ref: a7a07b2d43529b60a239bbb2c7acabcbdbb812e5
dir: /sys/src/9/pc/ether82557.c/
/* * Intel 82557 Fast Ethernet PCI Bus LAN Controller * as found on the Intel EtherExpress PRO/100B. This chip is full * of smarts, unfortunately they're not all in the right place. * To do: * the PCI scanning code could be made common to other adapters; * auto-negotiation, full-duplex; * optionally use memory-mapped registers; * detach for PCI reset problems (also towards loadable drivers). */ #include "u.h" #include "../port/lib.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "io.h" #include "../port/error.h" #include "../port/netif.h" #include "../port/etherif.h" enum { Nrfd = 64, /* receive frame area */ Ncb = 64, /* maximum control blocks queued */ NullPointer = 0xFFFFFFFF, /* 82557 NULL pointer */ }; enum { /* CSR */ Status = 0x00, /* byte or word (word includes Ack) */ Ack = 0x01, /* byte */ CommandR = 0x02, /* byte or word (word includes Interrupt) */ Interrupt = 0x03, /* byte */ General = 0x04, /* dword */ Port = 0x08, /* dword */ Fcr = 0x0C, /* Flash control register */ Ecr = 0x0E, /* EEPROM control register */ Mcr = 0x10, /* MDI control register */ Gstatus = 0x1D, /* General status register */ }; enum { /* Status */ RUidle = 0x0000, RUsuspended = 0x0004, RUnoresources = 0x0008, RUready = 0x0010, RUrbd = 0x0020, /* bit */ RUstatus = 0x003F, /* mask */ CUidle = 0x0000, CUsuspended = 0x0040, CUactive = 0x0080, CUstatus = 0x00C0, /* mask */ StatSWI = 0x0400, /* SoftWare generated Interrupt */ StatMDI = 0x0800, /* MDI r/w done */ StatRNR = 0x1000, /* Receive unit Not Ready */ StatCNA = 0x2000, /* Command unit Not Active (Active->Idle) */ StatFR = 0x4000, /* Finished Receiving */ StatCX = 0x8000, /* Command eXecuted */ StatTNO = 0x8000, /* Transmit NOT OK */ }; enum { /* Command (byte) */ CUnop = 0x00, CUstart = 0x10, CUresume = 0x20, LoadDCA = 0x40, /* Load Dump Counters Address */ DumpSC = 0x50, /* Dump Statistical Counters */ LoadCUB = 0x60, /* Load CU Base */ ResetSA = 0x70, /* Dump and Reset Statistical Counters */ RUstart = 0x01, RUresume = 0x02, RUabort = 0x04, LoadHDS = 0x05, /* Load Header Data Size */ LoadRUB = 0x06, /* Load RU Base */ RBDresume = 0x07, /* Resume frame reception */ }; enum { /* Interrupt (byte) */ InterruptM = 0x01, /* interrupt Mask */ InterruptSI = 0x02, /* Software generated Interrupt */ }; enum { /* Ecr */ EEsk = 0x01, /* serial clock */ EEcs = 0x02, /* chip select */ EEdi = 0x04, /* serial data in */ EEdo = 0x08, /* serial data out */ EEstart = 0x04, /* start bit */ EEread = 0x02, /* read opcode */ }; enum { /* Mcr */ MDIread = 0x08000000, /* read opcode */ MDIwrite = 0x04000000, /* write opcode */ MDIready = 0x10000000, /* ready bit */ MDIie = 0x20000000, /* interrupt enable */ }; typedef struct Rfd { int field; ulong link; ulong rbd; ushort count; ushort size; uchar data[1700]; } Rfd; enum { /* field */ RfdCollision = 0x00000001, RfdIA = 0x00000002, /* IA match */ RfdRxerr = 0x00000010, /* PHY character error */ RfdType = 0x00000020, /* Type frame */ RfdRunt = 0x00000080, RfdOverrun = 0x00000100, RfdBuffer = 0x00000200, RfdAlignment = 0x00000400, RfdCRC = 0x00000800, RfdOK = 0x00002000, /* frame received OK */ RfdC = 0x00008000, /* reception Complete */ RfdSF = 0x00080000, /* Simplified or Flexible (1) Rfd */ RfdH = 0x00100000, /* Header RFD */ RfdI = 0x20000000, /* Interrupt after completion */ RfdS = 0x40000000, /* Suspend after completion */ RfdEL = 0x80000000, /* End of List */ }; enum { /* count */ RfdF = 0x4000, RfdEOF = 0x8000, }; typedef struct Cb Cb; typedef struct Cb { ushort status; ushort command; ulong link; union { uchar data[24]; /* CbIAS + CbConfigure */ struct { ulong tbd; ushort count; uchar threshold; uchar number; ulong tba; ushort tbasz; ushort pad; }; }; Block* bp; Cb* next; } Cb; enum { /* action command */ CbU = 0x1000, /* transmit underrun */ CbOK = 0x2000, /* DMA completed OK */ CbC = 0x8000, /* execution Complete */ CbNOP = 0x0000, CbIAS = 0x0001, /* Individual Address Setup */ CbConfigure = 0x0002, CbMAS = 0x0003, /* Multicast Address Setup */ CbTransmit = 0x0004, CbDump = 0x0006, CbDiagnose = 0x0007, CbCommand = 0x0007, /* mask */ CbSF = 0x0008, /* Flexible-mode CbTransmit */ CbI = 0x2000, /* Interrupt after completion */ CbS = 0x4000, /* Suspend after completion */ CbEL = 0x8000, /* End of List */ }; enum { /* CbTransmit count */ CbEOF = 0x8000, }; typedef struct Ctlr Ctlr; typedef struct Ctlr { Lock slock; /* attach */ int state; int port; Pcidev* pcidev; Ctlr* next; int active; int eepromsz; /* address size in bits */ ushort* eeprom; Lock miilock; int tick; Lock rlock; /* registers */ int command; /* last command issued */ Block* rfdhead; /* receive side */ Block* rfdtail; int nrfd; Lock cblock; /* transmit side */ int action; int nop; uchar configdata[24]; int threshold; int ncb; Cb* cbr; Cb* cbhead; Cb* cbtail; int cbq; int cbqmax; int cbqmaxhw; Lock dlock; /* dump statistical counters */ ulong dump[17]; } Ctlr; static Ctlr* ctlrhead; static Ctlr* ctlrtail; static uchar configdata[24] = { 0x16, /* byte count */ 0x08, /* Rx/Tx FIFO limit */ 0x00, /* adaptive IFS */ 0x00, 0x00, /* Rx DMA maximum byte count */ // 0x80, /* Tx DMA maximum byte count */ 0x00, /* Tx DMA maximum byte count */ 0x32, /* !late SCB, CNA interrupts */ 0x03, /* discard short Rx frames */ 0x00, /* 503/MII */ 0x00, 0x2E, /* normal operation, NSAI */ 0x00, /* linear priority */ 0x60, /* inter-frame spacing */ 0x00, 0xF2, 0xC8, /* 503, promiscuous mode off */ 0x00, 0x40, 0xF3, /* transmit padding enable */ 0x80, /* full duplex pin enable */ 0x3F, /* no Multi IA */ 0x05, /* no Multi Cast ALL */ }; #define csr8r(c, r) (inb((c)->port+(r))) #define csr16r(c, r) (ins((c)->port+(r))) #define csr32r(c, r) (inl((c)->port+(r))) #define csr8w(c, r, b) (outb((c)->port+(r), (int)(b))) #define csr16w(c, r, w) (outs((c)->port+(r), (ushort)(w))) #define csr32w(c, r, l) (outl((c)->port+(r), (ulong)(l))) static void command(Ctlr* ctlr, int c, int v) { int timeo; ilock(&ctlr->rlock); /* * Only back-to-back CUresume can be done * without waiting for any previous command to complete. * This should be the common case. * Unfortunately there's a chip errata where back-to-back * CUresumes can be lost, the fix is to always wait. if(c == CUresume && ctlr->command == CUresume){ csr8w(ctlr, CommandR, c); iunlock(&ctlr->rlock); return; } */ for(timeo = 0; timeo < 100; timeo++){ if(!csr8r(ctlr, CommandR)) break; microdelay(1); } if(timeo >= 100){ ctlr->command = -1; iunlock(&ctlr->rlock); iprint("i82557: command %#ux %#ux timeout\n", c, v); return; } switch(c){ case CUstart: case LoadDCA: case LoadCUB: case RUstart: case LoadHDS: case LoadRUB: csr32w(ctlr, General, v); break; /* case CUnop: case CUresume: case DumpSC: case ResetSA: case RUresume: case RUabort: */ default: break; } csr8w(ctlr, CommandR, c); ctlr->command = c; iunlock(&ctlr->rlock); } static Block* rfdalloc(ulong link) { Block *bp; Rfd *rfd; if(bp = iallocb(sizeof(Rfd))){ rfd = (Rfd*)bp->rp; rfd->field = 0; rfd->link = link; rfd->rbd = NullPointer; rfd->count = 0; rfd->size = sizeof(Etherpkt); } return bp; } static void watchdog(void* arg) { Ether *ether; Ctlr *ctlr; static void txstart(Ether*); ether = arg; while(waserror()) ; for(;;){ tsleep(&up->sleep, return0, 0, 4000); /* * Hmmm. This doesn't seem right. Currently * the device can't be disabled but it may be in * the future. */ ctlr = ether->ctlr; if(ctlr == nil || ctlr->state == 0) break; ilock(&ctlr->cblock); if(ctlr->tick++){ ctlr->action = CbMAS; txstart(ether); } iunlock(&ctlr->cblock); } print("%s: exiting\n", up->text); pexit("disabled", 1); } static void attach(Ether* ether) { Ctlr *ctlr; char name[KNAMELEN]; ctlr = ether->ctlr; lock(&ctlr->slock); if(ctlr->state == 0){ ilock(&ctlr->rlock); csr8w(ctlr, Interrupt, 0); iunlock(&ctlr->rlock); command(ctlr, RUstart, PADDR(ctlr->rfdhead->rp)); ctlr->state = 1; /* * Start the watchdog timer for the receive lockup errata * unless the EEPROM compatibility word indicates it may be * omitted. */ if((ctlr->eeprom[0x03] & 0x0003) != 0x0003){ snprint(name, KNAMELEN, "#l%dwatchdog", ether->ctlrno); kproc(name, watchdog, ether); } } unlock(&ctlr->slock); } static long ifstat(Ether* ether, void* a, long n, ulong offset) { char *p; int i, len, phyaddr; Ctlr *ctlr; ulong dump[17]; ctlr = ether->ctlr; lock(&ctlr->dlock); if(waserror()){ unlock(&ctlr->dlock); nexterror(); } /* * Start the command then * wait for completion status, * should be 0xA005. */ ctlr->dump[16] = 0; command(ctlr, DumpSC, 0); for(i = 0; i < 1000 && ctlr->dump[16] == 0; i++) microdelay(100); if(i == 1000) error("command timeout"); memmove(dump, ctlr->dump, sizeof(dump)); ether->oerrs = dump[1]+dump[2]+dump[3]; ether->crcs = dump[10]; ether->frames = dump[11]; ether->buffs = dump[12]+dump[15]; ether->overflows = dump[13]; poperror(); unlock(&ctlr->dlock); if(n == 0) return 0; p = smalloc(READSTR); len = snprint(p, READSTR, "transmit good frames: %lud\n", dump[0]); len += snprint(p+len, READSTR-len, "transmit maximum collisions errors: %lud\n", dump[1]); len += snprint(p+len, READSTR-len, "transmit late collisions errors: %lud\n", dump[2]); len += snprint(p+len, READSTR-len, "transmit underrun errors: %lud\n", dump[3]); len += snprint(p+len, READSTR-len, "transmit lost carrier sense: %lud\n", dump[4]); len += snprint(p+len, READSTR-len, "transmit deferred: %lud\n", dump[5]); len += snprint(p+len, READSTR-len, "transmit single collisions: %lud\n", dump[6]); len += snprint(p+len, READSTR-len, "transmit multiple collisions: %lud\n", dump[7]); len += snprint(p+len, READSTR-len, "transmit total collisions: %lud\n", dump[8]); len += snprint(p+len, READSTR-len, "receive good frames: %lud\n", dump[9]); len += snprint(p+len, READSTR-len, "receive CRC errors: %lud\n", dump[10]); len += snprint(p+len, READSTR-len, "receive alignment errors: %lud\n", dump[11]); len += snprint(p+len, READSTR-len, "receive resource errors: %lud\n", dump[12]); len += snprint(p+len, READSTR-len, "receive overrun errors: %lud\n", dump[13]); len += snprint(p+len, READSTR-len, "receive collision detect errors: %lud\n", dump[14]); len += snprint(p+len, READSTR-len, "receive short frame errors: %lud\n", dump[15]); len += snprint(p+len, READSTR-len, "nop: %d\n", ctlr->nop); if(ctlr->cbqmax > ctlr->cbqmaxhw) ctlr->cbqmaxhw = ctlr->cbqmax; len += snprint(p+len, READSTR-len, "cbqmax: %d\n", ctlr->cbqmax); ctlr->cbqmax = 0; len += snprint(p+len, READSTR-len, "threshold: %d\n", ctlr->threshold); len += snprint(p+len, READSTR-len, "eeprom:"); for(i = 0; i < (1<<ctlr->eepromsz); i++){ if(i && ((i & 0x07) == 0)) len += snprint(p+len, READSTR-len, "\n "); len += snprint(p+len, READSTR-len, " %4.4ux", ctlr->eeprom[i]); } if((ctlr->eeprom[6] & 0x1F00) && !(ctlr->eeprom[6] & 0x8000)){ phyaddr = ctlr->eeprom[6] & 0x00FF; len += snprint(p+len, READSTR-len, "\nphy %2d:", phyaddr); for(i = 0; i < 6; i++){ static int miir(Ctlr*, int, int); len += snprint(p+len, READSTR-len, " %4.4ux", miir(ctlr, phyaddr, i)); } } snprint(p+len, READSTR-len, "\n"); n = readstr(offset, a, n, p); free(p); return n; } static void txstart(Ether* ether) { Ctlr *ctlr; Block *bp; Cb *cb; ctlr = ether->ctlr; while(ctlr->cbq < (ctlr->ncb-1)){ cb = ctlr->cbhead->next; if(ctlr->action == 0){ bp = qget(ether->oq); if(bp == nil) break; cb->command = CbS|CbSF|CbTransmit; cb->tbd = PADDR(&cb->tba); cb->count = 0; cb->threshold = ctlr->threshold; cb->number = 1; cb->tba = PADDR(bp->rp); cb->bp = bp; cb->tbasz = BLEN(bp); } else if(ctlr->action == CbConfigure){ cb->command = CbS|CbConfigure; memmove(cb->data, ctlr->configdata, sizeof(ctlr->configdata)); ctlr->action = 0; } else if(ctlr->action == CbIAS){ cb->command = CbS|CbIAS; memmove(cb->data, ether->ea, Eaddrlen); ctlr->action = 0; } else if(ctlr->action == CbMAS){ cb->command = CbS|CbMAS; memset(cb->data, 0, sizeof(cb->data)); ctlr->action = 0; } else{ print("#l%d: action %#ux\n", ether->ctlrno, ctlr->action); ctlr->action = 0; break; } cb->status = 0; coherence(); ctlr->cbhead->command &= ~CbS; ctlr->cbhead = cb; ctlr->cbq++; } /* * Workaround for some broken HUB chips * when connected at 10Mb/s half-duplex. */ if(ctlr->nop){ command(ctlr, CUnop, 0); microdelay(1); } command(ctlr, CUresume, 0); if(ctlr->cbq > ctlr->cbqmax) ctlr->cbqmax = ctlr->cbq; } static void configure(Ether* ether, int promiscuous) { Ctlr *ctlr; ctlr = ether->ctlr; ilock(&ctlr->cblock); if(promiscuous){ ctlr->configdata[6] |= 0x80; /* Save Bad Frames */ //ctlr->configdata[6] &= ~0x40; /* !Discard Overrun Rx Frames */ ctlr->configdata[7] &= ~0x01; /* !Discard Short Rx Frames */ ctlr->configdata[15] |= 0x01; /* Promiscuous mode */ ctlr->configdata[18] &= ~0x01; /* (!Padding enable?), !stripping enable */ ctlr->configdata[21] |= 0x08; /* Multi Cast ALL */ } else{ ctlr->configdata[6] &= ~0x80; //ctlr->configdata[6] |= 0x40; ctlr->configdata[7] |= 0x01; ctlr->configdata[15] &= ~0x01; ctlr->configdata[18] |= 0x01; /* 0x03? */ ctlr->configdata[21] &= ~0x08; } ctlr->action = CbConfigure; txstart(ether); iunlock(&ctlr->cblock); } static void promiscuous(void* arg, int on) { Ether *ether = arg; configure(ether, on || ether->nmaddr > 0); } static void multicast(void* arg, uchar *, int) { Ether *ether = arg; configure(ether, ether->prom || ether->nmaddr > 0); } static void transmit(Ether* ether) { Ctlr *ctlr; ctlr = ether->ctlr; ilock(&ctlr->cblock); txstart(ether); iunlock(&ctlr->cblock); } static void receive(Ether* ether) { Rfd *rfd; Ctlr *ctlr; int count; Block *bp, *pbp, *xbp; ctlr = ether->ctlr; bp = ctlr->rfdhead; for(rfd = (Rfd*)bp->rp; rfd->field & RfdC; rfd = (Rfd*)bp->rp){ /* * If it's an OK receive frame * 1) save the count * 2) if it's small, try to allocate a block and copy * the data, then adjust the necessary fields for reuse; * 3) if it's big, try to allocate a new Rfd and if * successful * adjust the received buffer pointers for the * actual data received; * initialise the replacement buffer to point to * the next in the ring; * initialise bp to point to the replacement; * 4) if there's a good packet, pass it on for disposal. */ if(rfd->field & RfdOK){ pbp = nil; count = rfd->count & 0x3FFF; if((count < ETHERMAXTU/4) && (pbp = iallocb(count))){ memmove(pbp->rp, bp->rp+offsetof(Rfd, data[0]), count); pbp->wp = pbp->rp + count; rfd->count = 0; rfd->field = 0; } else if(xbp = rfdalloc(rfd->link)){ bp->rp += offsetof(Rfd, data[0]); bp->wp = bp->rp + count; xbp->next = bp->next; bp->next = 0; pbp = bp; bp = xbp; } if(pbp != nil) etheriq(ether, pbp); } else{ rfd->count = 0; rfd->field = 0; } /* * The ring tail pointer follows the head with with one * unused buffer in between to defeat hardware prefetch; * once the tail pointer has been bumped on to the next * and the new tail has the Suspend bit set, it can be * removed from the old tail buffer. * As a replacement for the current head buffer may have * been allocated above, ensure that the new tail points * to it (next and link). */ rfd = (Rfd*)ctlr->rfdtail->rp; ctlr->rfdtail = ctlr->rfdtail->next; ctlr->rfdtail->next = bp; ((Rfd*)ctlr->rfdtail->rp)->link = PADDR(bp->rp); ((Rfd*)ctlr->rfdtail->rp)->field |= RfdS; coherence(); rfd->field &= ~RfdS; /* * Finally done with the current (possibly replaced) * head, move on to the next and maintain the sentinel * between tail and head. */ ctlr->rfdhead = bp->next; bp = ctlr->rfdhead; } } static void interrupt(Ureg*, void* arg) { Cb* cb; Ctlr *ctlr; Ether *ether; int status; ether = arg; ctlr = ether->ctlr; for(;;){ ilock(&ctlr->rlock); status = csr16r(ctlr, Status); csr8w(ctlr, Ack, (status>>8) & 0xFF); iunlock(&ctlr->rlock); if(!(status & (StatCX|StatFR|StatCNA|StatRNR|StatMDI|StatSWI))) break; /* * If the watchdog timer for the receiver lockup errata is running, * let it know the receiver is active. */ if(status & (StatFR|StatRNR)){ ilock(&ctlr->cblock); ctlr->tick = 0; iunlock(&ctlr->cblock); } if(status & StatFR){ receive(ether); status &= ~StatFR; } if(status & StatRNR){ command(ctlr, RUresume, 0); status &= ~StatRNR; } if(status & StatCNA){ ilock(&ctlr->cblock); cb = ctlr->cbtail; while(ctlr->cbq){ if(!(cb->status & CbC)) break; if(cb->bp){ freeb(cb->bp); cb->bp = nil; } if((cb->status & CbU) && ctlr->threshold < 0xE0) ctlr->threshold++; ctlr->cbq--; cb = cb->next; } ctlr->cbtail = cb; txstart(ether); iunlock(&ctlr->cblock); status &= ~StatCNA; } if(status & (StatCX|StatFR|StatCNA|StatRNR|StatMDI|StatSWI)) panic("#l%d: status %#ux", ether->ctlrno, status); } } static void ctlrinit(Ctlr* ctlr) { int i; Block *bp; Rfd *rfd; ulong link; /* * Create the Receive Frame Area (RFA) as a ring of allocated * buffers. * A sentinel buffer is maintained between the last buffer in * the ring (marked with RfdS) and the head buffer to defeat the * hardware prefetch of the next RFD and allow dynamic buffer * allocation. */ link = NullPointer; for(i = 0; i < Nrfd; i++){ bp = rfdalloc(link); if(bp == nil) panic("i82557: can't allocate rfd buffer"); if(ctlr->rfdhead == nil) ctlr->rfdtail = bp; bp->next = ctlr->rfdhead; ctlr->rfdhead = bp; link = PADDR(bp->rp); } ctlr->rfdtail->next = ctlr->rfdhead; rfd = (Rfd*)ctlr->rfdtail->rp; rfd->link = PADDR(ctlr->rfdhead->rp); rfd->field |= RfdS; ctlr->rfdhead = ctlr->rfdhead->next; /* * Create a ring of control blocks for the * transmit side. */ ilock(&ctlr->cblock); ctlr->cbr = malloc(ctlr->ncb*sizeof(Cb)); if(ctlr->cbr == nil) panic("i82557: can't allocate cbr"); for(i = 0; i < ctlr->ncb; i++){ ctlr->cbr[i].status = CbC|CbOK; ctlr->cbr[i].command = CbS|CbNOP; ctlr->cbr[i].link = PADDR(&ctlr->cbr[NEXT(i, ctlr->ncb)].status); ctlr->cbr[i].next = &ctlr->cbr[NEXT(i, ctlr->ncb)]; } ctlr->cbhead = ctlr->cbr; ctlr->cbtail = ctlr->cbr; ctlr->cbq = 0; memmove(ctlr->configdata, configdata, sizeof(configdata)); ctlr->threshold = 80; ctlr->tick = 0; iunlock(&ctlr->cblock); } static int miir(Ctlr* ctlr, int phyadd, int regadd) { int mcr, timo; lock(&ctlr->miilock); csr32w(ctlr, Mcr, MDIread|(phyadd<<21)|(regadd<<16)); mcr = 0; for(timo = 64; timo; timo--){ mcr = csr32r(ctlr, Mcr); if(mcr & MDIready) break; microdelay(1); } unlock(&ctlr->miilock); if(mcr & MDIready) return mcr & 0xFFFF; return -1; } static int miiw(Ctlr* ctlr, int phyadd, int regadd, int data) { int mcr, timo; lock(&ctlr->miilock); csr32w(ctlr, Mcr, MDIwrite|(phyadd<<21)|(regadd<<16)|(data & 0xFFFF)); mcr = 0; for(timo = 64; timo; timo--){ mcr = csr32r(ctlr, Mcr); if(mcr & MDIready) break; microdelay(1); } unlock(&ctlr->miilock); if(mcr & MDIready) return 0; return -1; } static int hy93c46r(Ctlr* ctlr, int r) { int data, i, op, size; /* * Hyundai HY93C46 or equivalent serial EEPROM. * This sequence for reading a 16-bit register 'r' * in the EEPROM is taken straight from Section * 3.3.4.2 of the Intel 82557 User's Guide. */ reread: csr16w(ctlr, Ecr, EEcs); op = EEstart|EEread; for(i = 2; i >= 0; i--){ data = (((op>>i) & 0x01)<<2)|EEcs; csr16w(ctlr, Ecr, data); csr16w(ctlr, Ecr, data|EEsk); microdelay(1); csr16w(ctlr, Ecr, data); microdelay(1); } /* * First time through must work out the EEPROM size. */ if((size = ctlr->eepromsz) == 0) size = 8; for(size = size-1; size >= 0; size--){ data = (((r>>size) & 0x01)<<2)|EEcs; csr16w(ctlr, Ecr, data); csr16w(ctlr, Ecr, data|EEsk); delay(1); csr16w(ctlr, Ecr, data); microdelay(1); if(!(csr16r(ctlr, Ecr) & EEdo)) break; } data = 0; for(i = 15; i >= 0; i--){ csr16w(ctlr, Ecr, EEcs|EEsk); microdelay(1); if(csr16r(ctlr, Ecr) & EEdo) data |= (1<<i); csr16w(ctlr, Ecr, EEcs); microdelay(1); } csr16w(ctlr, Ecr, 0); if(ctlr->eepromsz == 0){ ctlr->eepromsz = 8-size; ctlr->eeprom = malloc((1<<ctlr->eepromsz)*sizeof(ushort)); if(ctlr->eeprom == nil) panic("i82557: can't allocate eeprom"); goto reread; } return data; } static void i82557pci(void) { Pcidev *p; Ctlr *ctlr; int i, nop, port; p = nil; nop = 0; while(p = pcimatch(p, 0x8086, 0)){ switch(p->did){ default: continue; case 0x1031: /* Intel 82562EM */ case 0x103B: /* Intel 82562EM */ case 0x103C: /* Intel 82562EM */ case 0x1050: /* Intel 82562EZ */ case 0x1039: /* Intel 82801BD PRO/100 VE */ case 0x103A: /* Intel 82562 PRO/100 VE */ case 0x103D: /* Intel 82562 PRO/100 VE */ case 0x1064: /* Intel 82562 PRO/100 VE */ case 0x2449: /* Intel 82562ET */ case 0x27DC: /* Intel 82801G PRO/100 VE */ nop = 1; /*FALLTHROUGH*/ case 0x1209: /* Intel 82559ER */ case 0x1229: /* Intel 8255[789] */ case 0x1030: /* Intel 82559 InBusiness 10/100 */ break; } if(pcigetpms(p) > 0){ pcisetpms(p, 0); for(i = 0; i < 6; i++) pcicfgw32(p, PciBAR0+i*4, p->mem[i].bar); pcicfgw8(p, PciINTL, p->intl); pcicfgw8(p, PciLTR, p->ltr); pcicfgw8(p, PciCLS, p->cls); pcicfgw16(p, PciPCR, p->pcr); } /* * bar[0] is the memory-mapped register address (4KB), * bar[1] is the I/O port register address (32 bytes) and * bar[2] is for the flash ROM (1MB). */ port = p->mem[1].bar & ~0x01; if(ioalloc(port, p->mem[1].size, 0, "i82557") < 0){ print("i82557: port %#ux in use\n", port); continue; } ctlr = malloc(sizeof(Ctlr)); if(ctlr == nil){ print("i82557: can't allocate memory\n"); iofree(port); continue; } ctlr->port = port; ctlr->pcidev = p; ctlr->nop = nop; if(ctlrhead != nil) ctlrtail->next = ctlr; else ctlrhead = ctlr; ctlrtail = ctlr; pcisetbme(p); } } static char* mediatable[9] = { "10BASE-T", /* TP */ "10BASE-2", /* BNC */ "10BASE-5", /* AUI */ "100BASE-TX", "10BASE-TFD", "100BASE-TXFD", "100BASE-T4", "100BASE-FX", "100BASE-FXFD", }; static int scanphy(Ctlr* ctlr) { int i, oui, x; for(i = 0; i < 32; i++){ if((oui = miir(ctlr, i, 2)) == -1 || oui == 0 || oui == 0xFFFF) continue; oui <<= 6; x = miir(ctlr, i, 3); oui |= x>>10; //print("phy%d: oui %#ux reg1 %#ux\n", i, oui, miir(ctlr, i, 1)); ctlr->eeprom[6] = i; if(oui == 0xAA00) ctlr->eeprom[6] |= 0x07<<8; else if(oui == 0x80017){ if(x & 0x01) ctlr->eeprom[6] |= 0x0A<<8; else ctlr->eeprom[6] |= 0x04<<8; } return i; } return -1; } static void shutdown(Ether* ether) { Ctlr *ctlr = ether->ctlr; print("ether82557 shutting down\n"); csr32w(ctlr, Port, 0); delay(1); csr8w(ctlr, Interrupt, InterruptM); } static int reset(Ether* ether) { int anar, anlpar, bmcr, bmsr, i, k, medium, phyaddr, x; unsigned short sum; uchar ea[Eaddrlen]; Ctlr *ctlr; if(ctlrhead == nil) i82557pci(); /* * Any adapter matches if no ether->port is supplied, * otherwise the ports must match. */ for(ctlr = ctlrhead; ctlr != nil; ctlr = ctlr->next){ if(ctlr->active) continue; if(ether->port == 0 || ether->port == ctlr->port){ ctlr->active = 1; break; } } if(ctlr == nil) return -1; /* * Initialise the Ctlr structure. * Perform a software reset after which should ensure busmastering * is still enabled. The EtherExpress PRO/100B appears to leave * the PCI configuration alone (see the 'To do' list above) so punt * for now. * Load the RUB and CUB registers for linear addressing (0). */ ether->ctlr = ctlr; ether->port = ctlr->port; ether->irq = ctlr->pcidev->intl; ether->tbdf = ctlr->pcidev->tbdf; ilock(&ctlr->rlock); csr32w(ctlr, Port, 0); delay(1); csr8w(ctlr, Interrupt, InterruptM); iunlock(&ctlr->rlock); command(ctlr, LoadRUB, 0); command(ctlr, LoadCUB, 0); command(ctlr, LoadDCA, PADDR(ctlr->dump)); /* * Initialise the receive frame, transmit ring and configuration areas. */ ctlr->ncb = Ncb; ctlrinit(ctlr); /* * Read the EEPROM. * Do a dummy read first to get the size * and allocate ctlr->eeprom. */ hy93c46r(ctlr, 0); sum = 0; for(i = 0; i < (1<<ctlr->eepromsz); i++){ x = hy93c46r(ctlr, i); ctlr->eeprom[i] = x; sum += x; } if(sum != 0xBABA) print("#l%d: EEPROM checksum - %#4.4ux\n", ether->ctlrno, sum); /* * Eeprom[6] indicates whether there is a PHY and whether * it's not 10Mb-only, in which case use the given PHY address * to set any PHY specific options and determine the speed. * Unfortunately, sometimes the EEPROM is blank except for * the ether address and checksum; in this case look at the * controller type and if it's am 82558 or 82559 it has an * embedded PHY so scan for that. * If no PHY, assume 82503 (serial) operation. */ if((ctlr->eeprom[6] & 0x1F00) && !(ctlr->eeprom[6] & 0x8000)) phyaddr = ctlr->eeprom[6] & 0x00FF; else switch(ctlr->pcidev->rid){ case 0x01: /* 82557 A-step */ case 0x02: /* 82557 B-step */ case 0x03: /* 82557 C-step */ default: phyaddr = -1; break; case 0x04: /* 82558 A-step */ case 0x05: /* 82558 B-step */ case 0x06: /* 82559 A-step */ case 0x07: /* 82559 B-step */ case 0x08: /* 82559 C-step */ case 0x09: /* 82559ER A-step */ phyaddr = scanphy(ctlr); break; } if(phyaddr >= 0){ /* * Resolve the highest common ability of the two * link partners. In descending order: * 0x0100 100BASE-TX Full Duplex * 0x0200 100BASE-T4 * 0x0080 100BASE-TX * 0x0040 10BASE-T Full Duplex * 0x0020 10BASE-T */ anar = miir(ctlr, phyaddr, 0x04); anlpar = miir(ctlr, phyaddr, 0x05) & 0x03E0; anar &= anlpar; bmcr = 0; if(anar & 0x380) bmcr = 0x2000; if(anar & 0x0140) bmcr |= 0x0100; switch((ctlr->eeprom[6]>>8) & 0x001F){ case 0x04: /* DP83840 */ case 0x0A: /* DP83840A */ /* * The DP83840[A] requires some tweaking for * reliable operation. * The manual says bit 10 should be unconditionally * set although it supposedly only affects full-duplex * operation (an & 0x0140). */ x = miir(ctlr, phyaddr, 0x17) & ~0x0520; x |= 0x0420; for(i = 0; i < ether->nopt; i++){ if(cistrcmp(ether->opt[i], "congestioncontrol")) continue; x |= 0x0100; break; } miiw(ctlr, phyaddr, 0x17, x); /* * If the link partner can't autonegotiate, determine * the speed from elsewhere. */ if(anlpar == 0){ miir(ctlr, phyaddr, 0x01); bmsr = miir(ctlr, phyaddr, 0x01); x = miir(ctlr, phyaddr, 0x19); if((bmsr & 0x0004) && !(x & 0x0040)) bmcr = 0x2000; } break; case 0x07: /* Intel 82555 */ /* * Auto-negotiation may fail if the other end is * a DP83840A and the cable is short. */ miir(ctlr, phyaddr, 0x01); bmsr = miir(ctlr, phyaddr, 0x01); if((miir(ctlr, phyaddr, 0) & 0x1000) && (bmsr & 0x0020)) break; miiw(ctlr, phyaddr, 0x1A, 0x2010); x = miir(ctlr, phyaddr, 0); miiw(ctlr, phyaddr, 0, 0x1200|x); for(i = 0; i < 3000; i++){ delay(1); if(miir(ctlr, phyaddr, 0x01) & 0x0020) break; } miiw(ctlr, phyaddr, 0x1A, 0x2000); anar = miir(ctlr, phyaddr, 0x04); anlpar = miir(ctlr, phyaddr, 0x05) & 0x03E0; anar &= anlpar; bmcr = 0; if(anar & 0x380) bmcr = 0x2000; if(anar & 0x0140) bmcr |= 0x0100; break; } /* * Force speed and duplex if no auto-negotiation. */ if(anlpar == 0){ medium = -1; for(i = 0; i < ether->nopt; i++){ for(k = 0; k < nelem(mediatable); k++){ if(cistrcmp(mediatable[k], ether->opt[i])) continue; medium = k; break; } switch(medium){ default: break; case 0x00: /* 10BASE-T */ case 0x01: /* 10BASE-2 */ case 0x02: /* 10BASE-5 */ bmcr &= ~(0x2000|0x0100); ctlr->configdata[19] &= ~0x40; break; case 0x03: /* 100BASE-TX */ case 0x06: /* 100BASE-T4 */ case 0x07: /* 100BASE-FX */ ctlr->configdata[19] &= ~0x40; bmcr |= 0x2000; break; case 0x04: /* 10BASE-TFD */ bmcr = (bmcr & ~0x2000)|0x0100; ctlr->configdata[19] |= 0x40; break; case 0x05: /* 100BASE-TXFD */ case 0x08: /* 100BASE-FXFD */ bmcr |= 0x2000|0x0100; ctlr->configdata[19] |= 0x40; break; } } if(medium != -1) miiw(ctlr, phyaddr, 0x00, bmcr); } if(bmcr & 0x2000) ether->mbps = 100; ctlr->configdata[8] = 1; ctlr->configdata[15] &= ~0x80; } else{ ctlr->configdata[8] = 0; ctlr->configdata[15] |= 0x80; } /* * Workaround for some broken HUB chips when connected at 10Mb/s * half-duplex. * This is a band-aid, but as there's no dynamic auto-negotiation * code at the moment, only deactivate the workaround code in txstart * if the link is 100Mb/s. */ if(ether->mbps != 10) ctlr->nop = 0; /* * Load the chip configuration and start it off. */ if(ether->oq == 0) ether->oq = qopen(256*1024, Qmsg, 0, 0); configure(ether, 0); command(ctlr, CUstart, PADDR(&ctlr->cbr->status)); /* * Check if the adapter's station address is to be overridden. * If not, read it from the EEPROM and set in ether->ea prior to loading * the station address with the Individual Address Setup command. */ memset(ea, 0, Eaddrlen); if(memcmp(ea, ether->ea, Eaddrlen) == 0){ for(i = 0; i < Eaddrlen/2; i++){ x = ctlr->eeprom[i]; ether->ea[2*i] = x; ether->ea[2*i+1] = x>>8; } } ilock(&ctlr->cblock); ctlr->action = CbIAS; txstart(ether); iunlock(&ctlr->cblock); /* * Linkage to the generic ethernet driver. */ ether->attach = attach; ether->transmit = transmit; ether->ifstat = ifstat; ether->shutdown = shutdown; ether->promiscuous = promiscuous; ether->multicast = multicast; ether->arg = ether; intrenable(ether->irq, interrupt, ether, ether->tbdf, ether->name); return 0; } void ether82557link(void) { addethercard("i82557", reset); }