ref: 8150f689959f71410f56ab66c0e89698c58459bc
dir: /sys/src/cmd/audio/mp3dec/layer12.c/
/* * libmad - MPEG audio decoder library * Copyright (C) 2000-2004 Underbit Technologies, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * $Id: layer12.c,v 1.17 2004/02/05 09:02:39 rob Exp $ */ # ifdef HAVE_CONFIG_H # include "config.h" # endif # include "global.h" # ifdef HAVE_LIMITS_H # include <limits.h> # else # define CHAR_BIT 8 # endif # include "fixed.h" # include "bit.h" # include "stream.h" # include "frame.h" # include "layer12.h" /* * scalefactor table * used in both Layer I and Layer II decoding */ static mad_fixed_t const sf_table[64] = { # include "sf_table.dat" }; /* --- Layer I ------------------------------------------------------------- */ /* linear scaling table */ static mad_fixed_t const linear_table[14] = { MAD_F(0x15555555), /* 2^2 / (2^2 - 1) == 1.33333333333333 */ MAD_F(0x12492492), /* 2^3 / (2^3 - 1) == 1.14285714285714 */ MAD_F(0x11111111), /* 2^4 / (2^4 - 1) == 1.06666666666667 */ MAD_F(0x10842108), /* 2^5 / (2^5 - 1) == 1.03225806451613 */ MAD_F(0x10410410), /* 2^6 / (2^6 - 1) == 1.01587301587302 */ MAD_F(0x10204081), /* 2^7 / (2^7 - 1) == 1.00787401574803 */ MAD_F(0x10101010), /* 2^8 / (2^8 - 1) == 1.00392156862745 */ MAD_F(0x10080402), /* 2^9 / (2^9 - 1) == 1.00195694716243 */ MAD_F(0x10040100), /* 2^10 / (2^10 - 1) == 1.00097751710655 */ MAD_F(0x10020040), /* 2^11 / (2^11 - 1) == 1.00048851978505 */ MAD_F(0x10010010), /* 2^12 / (2^12 - 1) == 1.00024420024420 */ MAD_F(0x10008004), /* 2^13 / (2^13 - 1) == 1.00012208521548 */ MAD_F(0x10004001), /* 2^14 / (2^14 - 1) == 1.00006103888177 */ MAD_F(0x10002000) /* 2^15 / (2^15 - 1) == 1.00003051850948 */ }; /* * NAME: I_sample() * DESCRIPTION: decode one requantized Layer I sample from a bitstream */ static mad_fixed_t I_sample(struct mad_bitptr *ptr, unsigned int nb) { mad_fixed_t sample; sample = mad_bit_read(ptr, nb); /* invert most significant bit, extend sign, then scale to fixed format */ sample ^= 1 << (nb - 1); sample |= -(sample & (1 << (nb - 1))); sample <<= MAD_F_FRACBITS - (nb - 1); /* requantize the sample */ /* s'' = (2^nb / (2^nb - 1)) * (s''' + 2^(-nb + 1)) */ sample += MAD_F_ONE >> (nb - 1); return mad_f_mul(sample, linear_table[nb - 2]); /* s' = factor * s'' */ /* (to be performed by caller) */ } /* * NAME: layer->I() * DESCRIPTION: decode a single Layer I frame */ int mad_layer_I(struct mad_stream *stream, struct mad_frame *frame) { struct mad_header *header = &frame->header; unsigned int nch, bound, ch, s, sb, nb; unsigned char allocation[2][32], scalefactor[2][32]; nch = MAD_NCHANNELS(header); bound = 32; if (header->mode == MAD_MODE_JOINT_STEREO) { header->flags |= MAD_FLAG_I_STEREO; bound = 4 + header->mode_extension * 4; } /* check CRC word */ if (header->flags & MAD_FLAG_PROTECTION) { header->crc_check = mad_bit_crc(stream->ptr, 4 * (bound * nch + (32 - bound)), header->crc_check); if (header->crc_check != header->crc_target && !(frame->options & MAD_OPTION_IGNORECRC)) { stream->error = MAD_ERROR_BADCRC; return -1; } } /* decode bit allocations */ for (sb = 0; sb < bound; ++sb) { for (ch = 0; ch < nch; ++ch) { nb = mad_bit_read(&stream->ptr, 4); if (nb == 15) { stream->error = MAD_ERROR_BADBITALLOC; return -1; } allocation[ch][sb] = nb ? nb + 1 : 0; } } for (sb = bound; sb < 32; ++sb) { nb = mad_bit_read(&stream->ptr, 4); if (nb == 15) { stream->error = MAD_ERROR_BADBITALLOC; return -1; } allocation[0][sb] = allocation[1][sb] = nb ? nb + 1 : 0; } /* decode scalefactors */ for (sb = 0; sb < 32; ++sb) { for (ch = 0; ch < nch; ++ch) { if (allocation[ch][sb]) { scalefactor[ch][sb] = mad_bit_read(&stream->ptr, 6); # if defined(OPT_STRICT) /* * Scalefactor index 63 does not appear in Table B.1 of * ISO/IEC 11172-3. Nonetheless, other implementations accept it, * so we only reject it if OPT_STRICT is defined. */ if (scalefactor[ch][sb] == 63) { stream->error = MAD_ERROR_BADSCALEFACTOR; return -1; } # endif } } } /* decode samples */ for (s = 0; s < 12; ++s) { for (sb = 0; sb < bound; ++sb) { for (ch = 0; ch < nch; ++ch) { nb = allocation[ch][sb]; frame->sbsample[ch][s][sb] = nb ? mad_f_mul(I_sample(&stream->ptr, nb), sf_table[scalefactor[ch][sb]]) : 0; } } for (sb = bound; sb < 32; ++sb) { if ((nb = allocation[0][sb])) { mad_fixed_t sample; sample = I_sample(&stream->ptr, nb); for (ch = 0; ch < nch; ++ch) { frame->sbsample[ch][s][sb] = mad_f_mul(sample, sf_table[scalefactor[ch][sb]]); } } else { for (ch = 0; ch < nch; ++ch) frame->sbsample[ch][s][sb] = 0; } } } return 0; } /* --- Layer II ------------------------------------------------------------ */ /* possible quantization per subband table */ static struct { unsigned int sblimit; unsigned char const offsets[30]; } const sbquant_table[5] = { /* ISO/IEC 11172-3 Table B.2a */ { 27, { 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, /* 0 */ 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0 } }, /* ISO/IEC 11172-3 Table B.2b */ { 30, { 7, 7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, /* 1 */ 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0 } }, /* ISO/IEC 11172-3 Table B.2c */ { 8, { 5, 5, 2, 2, 2, 2, 2, 2 } }, /* 2 */ /* ISO/IEC 11172-3 Table B.2d */ { 12, { 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 } }, /* 3 */ /* ISO/IEC 13818-3 Table B.1 */ { 30, { 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, /* 4 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 } } }; /* bit allocation table */ static struct { unsigned short nbal; unsigned short offset; } const bitalloc_table[8] = { { 2, 0 }, /* 0 */ { 2, 3 }, /* 1 */ { 3, 3 }, /* 2 */ { 3, 1 }, /* 3 */ { 4, 2 }, /* 4 */ { 4, 3 }, /* 5 */ { 4, 4 }, /* 6 */ { 4, 5 } /* 7 */ }; /* offsets into quantization class table */ static unsigned char const offset_table[6][15] = { { 0, 1, 16 }, /* 0 */ { 0, 1, 2, 3, 4, 5, 16 }, /* 1 */ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, /* 2 */ { 0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, /* 3 */ { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16 }, /* 4 */ { 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 } /* 5 */ }; /* quantization class table */ static struct quantclass { unsigned short nlevels; unsigned char group; unsigned char bits; mad_fixed_t C; mad_fixed_t D; } const qc_table[17] = { # include "qc_table.dat" }; /* * NAME: II_samples() * DESCRIPTION: decode three requantized Layer II samples from a bitstream */ static void II_samples(struct mad_bitptr *ptr, struct quantclass const *quantclass, mad_fixed_t output[3]) { unsigned int nb, s, sample[3]; if ((nb = quantclass->group)) { unsigned int c, nlevels; /* degrouping */ c = mad_bit_read(ptr, quantclass->bits); nlevels = quantclass->nlevels; for (s = 0; s < 3; ++s) { sample[s] = c % nlevels; c /= nlevels; } } else { nb = quantclass->bits; for (s = 0; s < 3; ++s) sample[s] = mad_bit_read(ptr, nb); } for (s = 0; s < 3; ++s) { mad_fixed_t requantized; /* invert most significant bit, extend sign, then scale to fixed format */ requantized = sample[s] ^ (1 << (nb - 1)); requantized |= -(requantized & (1 << (nb - 1))); requantized <<= MAD_F_FRACBITS - (nb - 1); /* requantize the sample */ /* s'' = C * (s''' + D) */ output[s] = mad_f_mul(requantized + quantclass->D, quantclass->C); /* s' = factor * s'' */ /* (to be performed by caller) */ } } /* * NAME: layer->II() * DESCRIPTION: decode a single Layer II frame */ int mad_layer_II(struct mad_stream *stream, struct mad_frame *frame) { struct mad_header *header = &frame->header; struct mad_bitptr start; unsigned int index, sblimit, nbal, nch, bound, gr, ch, s, sb; unsigned char const *offsets; unsigned char allocation[2][32], scfsi[2][32], scalefactor[2][32][3]; mad_fixed_t samples[3]; nch = MAD_NCHANNELS(header); if (header->flags & MAD_FLAG_LSF_EXT) index = 4; else if (header->flags & MAD_FLAG_FREEFORMAT) goto freeformat; else { unsigned long bitrate_per_channel; bitrate_per_channel = header->bitrate; if (nch == 2) { bitrate_per_channel /= 2; # if defined(OPT_STRICT) /* * ISO/IEC 11172-3 allows only single channel mode for 32, 48, 56, and * 80 kbps bitrates in Layer II, but some encoders ignore this * restriction. We enforce it if OPT_STRICT is defined. */ if (bitrate_per_channel <= 28000 || bitrate_per_channel == 40000) { stream->error = MAD_ERROR_BADMODE; return -1; } # endif } else { /* nch == 1 */ if (bitrate_per_channel > 192000) { /* * ISO/IEC 11172-3 does not allow single channel mode for 224, 256, * 320, or 384 kbps bitrates in Layer II. */ stream->error = MAD_ERROR_BADMODE; return -1; } } if (bitrate_per_channel <= 48000) index = (header->samplerate == 32000) ? 3 : 2; else if (bitrate_per_channel <= 80000) index = 0; else { freeformat: index = (header->samplerate == 48000) ? 0 : 1; } } sblimit = sbquant_table[index].sblimit; offsets = sbquant_table[index].offsets; bound = 32; if (header->mode == MAD_MODE_JOINT_STEREO) { header->flags |= MAD_FLAG_I_STEREO; bound = 4 + header->mode_extension * 4; } if (bound > sblimit) bound = sblimit; start = stream->ptr; /* decode bit allocations */ for (sb = 0; sb < bound; ++sb) { nbal = bitalloc_table[offsets[sb]].nbal; for (ch = 0; ch < nch; ++ch) allocation[ch][sb] = mad_bit_read(&stream->ptr, nbal); } for (sb = bound; sb < sblimit; ++sb) { nbal = bitalloc_table[offsets[sb]].nbal; allocation[0][sb] = allocation[1][sb] = mad_bit_read(&stream->ptr, nbal); } /* decode scalefactor selection info */ for (sb = 0; sb < sblimit; ++sb) { for (ch = 0; ch < nch; ++ch) { if (allocation[ch][sb]) scfsi[ch][sb] = mad_bit_read(&stream->ptr, 2); } } /* check CRC word */ if (header->flags & MAD_FLAG_PROTECTION) { header->crc_check = mad_bit_crc(start, mad_bit_length(&start, &stream->ptr), header->crc_check); if (header->crc_check != header->crc_target && !(frame->options & MAD_OPTION_IGNORECRC)) { stream->error = MAD_ERROR_BADCRC; return -1; } } /* decode scalefactors */ for (sb = 0; sb < sblimit; ++sb) { for (ch = 0; ch < nch; ++ch) { if (allocation[ch][sb]) { scalefactor[ch][sb][0] = mad_bit_read(&stream->ptr, 6); switch (scfsi[ch][sb]) { case 2: scalefactor[ch][sb][2] = scalefactor[ch][sb][1] = scalefactor[ch][sb][0]; break; case 0: scalefactor[ch][sb][1] = mad_bit_read(&stream->ptr, 6); /* fall through */ case 1: case 3: scalefactor[ch][sb][2] = mad_bit_read(&stream->ptr, 6); } if (scfsi[ch][sb] & 1) scalefactor[ch][sb][1] = scalefactor[ch][sb][scfsi[ch][sb] - 1]; # if defined(OPT_STRICT) /* * Scalefactor index 63 does not appear in Table B.1 of * ISO/IEC 11172-3. Nonetheless, other implementations accept it, * so we only reject it if OPT_STRICT is defined. */ if (scalefactor[ch][sb][0] == 63 || scalefactor[ch][sb][1] == 63 || scalefactor[ch][sb][2] == 63) { stream->error = MAD_ERROR_BADSCALEFACTOR; return -1; } # endif } } } /* decode samples */ for (gr = 0; gr < 12; ++gr) { for (sb = 0; sb < bound; ++sb) { for (ch = 0; ch < nch; ++ch) { if ((index = allocation[ch][sb])) { index = offset_table[bitalloc_table[offsets[sb]].offset][index - 1]; II_samples(&stream->ptr, &qc_table[index], samples); for (s = 0; s < 3; ++s) { frame->sbsample[ch][3 * gr + s][sb] = mad_f_mul(samples[s], sf_table[scalefactor[ch][sb][gr / 4]]); } } else { for (s = 0; s < 3; ++s) frame->sbsample[ch][3 * gr + s][sb] = 0; } } } for (sb = bound; sb < sblimit; ++sb) { if ((index = allocation[0][sb])) { index = offset_table[bitalloc_table[offsets[sb]].offset][index - 1]; II_samples(&stream->ptr, &qc_table[index], samples); for (ch = 0; ch < nch; ++ch) { for (s = 0; s < 3; ++s) { frame->sbsample[ch][3 * gr + s][sb] = mad_f_mul(samples[s], sf_table[scalefactor[ch][sb][gr / 4]]); } } } else { for (ch = 0; ch < nch; ++ch) { for (s = 0; s < 3; ++s) frame->sbsample[ch][3 * gr + s][sb] = 0; } } } for (ch = 0; ch < nch; ++ch) { for (s = 0; s < 3; ++s) { for (sb = sblimit; sb < 32; ++sb) frame->sbsample[ch][3 * gr + s][sb] = 0; } } } return 0; }