $LD r7,`5*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r0 #mul_add_c(a[1],b[4],c3,c1,c2); $LD r6,`1*$BNSZ`(r4) $LD r7,`4*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[2],b[3],c3,c1,c2); $LD r6,`2*$BNSZ`(r4) $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[3],b[2],c3,c1,c2); $LD r6,`3*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[4],b[1],c3,c1,c2); $LD r6,`4*$BNSZ`(r4) $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[5],b[0],c3,c1,c2); $LD r6,`5*$BNSZ`(r4) $LD r7,`0*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 $ST r12,`5*$BNSZ`(r3) #r[5]=c3; #mul_add_c(a[6],b[0],c1,c2,c3); $LD r6,`6*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r0 #mul_add_c(a[5],b[1],c1,c2,c3); $LD r6,`5*$BNSZ`(r4) $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[4],b[2],c1,c2,c3); $LD r6,`4*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[3],b[3],c1,c2,c3); $LD r6,`3*$BNSZ`(r4) $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[2],b[4],c1,c2,c3); $LD r6,`2*$BNSZ`(r4) $LD r7,`4*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[1],b[5],c1,c2,c3); $LD r6,`1*$BNSZ`(r4) $LD r7,`5*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[0],b[6],c1,c2,c3); $LD r6,`0*$BNSZ`(r4) $LD r7,`6*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 $ST r10,`6*$BNSZ`(r3) #r[6]=c1; #mul_add_c(a[0],b[7],c2,c3,c1); $LD r7,`7*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r0 #mul_add_c(a[1],b[6],c2,c3,c1); $LD r6,`1*$BNSZ`(r4) $LD r7,`6*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[2],b[5],c2,c3,c1); $LD r6,`2*$BNSZ`(r4) $LD r7,`5*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[3],b[4],c2,c3,c1); $LD r6,`3*$BNSZ`(r4) $LD r7,`4*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[4],b[3],c2,c3,c1); $LD r6,`4*$BNSZ`(r4) $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[5],b[2],c2,c3,c1); $LD r6,`5*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[6],b[1],c2,c3,c1); $LD r6,`6*$BNSZ`(r4) $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[7],b[0],c2,c3,c1); $LD r6,`7*$BNSZ`(r4) $LD r7,`0*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 $ST r11,`7*$BNSZ`(r3) #r[7]=c2; #mul_add_c(a[7],b[1],c3,c1,c2); $LD r7,`1*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r0 #mul_add_c(a[6],b[2],c3,c1,c2); $LD r6,`6*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[5],b[3],c3,c1,c2); $LD r6,`5*$BNSZ`(r4) $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[4],b[4],c3,c1,c2); $LD r6,`4*$BNSZ`(r4) $LD r7,`4*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[3],b[5],c3,c1,c2); $LD r6,`3*$BNSZ`(r4) $LD r7,`5*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[2],b[6],c3,c1,c2); $LD r6,`2*$BNSZ`(r4) $LD r7,`6*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[1],b[7],c3,c1,c2); $LD r6,`1*$BNSZ`(r4) $LD r7,`7*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 $ST r12,`8*$BNSZ`(r3) #r[8]=c3; #mul_add_c(a[2],b[7],c1,c2,c3); $LD r6,`2*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r0 #mul_add_c(a[3],b[6],c1,c2,c3); $LD r6,`3*$BNSZ`(r4) $LD r7,`6*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[4],b[5],c1,c2,c3); $LD r6,`4*$BNSZ`(r4) $LD r7,`5*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[5],b[4],c1,c2,c3); $LD r6,`5*$BNSZ`(r4) $LD r7,`4*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[6],b[3],c1,c2,c3); $LD r6,`6*$BNSZ`(r4) $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[7],b[2],c1,c2,c3); $LD r6,`7*$BNSZ`(r4) $LD r7,`2*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 $ST r10,`9*$BNSZ`(r3) #r[9]=c1; #mul_add_c(a[7],b[3],c2,c3,c1); $LD r7,`3*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r0 #mul_add_c(a[6],b[4],c2,c3,c1); $LD r6,`6*$BNSZ`(r4) $LD r7,`4*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[5],b[5],c2,c3,c1); $LD r6,`5*$BNSZ`(r4) $LD r7,`5*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[4],b[6],c2,c3,c1); $LD r6,`4*$BNSZ`(r4) $LD r7,`6*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 #mul_add_c(a[3],b[7],c2,c3,c1); $LD r6,`3*$BNSZ`(r4) $LD r7,`7*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 $ST r11,`10*$BNSZ`(r3) #r[10]=c2; #mul_add_c(a[4],b[7],c3,c1,c2); $LD r6,`4*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r0 #mul_add_c(a[5],b[6],c3,c1,c2); $LD r6,`5*$BNSZ`(r4) $LD r7,`6*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[6],b[5],c3,c1,c2); $LD r6,`6*$BNSZ`(r4) $LD r7,`5*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 #mul_add_c(a[7],b[4],c3,c1,c2); $LD r6,`7*$BNSZ`(r4) $LD r7,`4*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 addze r11,r11 $ST r12,`11*$BNSZ`(r3) #r[11]=c3; #mul_add_c(a[7],b[5],c1,c2,c3); $LD r7,`5*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r0 #mul_add_c(a[6],b[6],c1,c2,c3); $LD r6,`6*$BNSZ`(r4) $LD r7,`6*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 #mul_add_c(a[5],b[7],c1,c2,c3); $LD r6,`5*$BNSZ`(r4) $LD r7,`7*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r10,r10,r8 adde r11,r11,r9 addze r12,r12 $ST r10,`12*$BNSZ`(r3) #r[12]=c1; #mul_add_c(a[6],b[7],c2,c3,c1); $LD r6,`6*$BNSZ`(r4) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r0 #mul_add_c(a[7],b[6],c2,c3,c1); $LD r6,`7*$BNSZ`(r4) $LD r7,`6*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r11,r11,r8 adde r12,r12,r9 addze r10,r10 $ST r11,`13*$BNSZ`(r3) #r[13]=c2; #mul_add_c(a[7],b[7],c3,c1,c2); $LD r7,`7*$BNSZ`(r5) $UMULL r8,r6,r7 $UMULH r9,r6,r7 addc r12,r12,r8 adde r10,r10,r9 $ST r12,`14*$BNSZ`(r3) #r[14]=c3; $ST r10,`15*$BNSZ`(r3) #r[15]=c1; bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_sub_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # # .align 4 .bn_sub_words: # # Handcoded version of bn_sub_words # #BN_ULONG bn_sub_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) # # r3 = r # r4 = a # r5 = b # r6 = n # # Note: No loop unrolling done since this is not a performance # critical loop. xor r0,r0,r0 #set r0 = 0 # # check for r6 = 0 AND set carry bit. # subfc. r7,r0,r6 # If r6 is 0 then result is 0. # if r6 > 0 then result !=0 # In either case carry bit is set. bc BO_IF,CR0_EQ,Lppcasm_sub_adios addi r4,r4,-$BNSZ addi r3,r3,-$BNSZ addi r5,r5,-$BNSZ mtctr r6 Lppcasm_sub_mainloop: $LDU r7,$BNSZ(r4) $LDU r8,$BNSZ(r5) subfe r6,r8,r7 # r6 = r7+carry bit + onescomplement(r8) # if carry = 1 this is r7-r8. Else it # is r7-r8 -1 as we need. $STU r6,$BNSZ(r3) bc BO_dCTR_NZERO,CR0_EQ,Lppcasm_sub_mainloop Lppcasm_sub_adios: subfze r3,r0 # if carry bit is set then r3 = 0 else -1 andi. r3,r3,1 # keep only last bit. bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_add_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_add_words: # # Handcoded version of bn_add_words # #BN_ULONG bn_add_words(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n) # # r3 = r # r4 = a # r5 = b # r6 = n # # Note: No loop unrolling done since this is not a performance # critical loop. xor r0,r0,r0 # # check for r6 = 0. Is this needed? # addic. r6,r6,0 #test r6 and clear carry bit. bc BO_IF,CR0_EQ,Lppcasm_add_adios addi r4,r4,-$BNSZ addi r3,r3,-$BNSZ addi r5,r5,-$BNSZ mtctr r6 Lppcasm_add_mainloop: $LDU r7,$BNSZ(r4) $LDU r8,$BNSZ(r5) adde r8,r7,r8 $STU r8,$BNSZ(r3) bc BO_dCTR_NZERO,CR0_EQ,Lppcasm_add_mainloop Lppcasm_add_adios: addze r3,r0 #return carry bit. bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_div_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_div_words: # # This is a cleaned up version of code generated by # the AIX compiler. The only optimization is to use # the PPC instruction to count leading zeros instead # of call to num_bits_word. Since this was compiled # only at level -O2 we can possibly squeeze it more? # # r3 = h # r4 = l # r5 = d $UCMPI 0,r5,0 # compare r5 and 0 bc BO_IF_NOT,CR0_EQ,Lppcasm_div1 # proceed if d!=0 li r3,-1 # d=0 return -1 bclr BO_ALWAYS,CR0_LT Lppcasm_div1: xor r0,r0,r0 #r0=0 li r8,$BITS $CNTLZ. r7,r5 #r7 = num leading 0s in d. bc BO_IF,CR0_EQ,Lppcasm_div2 #proceed if no leading zeros subf r8,r7,r8 #r8 = BN_num_bits_word(d) $SHR. r9,r3,r8 #are there any bits above r8'th? $TR 16,r9,r0 #if there're, signal to dump core... Lppcasm_div2: $UCMP 0,r3,r5 #h>=d? bc BO_IF,CR0_LT,Lppcasm_div3 #goto Lppcasm_div3 if not subf r3,r5,r3 #h-=d ; Lppcasm_div3: #r7 = BN_BITS2-i. so r7=i cmpi 0,0,r7,0 # is (i == 0)? bc BO_IF,CR0_EQ,Lppcasm_div4 $SHL r3,r3,r7 # h = (h<< i) $SHR r8,r4,r8 # r8 = (l >> BN_BITS2 -i) $SHL r5,r5,r7 # d<<=i or r3,r3,r8 # h = (h<<i)|(l>>(BN_BITS2-i)) $SHL r4,r4,r7 # l <<=i Lppcasm_div4: $SHRI r9,r5,`$BITS/2` # r9 = dh # dl will be computed when needed # as it saves registers. li r6,2 #r6=2 mtctr r6 #counter will be in count. Lppcasm_divouterloop: $SHRI r8,r3,`$BITS/2` #r8 = (h>>BN_BITS4) $SHRI r11,r4,`$BITS/2` #r11= (l&BN_MASK2h)>>BN_BITS4 # compute here for innerloop. $UCMP 0,r8,r9 # is (h>>BN_BITS4)==dh bc BO_IF_NOT,CR0_EQ,Lppcasm_div5 # goto Lppcasm_div5 if not li r8,-1 $CLRU r8,r8,`$BITS/2` #q = BN_MASK2l b Lppcasm_div6 Lppcasm_div5: $UDIV r8,r3,r9 #q = h/dh Lppcasm_div6: $UMULL r12,r9,r8 #th = q*dh $CLRU r10,r5,`$BITS/2` #r10=dl $UMULL r6,r8,r10 #tl = q*dl Lppcasm_divinnerloop: subf r10,r12,r3 #t = h -th $SHRI r7,r10,`$BITS/2` #r7= (t &BN_MASK2H), sort of... addic. r7,r7,0 #test if r7 == 0. used below. # now want to compute # r7 = (t<<BN_BITS4)|((l&BN_MASK2h)>>BN_BITS4) # the following 2 instructions do that $SHLI r7,r10,`$BITS/2` # r7 = (t<<BN_BITS4) or r7,r7,r11 # r7|=((l&BN_MASK2h)>>BN_BITS4) $UCMP 1,r6,r7 # compare (tl <= r7) bc BO_IF_NOT,CR0_EQ,Lppcasm_divinnerexit bc BO_IF_NOT,CR1_FEX,Lppcasm_divinnerexit addi r8,r8,-1 #q-- subf r12,r9,r12 #th -=dh $CLRU r10,r5,`$BITS/2` #r10=dl. t is no longer needed in loop. subf r6,r10,r6 #tl -=dl b Lppcasm_divinnerloop Lppcasm_divinnerexit: $SHRI r10,r6,`$BITS/2` #t=(tl>>BN_BITS4) $SHLI r11,r6,`$BITS/2` #tl=(tl<<BN_BITS4)&BN_MASK2h; $UCMP 1,r4,r11 # compare l and tl add r12,r12,r10 # th+=t bc BO_IF_NOT,CR1_FX,Lppcasm_div7 # if (l>=tl) goto Lppcasm_div7 addi r12,r12,1 # th++ Lppcasm_div7: subf r11,r11,r4 #r11=l-tl $UCMP 1,r3,r12 #compare h and th bc BO_IF_NOT,CR1_FX,Lppcasm_div8 #if (h>=th) goto Lppcasm_div8 addi r8,r8,-1 # q-- add r3,r5,r3 # h+=d Lppcasm_div8: subf r12,r12,r3 #r12 = h-th $SHLI r4,r11,`$BITS/2` #l=(l&BN_MASK2l)<<BN_BITS4 # want to compute # h = ((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2 # the following 2 instructions will do this. $INSR r11,r12,`$BITS/2`,`$BITS/2` # r11 is the value we want rotated $BITS/2. $ROTL r3,r11,`$BITS/2` # rotate by $BITS/2 and store in r3 bc BO_dCTR_ZERO,CR0_EQ,Lppcasm_div9#if (count==0) break ; $SHLI r0,r8,`$BITS/2` #ret =q<<BN_BITS4 b Lppcasm_divouterloop Lppcasm_div9: or r3,r8,r0 bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_sqr_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_sqr_words: # # Optimized version of bn_sqr_words # # void bn_sqr_words(BN_ULONG *r, BN_ULONG *a, int n) # # r3 = r # r4 = a # r5 = n # # r6 = a[i]. # r7,r8 = product. # # No unrolling done here. Not performance critical. addic. r5,r5,0 #test r5. bc BO_IF,CR0_EQ,Lppcasm_sqr_adios addi r4,r4,-$BNSZ addi r3,r3,-$BNSZ mtctr r5 Lppcasm_sqr_mainloop: #sqr(r[0],r[1],a[0]); $LDU r6,$BNSZ(r4) $UMULL r7,r6,r6 $UMULH r8,r6,r6 $STU r7,$BNSZ(r3) $STU r8,$BNSZ(r3) bc BO_dCTR_NZERO,CR0_EQ,Lppcasm_sqr_mainloop Lppcasm_sqr_adios: bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_mul_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_mul_words: # # BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) # # r3 = rp # r4 = ap # r5 = num # r6 = w xor r0,r0,r0 xor r12,r12,r12 # used for carry rlwinm. r7,r5,30,2,31 # num >> 2 bc BO_IF,CR0_EQ,Lppcasm_mw_REM mtctr r7 Lppcasm_mw_LOOP: #mul(rp[0],ap[0],w,c1); $LD r8,`0*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 #addze r10,r10 #carry is NOT ignored. #will be taken care of #in second spin below #using adde. $ST r9,`0*$BNSZ`(r3) #mul(rp[1],ap[1],w,c1); $LD r8,`1*$BNSZ`(r4) $UMULL r11,r6,r8 $UMULH r12,r6,r8 adde r11,r11,r10 #addze r12,r12 $ST r11,`1*$BNSZ`(r3) #mul(rp[2],ap[2],w,c1); $LD r8,`2*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 adde r9,r9,r12 #addze r10,r10 $ST r9,`2*$BNSZ`(r3) #mul_add(rp[3],ap[3],w,c1); $LD r8,`3*$BNSZ`(r4) $UMULL r11,r6,r8 $UMULH r12,r6,r8 adde r11,r11,r10 addze r12,r12 #this spin we collect carry into #r12 $ST r11,`3*$BNSZ`(r3) addi r3,r3,`4*$BNSZ` addi r4,r4,`4*$BNSZ` bc BO_dCTR_NZERO,CR0_EQ,Lppcasm_mw_LOOP Lppcasm_mw_REM: andi. r5,r5,0x3 bc BO_IF,CR0_EQ,Lppcasm_mw_OVER #mul(rp[0],ap[0],w,c1); $LD r8,`0*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 addze r10,r10 $ST r9,`0*$BNSZ`(r3) addi r12,r10,0 addi r5,r5,-1 cmpli 0,0,r5,0 bc BO_IF,CR0_EQ,Lppcasm_mw_OVER #mul(rp[1],ap[1],w,c1); $LD r8,`1*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 addze r10,r10 $ST r9,`1*$BNSZ`(r3) addi r12,r10,0 addi r5,r5,-1 cmpli 0,0,r5,0 bc BO_IF,CR0_EQ,Lppcasm_mw_OVER #mul_add(rp[2],ap[2],w,c1); $LD r8,`2*$BNSZ`(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 addze r10,r10 $ST r9,`2*$BNSZ`(r3) addi r12,r10,0 Lppcasm_mw_OVER: addi r3,r12,0 bclr BO_ALWAYS,CR0_LT .long 0x00000000 # # NOTE: The following label name should be changed to # "bn_mul_add_words" i.e. remove the first dot # for the gcc compiler. This should be automatically # done in the build # .align 4 .bn_mul_add_words: # # BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w) # # r3 = rp # r4 = ap # r5 = num # r6 = w # # empirical evidence suggests that unrolled version performs best!! # xor r0,r0,r0 #r0 = 0 xor r12,r12,r12 #r12 = 0 . used for carry rlwinm. r7,r5,30,2,31 # num >> 2 bc BO_IF,CR0_EQ,Lppcasm_maw_leftover # if (num < 4) go LPPCASM_maw_leftover mtctr r7 Lppcasm_maw_mainloop: #mul_add(rp[0],ap[0],w,c1); $LD r8,`0*$BNSZ`(r4) $LD r11,`0*$BNSZ`(r3) $UMULL r9,r6,r8 $UMULH r10,r6,r8 addc r9,r9,r12 #r12 is carry. addze r10,r10 addc r9,r9,r11 #addze r10,r10 #the above instruction addze #is NOT needed. Carry will NOT #be ignored. It's not affected #by multiply and will be collected #in the next spin $ST r9,`0*$BNSZ`(r3) #mul_add(rp[1],ap[1],w,c1); $LD r8,`1*$BNSZ`(r4) $LD r9,`1*$BNSZ`(r3) $UMULL r11,r6,r8 $UMULH r12,r6,r8 adde r11,r11,r10 #r10 is carry. addze r12,r12 addc r11,r11,r9 #addze r12,r12 $ST r11,`1*$BNSZ`(r3) #mul_add(rp[2],ap[2],w,c1); $LD r8,`2*$BNSZ`(r4) $UMULL r9,r6,r8 $LD r11,`2*$BNSZ`(r3) $UMULH r10,r6,r8 adde r9,r9,r12 addze r10,r10 addc r9,r9,r11 #addze r10,r10 $ST r9,`2*$BNSZ`(r3) #mul_add(rp[3],ap[3],w,c1); $LD r8,`3*$BNSZ`(r4) $UMULL r11,r6,r8 $LD r9,`3*$BNSZ`(r3) $UMULH r12,r6,r8 adde r11,r11,r10 addze r12,r12 addc r11,r11,r9 addze r12,r12 $ST r11,`3*$BNSZ`(r3) addi r3,r3,`4*$BNSZ` addi r4,r4,`4*$BNSZ` bc BO_dCTR_NZERO,CR0_EQ,Lppcasm_maw_mainloop Lppcasm_maw_leftover: andi. r5,r5,0x3 bc BO_IF,CR0_EQ,Lppcasm_maw_adios addi r3,r3,-$BNSZ addi r4,r4,-$BNSZ #mul_add(rp[0],ap[0],w,c1); mtctr r5 $LDU r8,$BNSZ(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 $LDU r11,$BNSZ(r3) addc r9,r9,r11 addze r10,r10 addc r9,r9,r12 addze r12,r10 $ST r9,0(r3) bc BO_dCTR_ZERO,CR0_EQ,Lppcasm_maw_adios #mul_add(rp[1],ap[1],w,c1); $LDU r8,$BNSZ(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 $LDU r11,$BNSZ(r3) addc r9,r9,r11 addze r10,r10 addc r9,r9,r12 addze r12,r10 $ST r9,0(r3) bc BO_dCTR_ZERO,CR0_EQ,Lppcasm_maw_adios #mul_add(rp[2],ap[2],w,c1); $LDU r8,$BNSZ(r4) $UMULL r9,r6,r8 $UMULH r10,r6,r8 $LDU r11,$BNSZ(r3) addc r9,r9,r11 addze r10,r10 addc r9,r9,r12 addze r12,r10 $ST r9,0(r3) Lppcasm_maw_adios: addi r3,r12,0 bclr BO_ALWAYS,CR0_LT .long 0x00000000 .align 4 EOF $data =~ s/\`([^\`]*)\`/eval $1/gem; # if some assembler chokes on some simplified mnemonic, # this is the spot to fix it up, e.g.: # GNU as doesn't seem to accept cmplw, 32-bit unsigned compare $data =~ s/^(\s*)cmplw(\s+)([^,]+),(.*)/$1cmpl$2$3,0,$4/gm; # assembler X doesn't accept li, load immediate value #$data =~ s/^(\s*)li(\s+)([^,]+),(.*)/$1addi$2$3,0,$4/gm; return($data); }