ref: 899ec4d0b568a6d51a85e5344733a2189a7ba1ec
dir: /sys/src/cmd/audio/mp3enc/pcm.h/
/*{{{ #defines */ #include <limits.h> #include "lame.h" #include "util.h" #define ENCDELAY 576 #define MDCTDELAY 48 #define BLKSIZE 1024 #define HBLKSIZE (BLKSIZE/2 + 1) #define BLKSIZE_s 256 #define HBLKSIZE_s (BLKSIZE_s/2 + 1) #define MAX_TABLES 1002 #define TAPS 32 #define WINDOW_SIZE 15.5 #define WINDOW hanning #define inline __inline #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define MAX(a,b) ((a) > (b) ? (a) : (b)) #ifndef M_PIl # define M_PIl 3.1415926535897932384626433832795029L #endif #define SIN sin #define COS cos /*}}}*/ /*{{{ object ID's */ #define RESAMPLE_ID 0x52455341LU #define PSYCHO_ID 0x50535943LU #define BITSTREAM_ID 0x42495453LU /*}}}*/ /*{{{ typedef's */ typedef float float32_t; // IEEE-754 32 bit floating point typedef double float64_t; // IEEE-754 64 bit floating point typedef long double float80_t; // IEEE-854 80 bit floating point, if available typedef long double float_t; // temporarly results of float operations typedef long double double_t; // temporarly results of double operations typedef long double longdouble_t; // temporarly results of long double operations typedef float_t (*scalar_t) ( const sample_t* p, const sample_t* q ); typedef float_t (*scalarn_t) ( const sample_t* p, const sample_t* q, size_t len ); /*}}}*/ /*{{{ data direction attributes */ /* * These are data stream direction attributes like used in Ada83/Ada95 and in RPC * The data direction is seen from the caller to the calling function. * Examples: * * size_t fread ( void INOUT* buffer, size_t items, size_t itemsize, FILE INOUT* fp ); * size_t fwrite ( void OUT * buffer, size_t items, size_t itemsize, FILE INOUT* fp ); * size_t memset ( void IN * buffer, unsigned char value, size_t size ); * * Return values are implizit IN (note that here C uses the opposite attribute). * Arguments not transmitted via references are implizit OUT. */ #define OUT /* [out] */ const #define INOUT /* [inout] */ #define IN /* [in] */ #define OUTTR /* [out]: data is modified like [inout], but you don't get any useful back */ /*}}}*/ /*{{{ Test some error conditions */ #ifndef __LOC__ # define _STR2(x) #x # define _STR1(x) _STR2(x) # define __LOC__ __FILE__ "(" _STR1(__LINE__) ") : warning: " #endif /* The current code doesn't work on machines with non 8 bit char's in any way, so abort */ #if CHAR_BIT != 8 # pragma message ( __LOC__ "Machines with CHAR_BIT != 8 not yet supported" ) # pragma error #endif /*}}}*/ /* * Now some information how PCM data can be specified. PCM data * is specified by 3 attributes: pointer, length information * and attributes. * - Audio is always stored in 2D arrays, which are collapsing to 1D * in the case of monaural input * - 2D arrays can be stored as 2D arrays or as pointers to 1D arrays. * - 2D data can be stored as samples*channels or as channels*samples * - This gives 4 kinds of storing PCM data: * + pcm [samples][channels] (LAME_INTERLEAVED) * + pcm [channels][samples] (LAME_CHAINED) * + (*pcm) [samples] (LAME_INDIRECT) * + (*pcm) [channels] * - The last I have never seen and it have a huge overhead (67% ... 200%), * so the first three are implemented. * - The monaural 1D cases can also be handled by the first two attributes */ #define LAME_INTERLEAVED 0x10000000 #define LAME_CHAINED 0x20000000 #define LAME_INDIRECT 0x30000000 /* * Now we need some information about the byte order of the data. * There are 4 cases possible (if you are not fully support such strange * Machines like the PDPs): * - You know the absolute byte order of the data (LAME_LITTLE_ENDIAN, LAME_BIG_ENDIAN) * - You know the byte order from the view of the current machine * (LAME_NATIVE_ENDIAN, LAME_OPPOSITE_ENDIAN) * - The use of LAME_OPPOSITE_ENDIAN is NOT recommended because it is * is a breakable attribute, use LAME_LITTLE_ENDIAN or LAME_BIG_ENDIAN * instead */ #define LAME_NATIVE_ENDIAN 0x00000000 #define LAME_OPPOSITE_ENDIAN 0x01000000 #define LAME_LITTLE_ENDIAN 0x02000000 #define LAME_BIG_ENDIAN 0x03000000 /* * The next attribute is the data type of the input data. * There are currently 2 kinds of input data: * - C based: * LAME_{SHORT,INT,LONG} * LAME_{FLOAT,DOUBLE,LONGDOUBLE} * - Binary representation based: * LAME_{UINT,INT}{8,16,24,32} * LAME_{A,U}LAW * LAME_FLOAT{32,64,80_ALIGN{2,4,8}} * * Don't use the C based for external data. */ #define LAME_SILENCE 0x00010000 #define LAME_UINT8 0x00020000 #define LAME_INT8 0x00030000 #define LAME_UINT16 0x00040000 #define LAME_INT16 0x00050000 #define LAME_UINT24 0x00060000 #define LAME_INT24 0x00070000 #define LAME_UINT32 0x00080000 #define LAME_INT32 0x00090000 #define LAME_FLOAT32 0x00140000 #define LAME_FLOAT64 0x00180000 #define LAME_FLOAT80_ALIGN2 0x001A0000 #define LAME_FLOAT80_ALIGN4 0x001C0000 #define LAME_FLOAT80_ALIGN8 0x00200000 #define LAME_SHORT 0x00210000 #define LAME_INT 0x00220000 #define LAME_LONG 0x00230000 #define LAME_FLOAT 0x00240000 #define LAME_DOUBLE 0x00250000 #define LAME_LONGDOUBLE 0x00260000 #define LAME_ALAW 0x00310000 #define LAME_ULAW 0x00320000 /* * The last attribute is the number of input channels. Currently * 1...65535 channels are possible, but only 1 and 2 are supported. * So matrixing or MPEG-2 MultiChannelSupport are not a big problem. * * Note: Some people use the word 'stereo' for 2 channel stereophonic sound. * But stereophonic sound is a collection of ALL methods to restore the * stereophonic sound field starting from 2 channels up to audio * holography. */ #define LAME_MONO 0x00000001 #define LAME_STEREO 0x00000002 #define LAME_STEREO_2_CHANNELS 0x00000002 #define LAME_STEREO_3_CHANNELS 0x00000003 #define LAME_STEREO_4_CHANNELS 0x00000004 #define LAME_STEREO_5_CHANNELS 0x00000005 #define LAME_STEREO_6_CHANNELS 0x00000006 #define LAME_STEREO_7_CHANNELS 0x00000007 #define LAME_STEREO_65535_CHANNELS\ 0x0000FFFF extern scalar_t scalar4; extern scalar_t scalar8; extern scalar_t scalar12; extern scalar_t scalar16; extern scalar_t scalar20; extern scalar_t scalar24; extern scalar_t scalar32; extern scalarn_t scalar4n; extern scalarn_t scalar1n; float_t scalar04_float32_i387 ( const float32_t* p, const float32_t* q ); float_t scalar08_float32_i387 ( const float32_t* p, const float32_t* q ); float_t scalar12_float32_i387 ( const float32_t* p, const float32_t* q ); float_t scalar16_float32_i387 ( const float32_t* p, const float32_t* q ); float_t scalar20_float32_i387 ( const float32_t* p, const float32_t* q ); float_t scalar24_float32_i387 ( const float32_t* p, const float32_t* q ); float_t scalar32_float32_i387 ( const float32_t* p, const float32_t* q ); float_t scalar4n_float32_i387 ( const float32_t* p, const float32_t* q, const size_t len ); float_t scalar1n_float32_i387 ( const float32_t* p, const float32_t* q, const size_t len ); float_t scalar04_float32_3DNow ( const float32_t* p, const float32_t* q ); float_t scalar08_float32_3DNow ( const float32_t* p, const float32_t* q ); float_t scalar12_float32_3DNow ( const float32_t* p, const float32_t* q ); float_t scalar16_float32_3DNow ( const float32_t* p, const float32_t* q ); float_t scalar20_float32_3DNow ( const float32_t* p, const float32_t* q ); float_t scalar24_float32_3DNow ( const float32_t* p, const float32_t* q ); float_t scalar32_float32_3DNow ( const float32_t* p, const float32_t* q ); float_t scalar4n_float32_3DNow ( const float32_t* p, const float32_t* q, const size_t len ); float_t scalar1n_float32_3DNow ( const float32_t* p, const float32_t* q, const size_t len ); float_t scalar04_float32_SIMD ( const float32_t* p, const float32_t* q ); float_t scalar08_float32_SIMD ( const float32_t* p, const float32_t* q ); float_t scalar12_float32_SIMD ( const float32_t* p, const float32_t* q ); float_t scalar16_float32_SIMD ( const float32_t* p, const float32_t* q ); float_t scalar20_float32_SIMD ( const float32_t* p, const float32_t* q ); float_t scalar24_float32_SIMD ( const float32_t* p, const float32_t* q ); float_t scalar32_float32_SIMD ( const float32_t* p, const float32_t* q ); float_t scalar4n_float32_SIMD ( const float32_t* p, const float32_t* q, const size_t len ); float_t scalar1n_float32_SIMD ( const float32_t* p, const float32_t* q, const size_t len ); float_t scalar04_float32 ( const float32_t* p, const float32_t* q ); float_t scalar08_float32 ( const float32_t* p, const float32_t* q ); float_t scalar12_float32 ( const float32_t* p, const float32_t* q ); float_t scalar16_float32 ( const float32_t* p, const float32_t* q ); float_t scalar20_float32 ( const float32_t* p, const float32_t* q ); float_t scalar24_float32 ( const float32_t* p, const float32_t* q ); float_t scalar32_float32 ( const float32_t* p, const float32_t* q ); float_t scalar4n_float32 ( const float32_t* p, const float32_t* q, const size_t len ); float_t scalar1n_float32 ( const float32_t* p, const float32_t* q, const size_t len ); /*{{{ some prototypes */ resample_t* resample_open ( OUT long double sampfreq_in, // [Hz] OUT long double sampfreq_out, // [Hz] OUT double lowpass_freq, // [Hz] or <0 for auto mode OUT int quality ); // Proposal: 0 default, 1 sample select, 2 linear interpol, 4 4-point interpolation, 32 32-point interpolation int resample_buffer ( // return code, 0 for success INOUT resample_t *const r, // internal structure IN sample_t *const out, // where to write the output data INOUT size_t *const out_req_len, // requested output data len/really written output data len OUT sample_t *const in, // where are the input data? INOUT size_t *const in_avail_len, // available input data len/consumed input data len OUT size_t channel ); // number of the channel (needed for buffering) int resample_close ( INOUT resample_t* const r ); void init_scalar_functions ( OUT lame_t* const lame ); long double unround_samplefrequency ( OUT long double freq ); #if 0 int lame_encode_mp3_frame ( // return code, 0 for success INOUT lame_global_flags*, // internal context structure OUTTR sample_t * inbuf_l, // data for left channel OUTTR sample_t * inbuf_r, // data for right channel IN uint8_t * mp3buf, // where to write the coded data OUT size_t mp3buf_size ); // maximum size of coded data #endif int lame_encode_ogg_frame ( // return code, 0 for success INOUT lame_global_flags*, // internal context structure OUT sample_t * inbuf_l, // data for left channel OUT sample_t * inbuf_r, // data for right channel IN uint8_t * mp3buf, // where to write the coded data OUT size_t mp3buf_size ); // maximum size of coded data /*}}}*/ /* end of pcm.h */