ref: c8a71691b4a6c979673884b2a9bdef3e805c4e31
dir: /sys/src/cmd/map/libmap/elco2.c/
#include <u.h> #include <libc.h> #include "map.h" /* elliptic integral routine, R.Bulirsch, * Numerische Mathematik 7(1965) 78-90 * calculate integral from 0 to x+iy of * (a+b*t^2)/((1+t^2)*sqrt((1+t^2)*(1+kc^2*t^2))) * yields about D valid figures, where CC=10e-D * for a*b>=0, except at branchpoints x=0,y=+-i,+-i/kc; * there the accuracy may be reduced. * fails for kc=0 or x<0 * return(1) for success, return(0) for fail * * special case a=b=1 is equivalent to * standard elliptic integral of first kind * from 0 to atan(x+iy) of * 1/sqrt(1-k^2*(sin(t))^2) where k^2=1-kc^2 */ #define ROOTINF 10.e18 #define CC 1.e-6 int elco2(double x, double y, double kc, double a, double b, double *u, double *v) { double c,d,dn1,dn2,e,e1,e2,f,f1,f2,h,k,m,m1,m2,sy; double d1[13],d2[13]; int i,l; if(kc==0||x<0) return(0); sy = y>0? 1: y==0? 0: -1; y = fabs(y); csq(x,y,&c,&e2); d = kc*kc; k = 1-d; e1 = 1+c; cdiv2(1+d*c,d*e2,e1,e2,&f1,&f2); f2 = -k*x*y*2/f2; csqr(f1,f2,&dn1,&dn2); if(f1<0) { f1 = dn1; dn1 = -dn2; dn2 = -f1; } if(k<0) { dn1 = fabs(dn1); dn2 = fabs(dn2); } c = 1+dn1; cmul(e1,e2,c,dn2,&f1,&f2); cdiv(x,y,f1,f2,&d1[0],&d2[0]); h = a-b; d = f = m = 1; kc = fabs(kc); e = a; a += b; l = 4; for(i=1;;i++) { m1 = (kc+m)/2; m2 = m1*m1; k *= f/(m2*4); b += e*kc; e = a; cdiv2(kc+m*dn1,m*dn2,c,dn2,&f1,&f2); csqr(f1/m1,k*dn2*2/f2,&dn1,&dn2); cmul(dn1,dn2,x,y,&f1,&f2); x = fabs(f1); y = fabs(f2); a += b/m1; l *= 2; c = 1 +dn1; d *= k/2; cmul(x,y,x,y,&e1,&e2); k *= k; cmul(c,dn2,1+e1*m2,e2*m2,&f1,&f2); cdiv(d*x,d*y,f1,f2,&d1[i],&d2[i]); if(k<=CC) break; kc = sqrt(m*kc); f = m2; m = m1; } f1 = f2 = 0; for(;i>=0;i--) { f1 += d1[i]; f2 += d2[i]; } x *= m1; y *= m1; cdiv2(1-y,x,1+y,-x,&e1,&e2); e2 = x*2/e2; d = a/(m1*l); *u = atan2(e2,e1); if(*u<0) *u += PI; a = d*sy/2; *u = d*(*u) + f1*h; *v = (-1-log(e1*e1+e2*e2))*a + f2*h*sy + a; return(1); } void cdiv2(double c1, double c2, double d1, double d2, double *e1, double *e2) { double t; if(fabs(d2)>fabs(d1)) { t = d1, d1 = d2, d2 = t; t = c1, c1 = c2, c2 = t; } if(fabs(d1)>ROOTINF) *e2 = ROOTINF*ROOTINF; else *e2 = d1*d1 + d2*d2; t = d2/d1; *e1 = (c1+t*c2)/(d1+t*d2); /* (c1*d1+c2*d2)/(d1*d1+d2*d2) */ } /* complex square root of |x|+iy */ void csqr(double c1, double c2, double *e1, double *e2) { double r2; r2 = c1*c1 + c2*c2; if(r2<=0) { *e1 = *e2 = 0; return; } *e1 = sqrt((sqrt(r2) + fabs(c1))/2); *e2 = c2/(*e1*2); }