ref: d1dc287210afd73705c21675dcbaa4eaf997fdde
dir: /sys/src/cmd/gs/doc/Drivers.htm/
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <html> <head> <title>The interface between Ghostscript and device drivers</title> <!-- $Id: Drivers.htm,v 1.58 2005/10/20 19:46:23 ray Exp $ --> <!-- Originally: drivers.txt --> <link rel="stylesheet" type="text/css" href="gs.css" title="Ghostscript Style"> </head> <body> <!-- [1.0 begin visible header] ============================================ --> <!-- [1.1 begin headline] ================================================== --> <h1>The interface between Ghostscript and device drivers</h1> <!-- [1.1 end headline] ==================================================== --> <!-- [1.2 begin table of contents] ========================================= --> <h2>Table of contents</h2> <blockquote><ul> <li><a href="#Adding_drivers">Adding a driver</a> <li><a href="#KISS">Keeping things simple</a> <li><a href="#Structure">Driver structure</a> <ul> <li><a href="#Structure_definition">Structure definition</a> <li><a href="#Sophisticated">For sophisticated developers only</a> </ul> <li><a href="#coordinates_and_types">Coordinates and types</a> <ul> <li><a href="#Coordinate_system">Coordinate system</a> <li><a href="#Color_definition">Color definition</a> <ul> <li><a href="#sep_and_linear_fields">Separable and linear fields</a> <li><a href="#Changing_color_info_data">Changing color_info data</a> </ul> <li><a href="#Types">Types</a> </ul> <li><a href="#Coding_conventions">Coding conventions</a> <ul> <li><a href="#Allocating_storage">Allocating storage</a> <li><a href="#Driver_instance_allocation">Driver instance allocation</a> </ul> <li><a href="#Printer_drivers">Printer drivers</a> <li><a href="#Driver_procedures">Driver procedures</a> <ul> <li><a href="#Life_cycle">Life cycle</a> <li><a href="#Open_close">Open, close, sync, copy</a> <li><a href="#Color_mapping">Color and alpha mapping</a> <li><a href="#Pixel_level_drawing">Pixel-level drawing</a> <ul> <li><a href="#Bitmap_imaging">Bitmap imaging</a> <li><a href="#Pixmap_imaging">Pixmap imaging</a> <li><a href="#Compositing">Compositing</a> [<a href="#S_spec">S</a>, <a href="#T_spec">T</a>, <a href="#F_spec">f</a>, <a href="#Compositing_notes">Notes</a>] </ul> <li><a href="#Polygon_level_drawing">Polygon-level drawing</a> <li><a href="#Linear_color_drawing">Linear color drawing</a> <li><a href="#High_level_drawing">High-level drawing</a> <ul> <li><a href="#Paths">Paths</a> <li><a href="#Images">Images</a> [<a href="#Images_notes">Notes</a>] <li><a href="#Text">Text</a> [<a href="#Text_notes">Notes</a>] <li><a href="#Unicode">Unicode support for high level devices</a> </ul> <li><a href="#Reading_bits_back">Reading bits back</a> <li><a href="#Parameters">Parameters</a> <ul> <li><a href="#Default_CRD_parameters">Default color rendering dictionary (CRD) parameters</a> </ul> <li><a href="#External_fonts">External fonts</a> <li><a href="#Page_devices">Page devices</a> <li><a href="#Miscellaneous">Miscellaneous</a> </ul> </ul></blockquote> <!-- [1.2 end table of contents] =========================================== --> <!-- [1.3 begin hint] ====================================================== --> <p>For other information, see the <a href="Readme.htm">Ghostscript overview</a> and the documentation on <a href="Make.htm">how to build Ghostscript</a>. <!-- [1.3 end hint] ======================================================== --> <hr> <!-- [1.0 end visible header] ============================================== --> <!-- [2.0 begin contents] ================================================== --> <h2><a name="Adding_drivers"></a>Adding a driver</h2> <p> To add a driver to Ghostscript, first pick a name for your device, say "<b><tt>smurf</tt></b>". (Device names must be 1 to 8 characters, begin with a letter, and consist only of letters, digits, and underscores. Case is significant: all current device names are lower case.) Then all you need do is edit <b><tt>contrib.mak</tt></b> in two places. <ol> <li>The list of devices, in the section headed "Catalog". Add <b><tt>smurf</tt></b> to the list. <li>The section headed "Device drivers". <p> Suppose the files containing the smurf driver are called "<b><tt>joe</tt></b>" and "<b><tt>fred</tt></b>". Then you should add the following lines: <blockquote> <pre># ------ The SMURF device ------ # smurf_=$(GLOBJ)joe.$(OBJ) $(GLOBJ)fred.$(OBJ) $(DD)smurf.dev: $(smurf_) $(SETDEV) $(DD)smurf $(smurf_) $(GLOBJ)joe.$(OBJ) : $(GLSRC)joe.c $(GLCC) $(GLO_)joe.$(OBJ) $(C_) $(GLSRC)joe.c $(GLOBJ)fred.$(OBJ) : $(GLSRC)fred.c $(GLCC) $(GLO_)fred.$(OBJ) $(C_) $(GLSRC)fred.c</pre> </blockquote> <p> and whatever <b><tt>joe.c</tt></b> and <b><tt>fred.c</tt></b> depend on. If the smurf driver also needs special libraries, for instance a library named "<b><tt>gorf</tt></b>", then the entry should look like this: <blockquote> <pre>$(DD)smurf.dev : $(smurf_) $(SETDEV) $(DD)smurf $(smurf_) $(ADDMOD) $(DD)smurf -lib gorf</pre> </blockquote> <p> If, as will usually be the case, your driver is a printer driver (as <a href="#Printer_drivers">discussed below</a>), the device entry should look like this: <blockquote> <pre>$(DD)smurf.dev : $(smurf_) $(GLD)page.dev $(SETPDEV) $(DD)smurf $(smurf_)</pre> </blockquote> <p> or <blockquote> <pre>$(DD)smurf.dev : $(smurf_) $(GLD)page.dev $(SETPDEV) $(DD)smurf $(smurf_) $(ADDMOD) $(DD)smurf -lib gorf</pre> </blockquote> <p> Note that the space before the :, and the explicit compilation rules for the .c files, are required for portability, </ol> <hr> <h2><a name="KISS"></a>Keeping things simple</h2> <p> If you want to add a simple device (specifically, a monochrome printer), you probably don't need to read the rest of this document; just use the code in an existing driver as a guide. The Epson and Canon BubbleJet drivers <a href="../src/gdevepsn.c">gdevepsn.c</a> and <a href="../src/gdevbj10.c">gdevbj10.c</a> are good models for dot-matrix printers, which require presenting the data for many scan lines at once; the DeskJet/LaserJet drivers in <a href="../src/gdevdjet.c">gdevdjet.c</a> are good models for laser printers, which take a single scan line at a time but support data compression. For color printers, there are unfortunately no good models: the two major color inkjet printer drivers, <a href="../src/gdevcdj.c">gdevcdj.c</a> and <a href="../src/gdevstc.c">gdevstc.c</a>, are far too complex to read. <p> On the other hand, if you're writing a driver for some more esoteric device, you probably do need at least some of the information in the rest of this document. It might be a good idea for you to read it in conjunction with one of the existing drivers. <p> Duplication of code, and sheer volume of code, is a serious maintenance and distribution problem for Ghostscript. If your device is similar to an existing one, try to implement your driver by adding some parameterization to an existing driver rather than by copying code to create an entirely new source module. <a href="../src/gdevepsn.c">gdevepsn.c</a> and <a href="../src/gdevdjet.c">gdevdjet.c</a> are good examples of this approach. <hr> <h2><a name="Structure"></a>Driver structure</h2> <p> A device is represented by a structure divided into three parts: <ul> <li>procedures that are (normally) shared by all instances of each device; <li>parameters that are present in all devices but may be different for each device or instance; and <li>device-specific parameters that may be different for each instance. </ul> <p> Normally the procedure structure is defined and initialized at compile time. A prototype of the parameter structure (including both generic and device-specific parameters) is defined and initialized at compile time, but is copied and filled in when an instance of the device is created. Both of these structures should be declared as <b><tt>const</tt></b>, but for backward compatibility reasons the latter is not. <p> The <b><tt>gx_device_common</tt></b> macro defines the common structure elements, with the intent that devices define and export a structure along the following lines. Do not fill in the individual generic parameter values in the usual way for C structures: use the macros defined for this purpose in <a href="../src/gxdevice.h">gxdevice.h</a> or, if applicable, <a href="../src/gdevprn.h">gdevprn.h</a>. <blockquote> <pre>typedef struct smurf_device_s { gx_device_common; <b><em>... device-specific parameters ...</em></b> } smurf_device; smurf_device gs_smurf_device = { <b><em>... macro for generic parameter values ...,</em></b> { <b><em>... procedures ...</em></b> }, /* std_procs */ <b><em>... device-specific parameter values if any ...</em></b> };</pre> </blockquote> <p> The device structure instance <b>must</b> have the name <b><tt>gs_smurf_device</tt></b>, where <b><tt>smurf</tt></b> is the device name used in <b><tt>contrib.mak</tt></b>. <b><tt>gx_device_common</tt></b> is a macro consisting only of the element definitions. <p> All the device procedures are called with the device as the first argument. Since each device type is actually a different structure type, the device procedures must be declared as taking a <b><tt>gx_device *</tt></b> as their first argument, and must cast it to <b><tt>smurf_device *</tt></b> internally. For example, in the code for the "memory" device, the first argument to all routines is called <b><tt>dev</tt></b>, but the routines actually use <b><tt>mdev</tt></b> to refer to elements of the full structure, using the following standard initialization statement at the beginning of each procedure: <blockquote> <pre>gx_memory_device *const mdev = (gx_device_memory *)dev;</pre> </blockquote> <p> (This is a cheap version of "object-oriented" programming: in C++, for example, the cast would be unnecessary, and in fact the procedure table would be constructed by the compiler.) <h3><a name="Structure_definition"></a>Structure definition</h3> <p> You should consult the definition of struct <b><tt>gx_device_s</tt></b> in <a href="../src/gxdevice.h">gxdevice.h</a> for the complete details of the generic device structure. Some of the most important members of this structure for ordinary drivers are: <blockquote><table cellpadding=0 cellspacing=0> <tr valign=top> <td><b><tt>const char *dname;</tt></b> <td> <td>The device name <tr valign=top> <td><b><tt>bool is_open;</tt></b> <td> <td>True if device has been opened <tr valign=top> <td><b><tt>gx_device_color_info color_info;</tt></b> <td> <td>Color information <tr valign=top> <td><b><tt>int width;</tt></b> <td> <td>Width in pixels <tr valign=top> <td><b><tt>int height;</tt></b> <td> <td>Height in pixels </table></blockquote> <p> The name in the structure (<b><tt>dname</tt></b>) should be the same as the name in <a href="../src/contrib.mak">contrib.mak</a>. <h3><a name="Sophisticated"></a>For sophisticated developers only</h3> <p> If for any reason you need to change the definition of the basic device structure, or to add procedures, you must change the following places: <blockquote><ul> <li>This document and the <a href="News.htm">news document</a> (if you want to keep the documentation up to date). <li>The definition of <b><tt>gx_device_common</tt></b> and the procedures in <a href="../src/gxdevcli.h">gxdevcli.h</a>. <li>Possibly, the default forwarding procedures declared in <a href="../src/gxdevice.h">gxdevice.h</a> and implemented in <a href="../src/gdevnfwd.c">gdevnfwd.c</a>. <li>The device procedure record completion routines in <a href="../src/gdevdflt.c">gdevdflt.c</a>. <li>Possibly, the default device implementation in <a href="../src/gdevdflt.c">gdevdflt.c</a>, <a href="../src/gdevddrw.c">gdevddrw.c</a>, and <a href="../src/gxcmap.c">gxcmap.c</a>. <li>The bounding box device in <a href="../src/gdevbbox.c">gdevbbox.c</a> (probably just adding <b><tt>NULL</tt></b> procedure entries if the new procedures don't produce output). <li>These devices that must have complete (non-defaulted) procedure vectors: <ul> <li>The null device in <a href="../src/gdevnfwd.c">gdevnfwd.c</a>. <li>The command list "device" in <a href="../src/gxclist.c">gxclist.c</a>. This is not an actual device; it only defines procedures. <li>The "memory" devices in <a href="../src/gdevmem.h">gdevmem.h</a> and <b><tt>gdevm*.c</tt></b>. </ul> <li>The clip list accumulation "device" in <a href="../src/gxacpath.c">gxacpath.c</a>. <li>The clipping "devices" <a href="../src/gxclip.c">gxclip.c</a>, <a href="../src/gxclip2.c">gxclip2.c</a>, and <a href="../src/gxclipm.c">gxclipm.c</a>. <li>The pattern accumulation "device" in <a href="../src/gxpcmap.c">gxpcmap.c</a>. <li>The hit detection "device" in <a href="../src/gdevhit.c">gdevhit.c</a>. <li>The generic printer device macros in <a href="../src/gdevprn.h">gdevprn.h</a>. <li>The generic printer device code in <a href="../src/gdevprn.c">gdevprn.c</a>. <li>The RasterOp source device in <a href="../src/gdevrops.c">gdevrops.c</a>. </ul></blockquote> <p> You may also have to change the code for <b><tt>gx_default_get_params</tt></b> or <b><tt>gx_default_put_params</tt></b> in <a href="../src/gsdparam.c">gsdparam.c</a>. <p> You should not have to change any of the real devices in the standard Ghostscript distribution (listed in <a href="../src/devs.mak">devs.mak</a> and <a href="../src/contrib.mak">contrib.mak</a>) or any of your own devices, because all of them are supposed to use the macros in <a href="../src/gxdevice.h">gxdevice.h</a> or <a href="../src/gdevprn.h">gdevprn.h</a> to define and initialize their state. <hr> <h2><a name="coordinates_and_types"></a>Coordinates and types</h2> <h3><a name="Coordinate_system"></a>Coordinate system</h3> <p> Since each driver specifies the initial transformation from user coordinates to device coordinates, the driver can use any coordinate system it wants, as long as a device coordinate will fit in an <b><tt>int</tt></b>. (This is only an issue on DOS systems, where ints are only 16 bits. User coordinates are represented as floats.) Most current drivers use a coordinate system with (0,0) in the upper left corner, with <b><em>X</em></b> increasing to the right and <b><em>Y</em></b> increasing toward the bottom. However, there is supposed to be nothing in the rest of Ghostscript that assumes this, and indeed some drivers use a coordinate system with (0,0) in the lower left corner. <p> Drivers must check (and, if necessary, clip) the coordinate parameters given to them: they should not assume the coordinates will be in bounds. The <b><tt>fit_fill</tt></b> and <b><tt>fit_copy</tt></b> macros in <a href="../src/gxdevice.h">gxdevice.h</a> are very helpful in doing this. <h3><a name="Color_definition"></a>Color definition</h3> <p> Between the Ghostscript graphics library and the device, colors are represented in three forms. Color components in a color space (Gray, RGB, DeviceN, etc.) represented as <b><tt>frac</tt></b> values. Device colorants are represented as <b><tt>gx_color_value</tt></b> values. For many procedures, colors are represented in a type called <b><tt>gx_color_index</tt></b>. All three types are described in more detail in <a href="#Types">Types</a> <p> The <b><tt>color_info</tt></b> member of the device structure defines the color and gray-scale capabilities of the device. Its type is defined as follows: <blockquote> <pre> /* * The enlarged color model information structure: Some of the * information that was implicit in the component number in * the earlier conventions (component names, polarity, mapping * functions) are now explicitly provided. * * Also included is some information regarding the encoding of * color information into gx_color_index. Some of this information * was previously gathered indirectly from the mapping * functions in the existing code, specifically to speed up the * halftoned color rendering operator (see * gx_dc_ht_colored_fill_rectangle in gxcht.c). The information * is now provided explicitly because such optimizations are * more critical when the number of color components is large. * * Note: no pointers have been added to this structure, so there * is no requirement for a structure descriptor. */ typedef struct gx_device_color_info_s { /* * max_components is the maximum number of components for all * color models supported by this device. This does not include * any alpha components. */ int max_components; /* * The number of color components. This does not include any * alpha-channel information, which may be integrated into * the gx_color_index but is otherwise passed as a separate * component. */ int num_components; /* * Polarity of the components of the color space, either * additive or subtractive. This is used to interpret transfer * functions and halftone threshold arrays. Possible values * are GX_CM_POLARITY_ADDITIVE or GX_CM_POLARITY_SUBTRACTIVE */ gx_color_polarity_t polarity; /* * The number of bits of gx_color_index actually used. * This must be <= sizeof(gx_color_index), which is usually 64. */ byte depth; /* * Index of the gray color component, if any. The max_gray and * dither_gray values apply to this component only; all other * components use the max_color and dither_color values. * * This will be GX_CINFO_COMP_NO_INDEX if there is no gray * component. */ byte gray_index; /* * max_gray and max_color are the number of distinct native * intensity levels, less 1, for the gray and all other color * components, respectively. For nearly all current devices * that support both gray and non-gray components, the two * parameters have the same value. * * dither_grays and dither_colors are the number of intensity * levels between which halftoning can occur, for the gray and * all other color components, respectively. This is * essentially redundant information: in all reasonable cases, * dither_grays = max_gray + 1 and dither_colors = max_color + 1. * These parameters are, however, extensively used in the * current code, and thus have been retained. * * Note that the non-gray values may now be relevant even if * num_components == 1. This simplifies the handling of devices * with configurable color models which may be set for a single * non-gray color model. */ gx_color_value max_gray; /* # of distinct color levels -1 */ gx_color_value max_color; gx_color_value dither_grays; gx_color_value dither_colors; /* * Information to control super-sampling of objects to support * anti-aliasing. */ gx_device_anti_alias_info anti_alias; /* * Flag to indicate if gx_color_index for this device may be divided * into individual fields for each component. This is almost always * the case for printers, and is the case for most modern displays * as well. When this is the case, halftoning may be performed * separately for each component, which greatly simplifies processing * when the number of color components is large. * * If the gx_color_index is separable in this manner, the comp_shift * array provides the location of the low-order bit for each * component. This may be filled in by the client, but need not be. * If it is not provided, it will be calculated based on the values * in the max_gray and max_color fields as follows: * * comp_shift[num_components - 1] = 0, * comp_shift[i] = comp_shift[i + 1] * + ( i == gray_index ? ceil(log2(max_gray + 1)) * : ceil(log2(max_color + 1)) ) * * The comp_mask and comp_bits fields should be left empty by the client. * They will be filled in during initialization using the following * mechanism: * * comp_bits[i] = ( i == gray_index ? ceil(log2(max_gray + 1)) * : ceil(log2(max_color + 1)) ) * * comp_mask[i] = (((gx_color_index)1 << comp_bits[i]) - 1) * << comp_shift[i] * * (For current devices, it is almost always the case that * max_gray == max_color, if the color model contains both gray and * non-gray components.) * * If separable_and_linear is not set, the data in the other fields * is unpredictable and should be ignored. */ gx_color_enc_sep_lin_t separable_and_linear; byte comp_shift[GX_DEVICE_COLOR_MAX_COMPONENTS]; byte comp_bits[GX_DEVICE_COLOR_MAX_COMPONENTS]; gx_color_index comp_mask[GX_DEVICE_COLOR_MAX_COMPONENTS]; /* * Pointer to name for the process color model. */ const char * cm_name; } gx_device_color_info; </pre> </blockquote> <p> Note: See <a href="#Changing_color_info_data">Changing color_info data</a> before changing any information in the <b><tt>color_info structure</tt></b> for a device. <p> It is recommended that the values for this structure be defined using one of the standard macros provided for this purpose. This allows for future changes to be made to the structure without changes being required in the actual device code. <p> The following macros (in <a href="../src/gxdevcli.h">gxdevcli.h</a>) provide convenient shorthands for initializing this structure for ordinary black-and-white or color devices: <blockquote> <b><tt>#define dci_black_and_white</tt></b> ...<br> <b><tt>#define dci_color(depth,maxv,dither)</tt></b> ... </blockquote> <p> The <b><tt>#define dci_black_and_white</tt></b> macro defines a single bit monochrome device (For example: a typical monochrome printer device.) <p> The <b><tt>#define dci_color(depth,maxv,dither)</tt></b> macro can be used to define a 24 bit RGB device or a 4 or 32 bit CMYK device. <p> The <b><tt>#define dci_extended_alpha_values</tt></b> macro (in <a href="../src/gxdevcli.h">gxdevcli.h</a>) specifies most of the current fields in the structure. However this macro allows only the default setting for the comp_shift, comp_bits, and comp_mask fields to be set. Any device which requires a non-default setting for these fields has to correctly these fields during the device open procedure. See <a href="#sep_and_linear_fields">Separable and linear fields></a> and <a href="#Changing_color_info_data">Changing color_info data</a>. <p> The idea is that a device has a certain number of gray levels (<b><tt>max_gray</tt></b>+1) and a certain number of colors (<b><tt>max_rgb</tt></b>+1) that it can produce directly. When Ghostscript wants to render a given color space color value as a device color, it first tests whether the color is a gray level and if so: <blockquote> If <b><tt>max_gray</tt></b> is large (>= 31), Ghostscript asks the device to approximate the gray level directly. If the device returns a valid <b><tt>gx_color_index</tt></b>, Ghostscript uses it. Otherwise, Ghostscript assumes that the device can represent <b><tt>dither_gray</tt></b> distinct gray levels, equally spaced along the diagonal of the color cube, and uses the two nearest ones to the desired color for halftoning. </blockquote> <p> If the color is not a gray level: <blockquote> If <b><tt>max_rgb</tt></b> is large (>= 31), Ghostscript asks the device to approximate the color directly. If the device returns a valid <b><tt>gx_color_index</tt></b>, Ghostscript uses it. Otherwise, Ghostscript assumes that the device can represent <blockquote> <b><tt>dither_rgb</tt></b> × <b><tt>dither_rgb</tt></b> × <b><tt>dither_rgb</tt></b> </blockquote> <p> distinct colors, equally spaced throughout the color cube, and uses two of the nearest ones to the desired color for halftoning. </blockquote> <h4><a name="sep_and_linear_fields"></a>Separable and linear fields</h4> <p> The three fields <b><tt>comp_shift</tt></b>, <b><tt>comp_bits</tt></b>, and <b><tt>comp_mask</tt></b> are only used if the <b><tt>separable_and_linear</tt></b> field is set to <b><tt>GX_CINFO_SEP_LIN</tt></b>. In this situation a <b><tt>gx_color_index</tt></b> value must represent a combination created by or'ing bits for each of the devices's output colorants. The <b><tt>comp_shift</tt></b> array defines the location (shift count) of each colorants bits in the output gx_color_index value. The <b><tt>comp_bits</tt></b> array defines the number of bits for each colorant. The <b><tt>comp_mask</tt></b> array contains a mask which can be used to isolate the bits for each colorant. These fields must be set if the device supports more than four colorants. <h4><a name="Changing_color_info_data"></a>Changing color_info data</h4> <p> For most devices, the information in the device's <tt><b>color_info</b></tt> structure is defined by the various device definition macros and the data remains constant during the entire existence of the device. In general the Ghostscript graphics assumes that the information is constant. However some devices want to modify the data in this structure. <p> The device's <b><tt>put_params</tt></b> procedure may change <b><tt>color_info</tt></b> field values. After the data has been modified then the device should be closed (via a call to <tt><b>gs_closedevice</b></tt>). Closing the device will erase the current page so these changes should only be made before anything has been drawn on a page. <p> The device's <tt><b>open_device</b></tt> procedure may change <b><tt>color_info</tt></b> field values. These changes should be done before calling any other procedures are called. <p> The Ghostscript graphics library uses some of the data in <b><tt>color_info</tt></b> to set the default procedures for the <b><tt>get_color_mapping_procs</tt></b>, <b><tt>get_color_comp_index</tt></b>, <b><tt>encode_color</tt></b>, and <b><tt>decode_color</tt></b> procedures. These default procedures are set when the device is originally created. If any changes are made to the <b><tt>color_info</tt></b> fields then the device's <b><tt>open_device</tt></b> procedure has responsibility for insuring that the correct procedures are contained in the device structure. (For an example, see the display device open procedure <b><tt>display_open</tt></b> and its subroutine <b><tt>display_set_color_format </tt></b> (in <a href="../src/gdevdisp.c">gdevdisp</a>). <h3><a name="Types"></a>Types</h3> <p> Here is a brief explanation of the various types that appear as parameters or results of the drivers. <dl> <dt><b><tt>frac</tt></b> (defined in <a href="../src/gxfrac.h">gxfrac.h</a>) <dd>This is the type used to represent color values for the input to the color model mapping procedures. It is currently defined as a short. It has a range of <b><tt>frac_0</tt></b> to <b><tt>frac_1</tt></b>. </dl> <dl> <dt><b><tt>gx_color_value</tt></b> (defined in <a href="../src/gxdevice.h">gxdevice.h</a>) <dd>This is the type used to represent RGB or CMYK color values. It is currently equivalent to unsigned short. However, Ghostscript may use less than the full range of the type to represent color values: <b><tt>gx_color_value_bits</tt></b> is the number of bits actually used, and <b><tt>gx_max_color_value</tt></b> is the maximum value, equal to (2^<small><sup><b><tt>gx_max_color_value_bits</tt></b></sup></small>)-1. </dl> <dl> <dt><b><tt>gx_device</tt></b> (defined in <a href="../src/gxdevice.h">gxdevice.h</a>) <dd>This is the device structure, as explained above. </dl> <dl> <dt><b><tt>gs_matrix</tt></b> (defined in <a href="../src/gsmatrix.h">gsmatrix.h</a>) <dd>This is a 2-D homogeneous coordinate transformation matrix, used by many Ghostscript operators. </dl> <dl> <dt><b><tt>gx_color_index</tt></b> (defined in <a href="../src/gxcindex.h">gxcindex.h</a>) <dd>This is meant to be whatever the driver uses to represent a device color. For example, it might be an index in a color map, or it might be R, G, and B values packed into a single integer. The Ghostscript graphics library gets <b><tt>gx_color_index</tt></b> values from the device's <b><tt>encode_color</tt></b> and hands them back as arguments to several other procedures. If the <b><tt>separable_and_linear</tt></b> field in the device's <b><tt>color_info</tt></b> structure is not set to <b><tt>GX_CINFO_SEP_LIN</tt></b> then Ghostscript does not do any computations with <b><tt>gx_color_index</tt></b> values. <p> The special value <b><tt>gx_no_color_index</tt></b> (defined as <b><tt>(~(gx_color_index)(0))</tt></b> ) means "transparent" for some of the procedures. <p> The size of <b><tt>gx_color_index</tt></b> can be either 32 or 64 bits. The choice depends upon the architecture of the CPU and the compiler. The default type definition is simply: <blockquote><b><tt> typedef unsigned long gx_color_index; </tt></b></blockquote> However if <b><tt>GX_COLOR_INDEX_TYPE</tt></b> is defined, then it is used as the type for <b><tt>gx_color_index</tt></b>. <blockquote><b><tt> typedef GX_COLOR_INDEX_TYPE gx_color_index; </tt></b></blockquote> The smaller size (32 bits) may produce more efficient or faster executing code. The larger size (64 bits) is needed for representing either more bits per component or more components. An example of the later case is a device that supports 8 bit contone colorants using a DeviceCMYK process color model with its four colorants and also supports additional spot colorants. <p> Currently autoconf attempts to find a 64 bit type definition for the compiler being used, and if a 64 bit type is found then <b><tt>GX_COLOR_INDEX_TYPE</tt></b> is set to the type. <p> For Microsoft and the MSVC compiler, <b><tt>GX_COLOR_INDEX_TYPE</tt></b> will be set to <b><tt>unsigned _int64</tt></b> if <b><tt>USE_LARGE_COLOR_INDEX</tt></b> is set to 1 either on the make command line or by editing the definition in <a href="../src/msvc32.mak">msvc32.mak</a> </dl> <dl> <dt><b><tt>gs_param_list</tt></b> (defined in <a href="../src/gsparam.h">gsparam.h</a>) <dd>This is a parameter list, which is used to read and set attributes in a device. See the comments in <a href="../src/gsparam.h">gsparam.h</a>, and the <a href="#Parameters">description of the <b><tt>get_params</tt></b> and <b><tt>put_params</tt></b> procedures</a> below, for more detail. </dl> <dl> <dt><b><tt>gx_tile_bitmap</tt></b> (defined in <a href="../src/gxbitmap.h">gxbitmap.h</a>) <br><b><tt>gx_strip_bitmap</tt></b> (defined in <a href="../src/gxbitmap.h">gxbitmap.h</a>) <dd>These structure types represent bitmaps to be used as a tile for filling a region (rectangle). <b><tt>gx_tile_bitmap</tt></b> is an older type lacking <b><tt>shift</tt></b> and <b><tt>rep_shift</tt></b>; <b><tt>gx_strip_bitmap</tt></b> has superseded it, and it should not be used in new code. Here is a copy of the relevant part of the file: <blockquote> <pre> /* * Structure for describing stored bitmaps. * Bitmaps are stored bit-big-endian (i.e., the 2^7 bit of the first * byte corresponds to x=0), as a sequence of bytes (i.e., you can't * do word-oriented operations on them if you're on a little-endian * platform like the Intel 80x86 or VAX). Each scan line must start on * a (32-bit) word boundary, and hence is padded to a word boundary, * although this should rarely be of concern, since the raster and width * are specified individually. The first scan line corresponds to y=0 * in whatever coordinate system is relevant. * * For bitmaps used as halftone tiles, we may replicate the tile in * X and/or Y, but it is still valuable to know the true tile dimensions * (i.e., the dimensions prior to replication). Requirements: * width % rep_width = 0 * height % rep_height = 0 * * For halftones at arbitrary angles, we provide for storing the halftone * data as a strip that must be shifted in X for different values of Y. * For an ordinary (non-shifted) halftone that has a repetition width of * W and a repetition height of H, the pixel at coordinate (X,Y) * corresponds to halftone pixel (X mod W, Y mod H), ignoring phase; * for a shifted halftone with shift S, the pixel at (X,Y) corresponds * to halftone pixel ((X + S * floor(Y/H)) mod W, Y mod H). Requirements: * strip_shift < rep_width * strip_height % rep_height = 0 * shift = (strip_shift * (size.y / strip_height)) % rep_width */ typedef struct gx_strip_bitmap_s { byte *data; int raster; /* bytes per scan line */ gs_int_point size; /* width, height */ gx_bitmap_id id; ushort rep_width, rep_height; /* true size of tile */ ushort strip_height; ushort strip_shift; ushort shift; } gx_strip_bitmap;</pre> </blockquote> </dl> <hr> <h2><a name="Coding_conventions"></a>Coding conventions</h2> <p> All the driver procedures defined below that return <b><tt>int</tt></b> results return 0 on success, or an appropriate negative error code in the case of error conditions. The error codes are defined in <a href="../src/gserrors.h">gserrors.h</a>; they correspond directly to the errors defined in the PostScript language reference manuals. The most common ones for drivers are: <blockquote><dl> <dt><b><tt>gs_error_invalidfileaccess</tt></b> <dd>An attempt to open a file failed. <dt><b><tt>gs_error_ioerror</tt></b> <dd>An error occurred in reading or writing a file. <dt><b><tt>gs_error_limitcheck</tt></b> <dd>An otherwise valid parameter value was too large for the implementation. <dt><b><tt>gs_error_rangecheck</tt></b> <dd>A parameter was outside the valid range. <dt><b><tt>gs_error_VMerror</tt></b> <dd>An attempt to allocate memory failed. (If this happens, the procedure should release all memory it allocated before it returns.) </dl></blockquote> <p> If a driver does return an error, rather than a simple return statement it should use the <b><tt>return_error</tt></b> macro defined in <a href="../src/gx.h">gx.h</a>, which is automatically included by <a href="../src/gdevprn.h">gdevprn.h</a> but not by <a href="../src/gserrors.h">gserrors.h</a>. For example <blockquote> <b><tt> return_error(gs_error_VMerror); </tt></b></blockquote> <h3><a name="Allocating_storage"></a>Allocating storage</h3> <p> While most drivers (especially printer drivers) follow a very similar template, there is one important coding convention that is not obvious from reading the code for existing drivers: driver procedures must not use <b><tt>malloc</tt></b> to allocate any storage that stays around after the procedure returns. Instead, they must use <b><tt>gs_malloc</tt></b> and <b><tt>gs_free</tt></b>, which have slightly different calling conventions. (The prototypes for these are in <a href="../src/gsmemory.h">gsmemory.h</a>, which is included in <a href="../src/gx.h">gx.h</a>, which is included in <a href="../src/gdevprn.h">gdevprn.h</a>.) This is necessary so that Ghostscript can clean up all allocated memory before exiting, which is essential in environments that provide only single-address-space multi-tasking (some versions of Microsoft Windows). <blockquote> <pre>char *gs_malloc(uint num_elements, uint element_size, const char *client_name);</pre> </blockquote> <p> Like <b><tt>calloc</tt></b>, but unlike <b><tt>malloc</tt></b>, <b><tt>gs_malloc</tt></b> takes an element count and an element size. For structures, <b><tt>num_elements</tt></b> is 1 andi <b><tt>element_size</tt></b> is <b><tt>sizeof</tt></b> the structure; for byte arrays, <b><tt>num_elements</tt></b> is the number of bytes and <b><tt>element_size</tt></b> is 1. Unlike <b><tt>calloc</tt></b>, <b><tt>gs_malloc</tt></b> does <b>not</b> clear the block of storage. <p> The <b><tt>client_name</tt></b> is used for tracing and debugging. It must be a real string, not <b><tt>NULL</tt></b>. Normally it is the name of the procedure in which the call occurs. <blockquote> <pre>void gs_free(char *data, uint num_elements, uint element_size, const char *client_name);</pre> </blockquote> <p> Unlike <b><tt>free</tt></b>, <b><tt>gs_free</tt></b> demands that <b><tt>num_elements</tt></b> and element_size be supplied. It also requires a client name, like <b><tt>gs_malloc</tt></b>. <h3><a name="Driver_instance_allocation"></a>Driver instance allocation</h3> <p>i All driver instances allocated by Ghostscript's standard allocator must point to a "structure descriptor" that tells the garbage collector how to trace pointers in the structure. For drivers registered in the normal way (using the makefile approach described above), no special care is needed as long as instances are created only by calling the <b><tt>gs_copydevice</tt></b> procedure defined in <a href="../src/gsdevice.h">gsdevice.h</a>. If you have a need to define devices that are not registered in this way, you must fill in the stype member in any dynamically allocated instances with a pointer to the same structure descriptor used to allocate the instance. For more information about structure descriptors, see <a href="../src/gsmemory.h">gsmemory.h</a> and <a href="../src/gsstruct.h">gsstruct.h</a>. <hr> <h2><a name="Printer_drivers"></a>Printer drivers</h2> <p> Printer drivers (which include drivers that write some kind of raster file) are especially simple to implement. The printer driver must implement a <b><tt>print_page</tt></b> or <b><tt>print_page_copies</tt></b> procedure. There are macros in <a href="../src/gdevprn.h">gdevprn.h</a> that generate the device structure for such devices, of which the simplest is <b><tt>prn_device</tt></b>; for an example, see <a href="../src/gdevbj10.c">gdevbj10.c</a>. If you are writing a printer driver, we suggest you start by reading <a href="../src/gdevprn.h">gdevprn.h</a> and the <a href="#Color_mapping">subsection on "Color mapping"</a> below; you may be able to ignore all the rest of the driver procedures. <p> The <b><tt>print_page</tt></b> procedures are defined as follows: <blockquote> <pre>int (*print_page)(gx_device_printer *, FILE *) int (*print_page_copies)(gx_device_printer *, FILE *, int)</pre> </blockquote> <p> This procedure must read out the rendered image from the device and write whatever is appropriate to the file. To read back one or more scan lines of the image, the <b><tt>print_page</tt></b> procedure must call one of the following procedures: <blockquote> <pre>int gdev_prn_copy_scan_lines(gx_device_printer *pdev, int y, byte *str, uint size)</pre> </blockquote> <p> For this procedure, <b><tt>str</tt></b> is where the data should be copied to, and <b><tt>size</tt></b> is the size of the buffer starting at <b><tt>str</tt></b>. This procedure returns the number of scan lines copied, or <0 for an error. <b><tt>str</tt></b> need not be aligned. <blockquote> <pre>int gdev_prn_get_bits(gx_device_printer *pdev, int y, byte *str, byte **actual_data)</pre> </blockquote> <p> This procedure reads out exactly one scan line. If the scan line is available in the correct format already, <b><tt>*actual_data</tt></b> is set to point to it; otherwise, the scan line is copied to the buffer starting at <b><tt>str</tt></b>, and <b><tt>*actual_data</tt></b> is set to <b><tt>str</tt></b>. This saves a copying step most of the time. <b><tt>str</tt></b> need not be aligned; however, if <b><tt>*actual_data</tt></b> is set to point to an existing scan line, it will be aligned. (See the description of the <b><tt>get_bits</tt></b> procedure below for more details.) <p> In either case, each row of the image is stored in the form described in the comment under <b><tt>gx_tile_bitmap</tt></b> above; each pixel takes the number of bits specified as <b><tt>color_info.depth</tt></b> in the device structure, and holds values returned by the device's <b><tt>encode_color</tt></b> procedure. <p> The <b><tt>print_page</tt></b> procedure can determine the number of bytes required to hold a scan line by calling: <blockquote> <pre>uint gdev_prn_raster(gx_device_printer *)</pre> </blockquote> <p> For a very simple concrete example, we suggest reading the code in <b><tt>bit_print_page</tt></b> in <a href="../src/gdevbit.c">gdevbit.c</a>. <p> If the device provides <b><tt>print_page</tt></b>, Ghostscript will call <b><tt>print_page</tt></b> the requisite number of times to print the desired number of copies; if the device provides <b><tt>print_page_copies</tt></b>, Ghostscript will call <b><tt>print_page_copies</tt></b> once per page, passing it the desired number of copies. <hr> <h2><a name="Driver_procedures"></a>Driver procedures</h2> <p> Most of the procedures that a driver may implement are optional. If a device doesn't supply an optional procedure <b><tt>WXYZ</tt></b>, the entry in the procedure structure may be either <b><tt>gx_default_WXYZ</tt></b>, for instance <b><tt>gx_default_tile_rectangle</tt></b>, or <b><tt>NULL</tt></b> or 0. (The device procedure must also call the <b><tt>gx_default_</tt></b> procedure if it doesn't implement the function for particular values of the arguments.) Since C compilers supply 0 as the value for omitted structure elements, this convention means that statically initialized procedure structures continue to work even if new (optional) members are added. <h3><a name="Life_cycle"></a>Life cycle</h3> <p> A device instance begins life in a closed state. In this state, no output operations will occur. Only the following procedures may be called: <blockquote><b><tt> open_device<br> finish_copydevice<br> get_initial_matrix<br> get_params<br> put_params<br> get_hardware_params </tt></b></blockquote> <p> When <b><tt>setdevice</tt></b> installs a device instance in the graphics state, it checks whether the instance is closed or open. If the instance is closed, <b><tt>setdevice</tt></b> calls the open routine, and then sets the state to open. <p> There is no user-accessible operation to close a device instance. This is not an oversight -- it is required in order to enforce the following invariant: <blockquote> If a device instance is the current device in <em>any</em> graphics state, it must be open (have <b><tt>is_open</tt></b> set to true). </blockquote> <p> Device instances are only closed when they are about to be freed, which occurs in three situations: <ul> <li>When a <b><tt>restore</tt></b> occurs, if the instance was created since the corresponding <b><tt>save</tt></b> and is in a VM being restored. I.e., if the instance was created in local VM since a <b><tt>save</tt></b>, it will always be closed and freed by the corresponding <b><tt>restore</tt></b>; if it was created in global VM, it will only be closed by the outermost <b><tt>restore</tt></b>, regardless of the save level at the time the instance was created. <li>By the garbage collector, if the instance is no longer accessible. <li>When Ghostscript exits (terminates). </ul> <h3><a name="Open_close"></a>Open, close, sync, copy</h3> <dl> <dt><b><tt>int (*open_device)(gx_device *)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Open the device: do any initialization associated with making the device instance valid. This must be done before any output to the device. The default implementation does nothing. <b>NOTE</b>: Clients should never call a device's <b><tt>open_device</tt></b> procedure directly: they should always call <b><tt>gs_opendevice</tt></b> instead. </dl> <dl> <dt><b><tt>int (*finish_copydevice)(gx_device *dev, const gx_device *from_dev)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Perform any cleanup required after <b><tt>copydevice</tt></b> has created a new device instance by copying <b><tt>from_dev</tt></b>. If the copy operation should not be allowed, this procedure should return an error; the copy will be freed. The default implementation allows copying the device prototype, but does not allow copying device instances, because instances may contain internal pointers that should not be shared between copies, and there is no way to determine this from outside the device. <b>NOTE</b>: Clients should never call a device's <b><tt>finish_copydevice</tt></b> procedure: this procedure is only intended for use by <b><tt>gs_copydevice[2]</tt></b>. </dl> <dl> <dt><b><tt>void (*get_initial_matrix)(gx_device *, gs_matrix *)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Construct the initial transformation matrix mapping user coordinates (nominally 1/72 inch per unit) to device coordinates. The default procedure computes this from width, height, and [<b><tt>xy</tt></b>]<b><tt>_pixels_per_inch</tt></b> on the assumption that the origin is in the upper left corner, that is <blockquote> <b><tt>xx</tt></b> = <b><tt>x_pixels_per_inch</tt></b>/72, <b><tt>xy</tt></b> = 0,<br> <b><tt>yx = 0, yy = -y_pixels_per_inch</tt></b>/72,<br> <b><tt>tx = 0, ty = height</tt></b>. </blockquote> </dl> <dl> <dt><b><tt>int (*sync_output)(gx_device *)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Synchronize the device. If any output to the device has been buffered, send or write it now. Note that this may be called several times in the process of constructing a page, so printer drivers should <b>not</b> implement this by printing the page. The default implementation does nothing. </dl> <dl> <dt><b><tt>int (*output_page)(gx_device *, int num_copies, int flush)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Output a fully composed page to the device. The <b><tt>num_copies</tt></b> argument is the number of copies that should be produced for a hardcopy device. (This may be ignored if the driver has some other way to specify the number of copies.) The <b><tt>flush</tt></b> argument is true for <b><tt>showpage</tt></b>, false for <b><tt>copypage</tt></b>. The default definition just calls <b><tt>sync_output</tt></b>. Printer drivers should implement this by printing and ejecting the page. </dl> <dl> <dt><b><tt>int (*close_device)(gx_device *)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Close the device: release any associated resources. After this, output to the device is no longer allowed. The default implementation does nothing. <b>NOTE</b>: Clients should never call a device's <b><tt>close_device</tt></b> procedure directly: they should always call <b><tt>gs_closedevice</tt></b> instead. </dl> <h3><a name="Color_mapping"></a>Color and alpha mapping</h3> <p> Note that code in the Ghostscript library may cache the results of calling one or more of the color mapping procedures. If the result returned by any of these procedures would change (other than as a result of a change made by the driver's <b><tt>put_params</tt></b> procedure), the driver must call <b><tt>gx_device_decache_colors(dev)</tt></b>. <p> The <b><tt>map_rgb_color</tt></b>, <b><tt>map_color_rgb</tt></b>, and <b><tt>map_cmyk_color</tt></b> are obsolete. They have been left in the device procedure list for backward compatibility. See the <b><tt>encode_color</tt></b> and <b><tt>decode_color</tt></b> procedures below. To insure that older device drivers are changed to use the new <b><tt>encode_color</tt></b> and <b><tt>decode_color</tt></b> procedures, the parameters for the older procedures have been changed to match the new procedures. To minimize changes in devices that have already been written, the map_rgb_color and map_cmyk_color routines are used as the default value for the encode_color routine. The map_cmyk_color routine is used if the number of components is four. The map_rgb_color routine is used if the number of components is one or three. This works okay for RGB and CMYK process color model devices. However this does not work properly for gray devices. The encode_color routine for a gray device is only passed one component. Thus the map_rgb_color routine must be modified to only use a single input (instead of three). (See the encode_color and decode_color routines below.) <p> Colors can be specified to the Ghostscript graphics library in a variety of forms. For example, there are a wide variety of color spaces that can be used such as Gray, RGB, CMYK, DeviceN, Separation, Indexed, CIEbasedABC, etc. The graphics library converts the various input color space values into four base color spaces: Gray, RGB, CMYK, and DeviceN. The DeviceN color space allows for specifying values for individual device colorants or spot colors. <p> Colors are converted by the device in a two step process. The first step is to convert a color in one of the base color spaces (Gray, RGB, CMYK, or DeviceN) into values for each device colorant. This transformation is done via a set of procedures provided by the device. These procedures are provided by the <b><tt>get_color_mapping_procs</tt></b> device procedure. <p> Between the first and second steps, the graphics library applies transfer functions to the device colorants. Where needed, the output of the results after the transfer functions is used by the graphics library for halftoning. <p> In the second step, the device procedure <b><tt>encode_color</tt></b> is used to convert the transfer function results into a <b><tt>gx_color_index</tt></b> value. The <b><tt>gx_color_index</tt></b> values are passed to specify colors to various routines. The choice of the encoding for a <b><tt>gx_color_index</tt></b> is up to the device. Common choices are indexes into a color palette or several integers packed together into a single value. The manner of this encoding is usually opaque to the graphics library. The only exception to this statement occurs when halftoning 5 or more colorants. In this case the graphics library assumes that if a colorant values is zero then the bits associated with the colorant in the <b><tt>gx_color_index</tt></b> value are zero. <dl> <dt><b><tt>int get_color_comp_index(const gx_device * dev, const char * pname, int name_size, int src_index)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>This procedure returns the device colorant number of the given name. The possible return values are -1, 0 to <b><tt>GX_DEVICE_COLOR_MAX_COMPONENTS - 1</tt></b>, or <b><tt>GX_DEVICE_COLOR_MAX_COMPONENTS</tt></b>. A value of -1 indicates that the specified name is not a colorant for the device. A value of 0 to <b><tt>GX_DEVICE_COLOR_MAX_COMPONENTS - 1</tt></b> indicates the colorant number of the given name. A value of <b><tt>GX_DEVICE_COLOR_MAX_COMPONENTS</tt></b> indicates that the given name is a valid colorant name for the device but the colorant is not currently being used. This is used for implementing names which are in SeparationColorNames but not in SeparationOrder. <p> The default procedure returns results based upon process color model of DeviceGray, DeviceRGB, or DeviceCMYK selected by <b><tt>color_info.num_components</tt></b>. This procedure must be defined if another process color model is used by the device or spot colors are supported by the device. </dd> </dl> <dl> <dt><b><tt>const gx_cm_color_map_procs * get_color_mapping_procs(const gx_device * dev)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>This procedure returns a list of three procedures. These procedures are used to translate values in either Gray, RGB, or CMYK color spaces into device colorant values. A separate procedure is not required for the DeviceN and Separation color spaces since these already represent device colorants. <p> The default procedure returns a list of procedures based upon <b><tt>color_info.num_components</tt></b>. These procedures are appropriate for DeviceGray, DeviceRGB, or DeviceCMYK process color model devices. A procedure must be defined if another process color model is used by the device or spot colors are to be supported. </dd> </dl> <dl> <dt><b><tt>gx_color_index (*encode_color)(gx_device * dev, gx_color_value * cv)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Map a set of device color values into a <b><tt>gx_color_index</tt></b> value. The range of legal values of the arguments is 0 to <b><tt>gx_max_color_value</tt></b>. The default procedure packs bits into a <b><tt>gx_color_index</tt></b> value based upon the values in <b><tt>color_info.depth</tt></b> and <b><tt>color_info.num_components</tt></b>. <p> Note that the <b><tt>encode_color</tt></b> procedure must not return <b><tt>gx_no_color_index</tt></b> (all 1s). </dl> <dl> <dt><b><tt>int (*decode_color)(gx_device *, gx_color_index color, gx_color_value * CV)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>This is the inverse of the <b><tt>encode_color</tt></b> procedure. Map a <b><tt>gx_color_index</tt></b> value to color values. The default procedure unpacks bits from the <b><tt>gx_color_index</tt></b> value based upon the values in <b><tt>color_info.depth</tt></b> and <b><tt>color_info.num_components</tt></b>. </dl> <dl> <dt><b><tt>gx_color_index (*map_rgb_alpha_color)(gx_device *, gx_color_value red, gx_color_value green, gx_color_value blue, gx_color_value alpha)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Map a RGB color and an opacity value to a device color. The range of legal values of the RGB and alpha arguments is 0 to <b><tt>gx_max_color_value</tt></b>; <b><tt>alpha</tt></b> = 0 means transparent, <b><tt>alpha</tt></b> = <b><tt>gx_max_color_value</tt></b> means fully opaque. The default is to use the <b><tt>encode_color</tt></b> procedure and ignore alpha. <p> Note that if a driver implements <b><tt>map_rgb_alpha_color</tt></b>, it must also implement <b><tt>encode_color</tt></b>, and must implement them in such a way that <b><tt>map_rgb_alpha_color(dev, r, g, b, gx_max_color_value)</tt></b> returns the same value as <b><tt>encode_color(dev, CV)</tt></b>. </dl> <dl> <dt><b><tt>int (*map_color_rgb_alpha)(gx_device *, gx_color_index color, gx_color_value rgba[4])</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Map a device color code to RGB and alpha values. The default implementation calls <b><tt>map_color_rgb</tt></b> and fills in <b><tt>gx_max_color_value</tt></b> for alpha. <p> Note that if a driver implements <b><tt>map_color_rgb_alpha</tt></b>, it must also implement <b><tt>decode_color</tt></b>, and must implement them in such a way that the first 3 values returned by <b><tt>map_color_rgb_alpha</tt></b> are the same as the values returned by <b><tt>decode_color</tt></b>. <p> Note that only RGB devices currently support variable opacity; alpha is ignored on other devices. The PDF 1.4 transparency features are supported on all devices. </dl> <dl> <dt><b><tt>typedef enum { go_text, go_graphics } graphic_object_type; int (*get_alpha_bits)(gx_device *dev, graphic_object_type type)</tt></b> <b><em>[OPTIONAL] [OBSOLETE]</em></b> <dd>This procedure is no longer used: it is replaced by the color_info.anti_alias member of the driver structure. However, it still appears in the driver procedure vector for backward compatibility. It should never be called, and drivers should not implement it. </dl> <dl> <dt><b><tt>void (*update_spot_equivalent_colors)(gx_device *, const gs_state *)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>This routine provides a method for the device to gather an equivalent color for spot colorants. This routine is called when a Separation or DeviceN color space is installed. See comments at the start of <a href="../src/gsequivc.c">gsequivc.c</a>. Note: This procedure is only needed for devices that support spot colorants and also need to have an equivalent color for simulating the appearance of the spot colorants. </dl> <h3><a name="Pixel_level_drawing"></a>Pixel-level drawing</h3> <p> This group of drawing operations specifies data at the pixel level. All drawing operations use device coordinates and device color values. <dl> <dt><b><tt>int (*fill_rectangle)(gx_device *, int x, int y, int width, int height, gx_color_index color)</tt></b> <dd>Fill a rectangle with a color. The set of pixels filled is {(px,py) | x <= px < x + width and y <= py < y + height}. In other words, the point <em>(x,y)</em> is included in the rectangle, as are <em>(x+w-1,y)</em>, <em>(x,y+h-1)</em>, and <em>(x+w-1,y+h-1)</em>, but <b><em>not</em></b> <em>(x+w,y)</em>, <em>(x,y+h)</em>, or <em>(x+w,y+h)</em>. If <b><tt>width</tt></b> <= 0 or height <= 0, <b><tt>fill_rectangle</tt></b> should return 0 without drawing anything. <p> Note that <b><tt>fill_rectangle</tt></b> is the only non-optional procedure in the driver interface. </dl> <h4><a name="Bitmap_imaging"></a>Bitmap imaging</h4> <p> Bitmap (or pixmap) images are stored in memory in a nearly standard way. The first byte corresponds to <em>(0,0)</em> in the image coordinate system: bits (or polybit color values) are packed into it left to right. There may be padding at the end of each scan line: the distance from one scan line to the next is always passed as an explicit argument. <dl> <dt><b><tt>int (*copy_mono)(gx_device *, const unsigned char *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, gx_color_index color0, gx_color_index color1)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Copy a monochrome image (similar to the PostScript image operator). Each scan line is raster bytes wide. Copying begins at (<b><tt>data_x</tt></b>,0) and transfers a rectangle of the given width and height to the device at device coordinate <em>(x,y)</em>. (If the transfer should start at some non-zero y value in the data, the caller can adjust the data address by the appropriate multiple of the raster.) The copying operation writes device color <b><tt>color0</tt></b> at each 0-bit, and <b><tt>color1</tt></b> at each 1-bit: if <b><tt>color0</tt></b> or <b><tt>color1</tt></b> is <b><tt>gx_no_color_index</tt></b>, the device pixel is unaffected if the image bit is 0 or 1 respectively. If <b><tt>id</tt></b> is different from <b><tt>gx_no_bitmap_id</tt></b>, it identifies the bitmap contents unambiguously; a call with the same <b><tt>id</tt></b> will always have the same <b><tt>data</tt></b>, <b><tt>raster</tt></b>, and data contents. <p> This operation, with <b><tt>color0</tt></b> = <b><tt>gx_no_color_index</tt></b>, is the workhorse for text display in Ghostscript, so implementing it efficiently is very important. </dl> <dl> <dt><b><tt>int (*tile_rectangle)(gx_device *, const gx_tile_bitmap *tile, int x, int y, int width, int height, gx_color_index color0, gx_color_index color1, int phase_x, int phase_y)</tt></b> <b><em>[OPTIONAL] [OBSOLETE]</em></b> <dd>This procedure is still supported, but has been superseded by <b><tt>strip_tile_rectangle</tt></b>. New drivers should implement <b><tt>strip_tile_rectangle</tt></b>; if they cannot cope with non-zero shift values, they should test for this explicitly and call the default implementation (<b><tt>gx_default_strip_tile_rectangle</tt></b>) if shift != 0. Clients should call <b><tt>strip_tile_rectangle</tt></b>, not <b><tt>tile_rectangle</tt></b>. </dl> <dl> <dt><b><tt>int (*strip_tile_rectangle)(gx_device *, const gx_strip_bitmap *tile, int x, int y, int width, int height, gx_color_index color0, gx_color_index color1, int phase_x, int phase_y)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Tile a rectangle. Tiling consists of doing multiple <b><tt>copy_mono</tt></b> operations to fill the rectangle with copies of the tile. The tiles are aligned with the device coordinate system, to avoid "seams". Specifically, the (<b><tt>phase_x</tt></b>, <b><tt>phase_y</tt></b>) point of the tile is aligned with the origin of the device coordinate system. (Note that this is backwards from the PostScript definition of halftone phase.) <b><tt>phase_x</tt></b> and <b><tt>phase_y</tt></b> are guaranteed to be in the range <em>[0..</em><b><tt>tile->width</tt></b><em>)</em> and <em>[0..</em><b><tt>tile->height</tt></b><em>)</em> respectively. <p> If <b><tt>color0</tt></b> and <b><tt>color1</tt></b> are both <b><tt>gx_no_color_index</tt></b>, then the tile is a color pixmap, not a bitmap: see the next section. <p> This operation is the workhorse for halftone filling in Ghostscript, so implementing it efficiently for solid tiles (that is, where either <b><tt>color0</tt></b> and <b><tt>color1</tt></b> are both <b><tt>gx_no_color_index</tt></b>, for colored halftones, or neither one is <b><tt>gx_no_color_index</tt></b>, for monochrome halftones) is very important. </dl> <h4><a name="Pixmap_imaging"></a>Pixmap imaging</h4> <p> Pixmaps are just like bitmaps, except that each pixel occupies more than one bit. All the bits for each pixel are grouped together (this is sometimes called "chunky" or "Z" format). For <b><tt>copy_color</tt></b>, the number of bits per pixel is given by the <b><tt>color_info.depth</tt></b> parameter in the device structure: the legal values are 1, 2, 4, 8, 16, 24, 32, 40, 48, 56, or 64. The pixel values are device color codes (that is, whatever it is that <b><tt>encode_color</tt></b> returns). <dl> <dt><b><tt>int (*copy_color)(gx_device *, const unsigned char *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Copy a color image with multiple bits per pixel. The raster is in bytes, but <b><tt>x</tt></b> and <b><tt>width</tt></b> are in pixels, not bits. If <b><tt>id</tt></b> is different from <b><tt>gx_no_bitmap_id</tt></b>, it identifies the bitmap contents unambiguously; a call with the same <b><tt>id</tt></b> will always have the same <b><tt>data</tt></b>, <b><tt>raster</tt></b>, and data contents. <p> We do not provide a separate procedure for tiling with a pixmap; instead, <b><tt>tile_rectangle</tt></b> can also take colored tiles. This is indicated by the <b><tt>color0</tt></b> and <b><tt>color1</tt></b> arguments' both being <b><tt>gx_no_color_index</tt></b>. In this case, as for <b><tt>copy_color</tt></b>, the <b><tt>raster</tt></b> and <b><tt>height</tt></b> in the "bitmap" are interpreted as for real bitmaps, but the <b><tt>x</tt></b> and <b><tt>width</tt></b> are in pixels, not bits. </dl> <h4><a name="Compositing"></a>Compositing</h4> <p> In addition to direct writing of opaque pixels, devices must also support compositing. Currently two kinds of compositing are defined (<b><tt>RasterOp</tt></b> and alpha-based), but more may be added in the future. <blockquote> <b><em>THIS AREA OF THE INTERFACE IS SOMEWHAT UNSTABLE: USE AT YOUR OWN RISK.</em></b> </blockquote> <dl> <dt><b><tt>int (*copy_alpha)(gx_device *dev, const unsigned char *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, gx_color_index color, int depth)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>This procedure is somewhat misnamed: it was added to the interface before we really understood alpha channel and compositing. <p> Fill a given region with a given color modified by an individual alpha value for each pixel. For each pixel, this is equivalent to alpha-compositing with a source pixel whose alpha value is obtained from the pixmap (<b><tt>data</tt></b>, <b><tt>data_x</tt></b>, and <b><tt>raster</tt></b>) and whose color is the given color (which has <b><em>not</em></b> been premultiplied by the alpha value), using the Sover rule. <b><tt>depth</tt></b>, the number of bits per alpha value, is either 2 or 4, and in any case is always a value returned by a previous call on the <b><tt>get_alpha_bits</tt></b> procedure. Note that if <b><tt>get_alpha_bits</tt></b> always returns 1, this procedure will never be called. </dl> <dl> <dt><b><tt>int (*create_compositor)(dev_t *dev, gx_device_t **pcdev, const gs_composite_t *pcte, const gs_imager_state *pis, gs_memory_t *memory)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Create a new device (called a "compositing device" or "compositor") that will composite data written to it with the device's existing data, according to the compositing function defined by <b><tt>*pcte</tt></b>. Devices will normally implement this in one of the following standard ways: <ul> <li>Devices that don't do any imaging and don't forward any imaging operations (for example, the null device, the hit detection device, and the clipping list accumulation device) simply return themselves, which effectively ignores the compositing function. <li>"Leaf" devices that do imaging and have no special optimizations for compositing (for example, some memory devices) ask the <b><tt>gs_composite_t</tt></b> to create a default compositor. <li>Leaf devices that can implement some kinds of compositing operation efficiently (for example, monobit memory devices and RasterOp) inspect the type and values of <b><tt>*pcte</tt></b> to determine whether it specifies such an operation: if so, they create a specialized compositor, and if not, they ask the <b><tt>gs_composite_t</tt></b> to create a default compositor. </ul> <p> Other kinds of forwarding devices, which don't fall into any of these categories, require special treatment. In principle, what they do is ask their target to create a compositor, and then create and return a copy of themselves with the target's new compositor as the target of the copy. There is a possible default implementation of this approach: if the original device was <b>D</b> with target <b>T</b>, and <b>T</b> creates a compositor <b>C</b>, then the default implementation creates a device <b>F</b> that for each operation temporarily changes <b>D</b>'s target to <b>C</b>, forwards the operation to <b>D</b>, and then changes <b>D</b>'s target back to <b>T</b>. However, the Ghostscript library currently only creates a compositor with an imaging forwarding device as target in a few specialized situations (banding, and bounding box computation), and these are handled as special cases. <p> Note that the compositor may have a different color space, color representation, or bit depth from the device to which it is compositing. For example, alpha-compositing devices use standard-format chunky color even if the underlying device doesn't. <p> Closing a compositor frees all of its storage, including the compositor itself. However, since the <b><tt>create_compositor</tt></b> call may return the same device, clients must check for this case, and only call the close procedure if a separate device was created. </dl> <p> <font size="+1"> <b><em>[strip_]copy_rop WILL BE SUPERSEDED BY COMPOSITORS</em></b> </font> <dl> <dt><b><tt>int (*copy_rop)(gx_device *dev, const byte *sdata, int sourcex, uint sraster, gx_bitmap_id id, const gx_color_index *scolors, const gx_tile_bitmap *texture, const gx_color_index *tcolors, int x, int y, int width, int height, int phase_x, int phase_y, int command)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>This procedure is still supported, but has been superseded by <b><tt>strip_copy_rop</tt></b>. New drivers should implement <b><tt>strip_copy_rop</tt></b>; if they cannot cope with non-zero shift values in the texture, they should test for this explicitly and call the default implementation (<b><tt>gx_default_strip_copy_rop</tt></b>) if shift != 0. Clients should call <b><tt>strip_copy_rop</tt></b>, not <b><tt>copy_rop</tt></b>. </dl> <dl> <dt><b><tt>int (*strip_copy_rop)(gx_device *dev, const byte *sdata, int sourcex, uint sraster, gx_bitmap_id id, const gx_color_index *scolors, const gx_strip_bitmap *texture, const gx_color_index *tcolors, int x, int y, int width, int height, int phase_x, int phase_y, int command)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Combine an optional source image <b>S</b> (as for <b><tt>copy_mono</tt></b> or <b><tt>copy_color</tt></b>) and an optional texture <b>T</b> (a tile, as for <b><tt>tile_rectangle</tt></b>) with the existing bitmap or pixmap <b>D</b> held by the driver, pixel by pixel, using any 3-input Boolean operation as modified by "transparency" flags: schematically, set <b>D = f(D,S,T)</b>, computing <b>f</b> in RGB space rather than using actual device pixel values. <b>S</b> and <b>T</b> may each (independently) be a solid color, a bitmap with "foreground" and "background" colors, or a pixmap. This is a complex (and currently rather slow) operation. The arguments are as follows: <blockquote><table cellpadding=0 cellspacing=0> <tr valign=top> <td><b><tt>dev</tt></b> <td> <td>the device, as for all driver procedures <tr valign=top> <td><b><tt>sdata</tt></b>, <b><tt>sourcex</tt></b>, <b><tt>sraster</tt></b>, <b><tt>id</tt></b>, <b><tt>scolors</tt></b> <td> <td>specify <b>S</b>, <a href="#S_spec">see below</a> <tr valign=top> <td><b><tt>texture</tt></b>, <b><tt>tcolors</tt></b> <td> <td>specify <b>T</b>, <a href="#T_spec">see below</a> <tr valign=top> <td><b><tt>x</tt></b>, <b><tt>y</tt></b>, <b><tt>width</tt></b>, <b><tt>height</tt></b> <td> <td>as for the other copy and fill procedures <tr valign=top> <td><b><tt>phase_x</tt></b>, <b><tt>phase_y</tt></b> <td> <td>part of <b>T</b> specification, <a href="#T_spec">see below</a> <tr valign=top> <td><b><tt>command</tt></b> <td> <td><a href="#F_spec">see below</a> </table></blockquote> </dl> <h5><a name="S_spec"></a>The source specification S</h5> <p> As noted above, the source <b>S</b> may be a solid color, a bitmap, or a pixmap. If <b>S</b> is a solid color: <ul> <li><b><tt>sdata</tt></b>, <b><tt>sourcex</tt></b>, <b><tt>sraster</tt></b>, and <b><tt>id</tt></b> are irrelevant. <li><b><tt>scolors</tt></b> points to two <b><tt>gx_color_index</tt></b> values; <b><tt>scolors[0]</tt></b> = <b><tt>scolors[1]</tt></b> = the color. </ul> <p> If <b>S</b> is a bitmap: <ul> <li><b><tt>sdata</tt></b>, <b><tt>sourcex</tt></b>, <b><tt>sraster</tt></b>, and <b><tt>id</tt></b> arguments are as for <b><tt>copy_mono</tt></b> or <b><tt>copy_color</tt></b> (<b><tt>data</tt></b>, <b><tt>data_x</tt></b>, <b><tt>raster</tt></b>, <b><tt>id</tt></b>), and specify a source bitmap. <li><b><tt>scolors</tt></b> points to two <b><tt>gx_color_index</tt></b> values; <b><tt>scolors[0]</tt></b> is the background color (the color corresponding to 0-bits in the bitmap), <b><tt>scolors[1]</tt></b> is the foreground color (the color corresponding to 1-bits in the bitmap). </ul> <p> If <b>S</b> is a pixmap: <ul> <li><b><tt>sdata</tt></b>, <b><tt>sourcex</tt></b>, <b><tt>sraster</tt></b>, and <b><tt>id</tt></b> arguments are as for <b><tt>copy_mono</tt></b> or <b><tt>copy_color</tt></b> (<b><tt>data</tt></b>, <b><tt>data_x</tt></b>, <b><tt>raster</tt></b>, <b><tt>id</tt></b>), and specify a source pixmap whose depth is the same as the depth of the destination. <li><b><tt>scolors</tt></b> is <b><tt>NULL</tt></b>. </ul> <p> Note that if the source is a bitmap with background=0 and foreground=1, and the destination is 1 bit deep, then the source can be treated as a pixmap (scolors=<b><tt>NULL</tt></b>). <h5><a name="T_spec"></a>The texture specification T</h5> <p> Similar to the source, the texture <b>T</b> may be a solid color, a bitmap, or a pixmap. If <b>T</b> is a solid color: <ul> <li>The texture pointer is irrelevant. <li><b><tt>tcolors</tt></b> points to two <b><tt>gx_color_index</tt></b> values; <b><tt>tcolors[0]</tt></b> = <b><tt>tcolors[1]</tt></b> = the color. </ul> <p> If <b>T</b> is a bitmap: <ul> <li>The texture argument points to a <b><tt>gx_tile_bitmap</tt></b>, as for the <b><tt>tile_rectangle</tt></b> procedure. Similarly, <b><tt>phase_x</tt></b> and <b><tt>phase_y</tt></b> specify the offset of the texture relative to the device coordinate system origin, again as for <b><tt>tile_rectangle</tt></b>. The tile is a bitmap (1 bit per pixel). <li><b><tt>tcolors</tt></b> points to two <b><tt>gx_color_index</tt></b> values; <b><tt>tcolors[0]</tt></b> is the background color (the color corresponding to 0-bits in the bitmap), <b><tt>tcolors[1]</tt></b> is the foreground color (the color corresponding to 1-bits in the bitmap). </ul> <p> If <b>T</b> is a pixmap: <ul> <li>The texture argument points to a <b><tt>gx_tile_bitmap</tt></b> whose depth is the same as the depth of the destination. <li>tcolors is <b><tt>NULL</tt></b>. </ul> <p> Again, if the texture is a bitmap with background=0 and foreground=1, and the destination depth is 1, the texture bitmap can be treated as a pixmap (tcolors=<b><tt>NULL</tt></b>). <p> Note that while a source bitmap or pixmap has the same width and height as the destination, a texture bitmap or pixmap has its own width and height specified in the <b><tt>gx_tile_bitmap</tt></b> structure, and is replicated or clipped as needed. <h5><a name="F_spec"></a>The function specification f</h5> <p> "Command" indicates the raster operation and transparency as follows: <blockquote><table cellpadding=0 cellspacing=0> <tr valign=bottom> <th>Bits <td> <td> <tr valign=top> <td>7-0 <td> <td>raster op <tr valign=top> <td>8 <td> <td>0 if source opaque, 1 if source transparent <tr valign=top> <td>9 <td> <td>0 if texture opaque, 1 if texture transparent <tr valign=top> <td>?-10 <td> <td>unused, must be 0 </table></blockquote> <p> The raster operation follows the Microsoft and H-P specification. It is an 8-element truth table that specifies the output value for each of the possible 2×2×2 input values as follows: <blockquote><table cellpadding=0 cellspacing=0> <tr valign=bottom> <th>Bit <td> <th>Texture <td> <th>Source <td> <th>Destination <tr> <td colspan=7><hr> <tr valign=top> <td align=center>7 <td> <td align=center>1 <td> <td align=center>1 <td> <td align=center>1 <tr valign=top> <td align=center>6 <td> <td align=center>1 <td> <td align=center>1 <td> <td align=center>0 <tr valign=top> <td align=center>5 <td> <td align=center>1 <td> <td align=center>0 <td> <td align=center>1 <tr valign=top> <td align=center>4 <td> <td align=center>1 <td> <td align=center>0 <td> <td align=center>0 <tr valign=top> <td align=center>3 <td> <td align=center>0 <td> <td align=center>1 <td> <td align=center>1 <tr valign=top> <td align=center>2 <td> <td align=center>0 <td> <td align=center>1 <td> <td align=center>0 <tr valign=top> <td align=center>1 <td> <td align=center>0 <td> <td align=center>0 <td> <td align=center>1 <tr valign=top> <td align=center>0 <td> <td align=center>0 <td> <td align=center>0 <td> <td align=center>0 </table></blockquote> <p> Transparency affects the output in the following way. A source or texture pixel is considered transparent if its value is all 1s (for instance, 1 for bitmaps, <tt>0xffffff</tt> for 24-bit RGB pixmaps) <b><em>and</em></b> the corresponding transparency bit is set in the command. For each pixel, the result of the Boolean operation is written into the destination iff neither the source nor the texture pixel is transparent. (Note that the HP RasterOp specification, on which this is based, specifies that if the source and texture are both all 1s and the command specifies transparent source and opaque texture, the result <b><em>should</em></b> be written in the output. We think this is an error in the documentation.) <h5><a name="Compositing_notes"></a>Notes</h5> <p> <b><tt>copy_rop</tt></b> is defined to operate on pixels in RGB space, again following the HP and Microsoft specification. For devices that don't use RGB (or gray-scale with black = 0, white = all 1s) as their native color representation, the implementation of <b><tt>copy_rop</tt></b> must convert to RGB or gray space, do the operation, and convert back (or do the equivalent of this). Here are the <b><tt>copy_rop</tt></b> equivalents of the most important previous imaging calls. We assume the declaration: <blockquote><b><tt> static const gx_color_index white2[2] = { 1, 1 }; </tt></b></blockquote> <p> Note that <b><tt>rop3_S</tt></b> may be replaced by any other Boolean operation. For monobit devices, we assume that black = 1. <blockquote> <pre>/* For all devices: */ (*fill_rectangle)(dev, x, y, w, h, color) ==> { gx_color_index colors[2]; colors[0] = colors[1] = color; (*dev_proc(dev, copy_rop))(dev, NULL, 0, 0, gx_no_bitmap_id, colors, NULL, colors /*irrelevant*/, x, y, w, h, 0, 0, rop3_S); } /* For black-and-white devices only: */ (*copy_mono)(dev, base, sourcex, sraster, id, x, y, w, h, (gx_color_index)0, (gx_color_index)1) ==> (*dev_proc(dev, copy_rop))(dev, base, sourcex, sraster, id, NULL, NULL, white2 /*irrelevant*/, x, y, w, h, 0, 0, rop3_S); /* For color devices, where neither color0 nor color1 is gx_no_color_index: */ (*copy_mono)(dev, base, sourcex, sraster, id, x, y, w, h, color0, color1) ==> { gx_color_index colors[2]; colors[0] = color0, colors[1] = color1; (*dev_proc(dev, copy_rop))(dev, base, sourcex, sraster, id, colors, NULL, white2 /*irrelevant*/, x, y, w, h, 0, 0, rop3_S); } /* For black-and-white devices only: */ (*copy_mono)(dev, base, sourcex, sraster, id, x, y, w, h, gx_no_color_index, (gx_color_index)1) ==> (*dev_proc(dev, copy_rop))(dev, base, sourcex, sraster, id, NULL, NULL, white2 /*irrelevant*/, x, y, w, h, 0, 0, rop3_S | lop_S_transparent); /* For all devices: */ (*copy_color)(dev, base, sourcex, sraster, id, x, y, w, h) ==> [same as first copy_mono above] /* For black-and-white devices only: */ (*tile_rectangle)(dev, tile, x, y, w, h, (gx_color_index)0, (gx_color_index)1, px, py) ==> (*dev_proc(dev, copy_rop))(dev, NULL, 0, 0, gx_no_bitmap_id, white2 /*irrelevant*/, tile, NULL, x, y, w, h, px, py, rop3_T) </pre></blockquote> <h3><a name="Polygon_level_drawing"></a>Polygon-level drawing</h3> <p> In addition to the pixel-level drawing operations that take integer device coordinates and pure device colors, the driver interface includes higher-level operations that draw polygons using fixed-point coordinates, possibly halftoned colors, and possibly a non-default logical operation. <p> The <b><tt>fill_</tt></b>* drawing operations all use the center-of-pixel rule: a pixel is colored iff its center falls within the polygonal region being filled. If a pixel center <em>(X+0.5,Y+0.5)</em> falls exactly on the boundary, the pixel is filled iff the boundary is horizontal and the filled region is above it, or the boundary is not horizontal and the filled region is to the right of it. <dl> <dt><b><tt>int (*fill_trapezoid)(gx_device *dev, const gs_fixed_edge *left, const gs_fixed_edge *right, fixed ybot, fixed ytop, bool swap_axes, const gx_drawing_color *pdcolor, gs_logical_operation_t lop)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Fill a trapezoid. The bottom and top edges are parallel to the x axis, and are defined by <b><tt>ybot</tt></b> and <b><tt>ytop</tt></b>, respectively. The left and right edges are defined by <b><tt>left</tt></b> and <b><tt>right</tt></b>. Both of these represent lines (<b><tt>gs_fixed_edge</tt></b> is defined in <a href="../src/gxdevcli.h">gxdevcli.h</a> and consists of <b><tt>gs_fixed_point</tt></b> <b><tt>start</tt></b> and <b><tt>end</tt></b> points). The y coordinates of these lines need not have any specific relation to <b><tt>ybot</tt></b> and <b><tt>ytop</tt></b>. The routine is defined this way so that the filling algorithm can subdivide edges and still guarantee that the exact same pixels will be filled. If <b><tt>swap_axes</tt></b> is set, the meanings of X and Y are interchanged. </dl> <dt><b><tt>int (*fill_parallelogram)(gx_device *dev, fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by, const gx_drawing_color *pdcolor, gs_logical_operation_t lop)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Fill a parallelogram whose corners are <em>(px,py)</em>, <em>(px+ax,py+ay)</em>, <em>(px+bx,py+by)</em>, and <em>(px+ax+bx,py+ay+by)</em>. There are no constraints on the values of any of the parameters, so the parallelogram may have any orientation relative to the coordinate axes. <dl> <dt><b><tt>int (*fill_triangle)(gx_device *dev, fixed px, fixed py, fixed ax, fixed ay, fixed bx, fixed by, const gx_drawing_color *pdcolor, gs_logical_operation_t lop)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Fill a triangle whose corners are <em>(px,py)</em>, <em>(px+ax,py+ay)</em>, and <em>(px+bx,py+by)</em>. </dl> <dl> <dt><b><tt>int (*draw_thin_line)(gx_device *dev, fixed fx0, fixed fy0, fixed fx1, fixed fy1, const gx_drawing_color *pdcolor, gs_logical_operation_t lop)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Draw a one-pixel-wide line from <em>(fx0,fy0)</em> to <em>(fx1,fy1)</em>. </dl> <dl> <dt><b><tt>int (*draw_line)(gx_device *dev, int x0, int y0, int x1, int y1, gx_color_index color)</tt></b> <b><em>[OPTIONAL] [OBSOLETE]</em></b> <dd>This procedure is no longer used: it is replaced by the draw_thin_line procedure. However, still appears in the driver procedure vector for backward compatibility. It should never be called, and drivers should not implement it. </dl> <h3><a name="Linear_color_drawing"></a>Linear color drawing</h3> <p> Linear color functions allow fast high quality rendering of shadings on continuous tone devices. They implement filling simple areas with a lineary varying color. These functions are not called if the device applies halftones, or uses a non-separable or a non-linear color model. <dl> <dt><b><tt> int (*fill_linear_color_triangle) (dev_t *dev, const gs_fill_attributes *fa, const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2, const frac31 *c0, const frac31 *c1, const frac31 *c2) </tt></b> <b><em>[OPTIONAL]</em></b> <dd>This function is the highest level one within the linear color function group. It fills a triangle with a linearly varying color. Arguments specify 3 points in the device space - vertices of a triangle, and their colors. The colors are represented as vectors of positive fractional numbers, each of which represents a color component value in the interval <b><tt>[0,1]</tt></b>. The number of components in a vector in the number of color components in the device (process) color model. <dd> The implementation fills entire triangle. The filling rule is same as for <a href="#Polygon_level_drawing">Polygon-level drawing</a>. A color for each pixel within the triangle to be computed as a linear interpolation of vertex colors. <dd> The implementation may reject the request if the area or the color appears too complex for filling in a single action. For doing that the implementation returns 0 and must not paint any pixel. In this case the graphics library will perform a subdivision of the area into smaller triangles and call the function again with smaller areas. <dd> <b><em>Important note :</em></b> Do not try to decompose the area within the implementation of <b><tt> fill_linear_color_triangle </tt></b>, because it can break the plane coverage contiguity and cause a dropout. Instead that request graphics library to perform the decomposition. The graphics libary is smart enough to do that properly. <dd> <b><em>Important note :</em></b> The implementation must handle a special case, when only 2 colors are specified. It happens if <b><tt>p3</tt></b> one is <b><tt>NULL</tt></b>. This means that the color does not depend on the X coordinate, i.e. it forms a linear gradient along the Y axis. The implementation must not reject (return 0) such cases. <dd> <b><em>Important note :</em></b>The device color component value 1 may be represented with several hexadecimal values : <b><tt>0x7FFF0000</tt></b>, <b><tt>0x7FFFF000</tt></b>, <b><tt>0x7FFFFF00</tt></b>, etc., because the precision here exceeds the color precision of the device. To convert a <b><tt>frac31</tt></b> value into a device color component value, fist drop (ignore) the sign bit, then drop least significant bits - so many ones as you need to fit the device color precision. <dd> <b><em>Important note :</em></b> The <b><tt>fa</tt></b> argument may contain the <b><tt>swap_axes</tt></b> bit set. In this case the implementation must swap (transpoze) <b><tt>X</tt></b> and <b><tt>Y</tt></b> axes. <dd> <b><em>Important note :</em></b> The implementation must not paint outside the clipping rectangle specified in the <b><tt>fa</tt></b> argument. If <b><tt>fa->swap_axes</tt></b> is true, the clipping rectangle is transposed. <dd> See <b><tt> gx_default_fill_linear_color_triangle </tt></b> in <b><tt>gdevddrw.c</tt></b> as a sample code. </dl> <dl> <dt><b><tt> int (*fill_linear_color_trapezoid) (dev_t *dev, const gs_fill_attributes *fa, const gs_fixed_point *p0, const gs_fixed_point *p1, const gs_fixed_point *p2, const gs_fixed_point *p3, const frac31 *c0, const frac31 *c1, const frac31 *c2, const frac31 *c2) </tt></b> <b><em>[OPTIONAL]</em></b> <dd>This function is a lower level one within the linear color function group. The default implementation of <b><tt> fill_linear_color_triangle </tt></b> calls this function 1-2 times per triangle. Besides that, this function may be called by the graphics library for other special cases, when a decomposition into triangles appears undiserable. <dd> Rather the prototype can specify a bilinear color, we assume that the implementation handles linear colors only. This means that the implementation can ignore any of <b><tt> c0, c1, c2, c3 </tt></b>. The graphics library takes a special care of the color linearity when calling this function. The reason for passing all 4 color arguments is to avoid color precision problems. <dd> Similarly to <b><tt> fill_linear_color_triangle </tt></b>, this function may be called with only 2 colors, and may reject too comple areas. All those important notes are applicable here. <dd> A sample code may be found in in <b><tt>gxdtfill.h</tt></b>, rather it's a kind of complicated. A linear color function is generated from it as <b><tt> gx_fill_trapezoid_ns_lc </tt></b> with the following template parametres : <pre> #define LINEAR_COLOR 1 #define EDGE_TYPE gs_linear_color_edge #define FILL_ATTRS const gs_fill_attributes * #define CONTIGUOUS_FILL 0 #define SWAP_AXES 0 #define FILL_DIRECT 1 </pre> See the helplers <b><tt>init_gradient</tt></b>, <b><tt>step_gradient</tt></b> (defined in in <b><tt>gdevddrw.c</tt></b>), how to manage colors. See <b><tt>check_gradient_overflow</tt></b> (defined in in <b><tt>gdevddrw.c</tt></b>), as an example of an area that can't be painted in a single action due to 64-bits fixed overflows. </dl> <dl> <dt><b><tt> int (*fill_linear_color_scanline) (dev_t *dev, const gs_fill_attributes *fa, int i, int j, int w, const frac31 *c0, const int32_t *c0_f, const int32_t *cg_num, int32_t cg_den) </tt></b> <b><em>[OPTIONAL]</em></b> <dd>This function is the lowest level one within the linear color function group. It implements filling a scanline with a linearly varying color. The default implementation for <b><tt> fill_linear_color_trapezoid </tt></b> calls this function, and there are no other calls to it from the graphics libary. Thus if the device implements <b><tt> fill_linear_color_triangle </tt></b> and <b><tt> fill_linear_color_trapezoid </tt></b> by own means, this function may be left unimplemented. <dd> <b><tt>i</tt></b> and <b><tt>j</tt></b> specify device coordinates (indices) of the starting pixel of the scanline, <b><tt>w</tt></b> specifies the width of the scanline, i.e. the number of pixels to be painted to the right from the starting pixel, including the starting pixel. <dd> <b><tt>c0</tt></b> specifies the color for the starting pixel as a vector of fraction values, each of which represents a color value in the interval <b><tt>[0,1]</tt></b>. <dd> <b><tt>c0_f</tt></b> specify a fraction part of the color for the starting pixel. See the formula below about using it. <dd> <b><tt>cg_num</tt></b> specify a numerator for the color gradient - a vector of values in <b><tt>[-1,1]</tt></b>, each of which correspond to a color component. <dd> <b><tt>cg_den</tt></b> specify the denominator for the color gradient - a value in <b><tt>[-1,1]</tt></b>. <dd><p> The color for the pixel <b><tt>[i + k, j]</tt></b> to be computed like this : <pre><b><tt> (double)(c0[n] + (c0_f[n] + cg_num[n] * k) / cg_den) / (1 ^ 31 - 1) </tt></b></pre> <dd>where <b><tt>0 <= k <= w </tt></b>, and <b><tt>n</tt></b> is a device color component index. <dd> <b><em>Important note :</em></b> The <b><tt>fa</tt></b> argument may contain the <b><tt>swap_axes</tt></b> bit set. In this case the implementation must swap (transpose) <b><tt>X</tt></b> and <b><tt>Y</tt></b> axes. <dd> <b><em>Important note :</em></b> The implementation must not paint outside the clipping rectangle specified in the <b><tt>fa</tt></b> argument. If <b><tt>fa->swap_axes</tt></b> is true, the clipping rectangle is transposed. <dd> See <b><tt> gx_default_fill_linear_color_scanline</tt></b> in <b><tt>gdevdsha.c</tt></b> as a sample code. </dl> <h3><a name="High_level_drawing"></a>High-level drawing</h3> <p> In addition to the lower-level drawing operations described above, the driver interface provides a set of high-level operations. Normally these will have their default implementation, which converts the high-level operation to the low-level ones just described; however, drivers that generate high-level output formats such as CGM, or communicate with devices that have firmware for higher-level operations such as polygon fills, may implement these high-level operations directly. For more details, please consult the source code, specifically: <blockquote><table cellpadding=0 cellspacing=0> <tr valign=top> <th align=left>Header <td> <th align=left>Defines <tr valign=top> <td><a href="../src/gxpaint.h">gxpaint.h</a> <td> <td><b><tt>gx_fill_params</tt></b>, <b><tt>gx_stroke_params</tt></b> <tr valign=top> <td><a href="../src/gxfixed.h">gxfixed.h</a> <td> <td><b><tt>fixed</tt></b>, <b><tt>gs_fixed_point</tt></b> (used by <b><tt>gx_*_params</tt></b>) <tr valign=top> <td><a href="../src/gxistate.h">gxistate.h</a> <td> <td><b><tt>gs_imager_state</tt></b> (used by <b><tt>gx_*_params</tt></b>) <tr valign=top> <td><a href="../src/gxline.h">gxline.h</a> <td> <td><b><tt>gx_line_params</tt></b> (used by <b><tt>gs_imager_state</tt></b>) <tr valign=top> <td><a href="../src/gslparam.h">gslparam.h</a> <td> <td>line cap/join values (used by <b><tt>gx_line_params</tt></b>) <tr valign=top> <td><a href="../src/gxmatrix.h">gxmatrix.h</a> <td> <td><b><tt>gs_matrix_fixed</tt></b> (used by <b><tt>gs_imager_state</tt></b>) <tr valign=top> <td><a href="../src/gspath.h">gspath.h</a>, <a href="../src/gxpath.h">gxpath.h</a>, <a href="../src/gzpath.h">gzpath.h</a> <td> <td><b><tt>gx_path</tt></b> <tr valign=top> <td><a href="../src/gxcpath.h">gxcpath.h</a>, <a href="../src/gzcpath.h">gzcpath.h</a> <td> <td><b><tt>gx_clip_path</tt></b> </table></blockquote> <p> For a minimal example of how to implement the high-level drawing operations, see <a href="../src/gdevtrac.c">gdevtrac.c</a>. <h4><a name="Paths"></a>Paths</h4> <dl> <dt><b><tt>int (*fill_path)(gx_device *dev, const gs_imager_state *pis, gx_path *ppath, const gx_fill_params *params, const gx_drawing_color *pdcolor, const gx_clip_path *pcpath)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Fill the given path, clipped by the given clip path, according to the given parameters, with the given color. The clip path pointer may be <b><tt>NULL</tt></b>, meaning do not clip. <dd> The implementation must paint the path with the specified device color, which may be either a pure color, or a pattern. If the device can't handle non-pure colors, it should check the color type and call the default implementation gx_default_fill_path for cases, which the device can't handle. The default implementation will perform a subdivision of the area to be painted, and will call other device virtual functions (such as fill_linear_color_triangle) with simpler areas. </dl> <dl> <dt><b><tt>int (*stroke_path)(gx_device *dev, const gs_imager_state *pis, gx_path *ppath, const gx_stroke_params *params, const gx_drawing_color *pdcolor, const gx_clip_path *pcpath)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Stroke the given path, clipped by the given clip path, according to the given parameters, with the given color. The clip path pointer may be <b><tt>NULL</tt></b>, meaning not to clip. </dl> <dl> <dt><b><tt>int (*fill_mask)(gx_device *dev, const byte *data, int data_x, int raster, gx_bitmap_id id, int x, int y, int width, int height, const gx_drawing_color *pdcolor, int depth, int command, const gx_clip_path *pcpath)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Color the 1-bits in the given mask (or according to the alpha values, if <b><tt>depth</tt></b> > 1), clipped by the given clip path, with the given color and logical operation. The clip path pointer may be <b><tt>NULL</tt></b>, meaning do not clip. The parameters <b><tt>data</tt></b>, ..., <b><tt>height</tt></b> are as for <b><tt>copy_mono</tt></b>; depth is as for <b><tt>copy_alpha</tt></b>; command is as for <b><tt>copy_rop</tt></b>. </dl> <h4><a name="Images"></a>Images</h4> <p> Similar to the high-level interface for fill and stroke graphics, a high-level interface exists for bitmap images. The procedures in this part of the interface are optional. <p> Bitmap images come in a variety of types, corresponding closely (but not precisely) to the PostScript ImageTypes. The generic or common part of all bitmap images is defined by: <blockquote> <pre>typedef struct { const gx_image_type_t *type; gs_matrix ImageMatrix; } gs_image_common_t;</pre> </blockquote> <p> Bitmap images that supply data (all image types except <b><tt>image_type_from_device</tt></b> (2)) are defined by: <blockquote> <pre>#define gs_image_max_components 5 typedef struct { << gs_image_common_t >> int Width; int Height; int BitsPerComponent; float Decode[gs_image_max_components * 2]; bool Interpolate; } gs_data_image_t;</pre> </blockquote> <p> Images that supply pixel (as opposed to mask) data are defined by: <blockquote> <pre>typedef enum { /* Single plane, chunky pixels. */ gs_image_format_chunky = 0, /* num_components planes, chunky components. */ gs_image_format_component_planar = 1, /* BitsPerComponent * num_components planes, 1 bit per plane */ gs_image_format_bit_planar = 2 } gs_image_format_t; typedef struct { << gs_data_image_t >> const gs_color_space *ColorSpace; bool CombineWithColor; } gs_pixel_image_t;</pre> </blockquote> <p> Ordinary PostScript Level 1 or Level 2 (<b><tt>ImageType</tt></b> 1) images are defined by: <blockquote> <pre>typedef enum { /* No alpha. */ gs_image_alpha_none = 0, /* Alpha precedes color components. */ gs_image_alpha_first, /* Alpha follows color components. */ gs_image_alpha_last } gs_image_alpha_t; typedef struct { << gs_pixel_image_t >> bool ImageMask; bool adjust; gs_image_alpha_t Alpha; } gs_image1_t; typedef gs_image1_t gs_image_t;</pre> </blockquote> <p> Of course, standard PostScript images don't have an alpha component. For more details, consult the source code in <a href="../src/gsiparam.h">gsiparam.h</a> and <b><tt>gsiparm*.h</tt></b>, which define parameters for an image. <p> The <b><tt>begin[_typed_]image</tt></b> driver procedures create image enumeration structures. The common part of these structures consists of: <blockquote> <pre>typedef struct gx_image_enum_common_s { const gx_image_type_t *image_type; const gx_image_enum_procs_t *procs; gx_device *dev; gs_id id; int num_planes; int plane_depths[gs_image_max_planes]; /* [num_planes] */ int plane_widths[gs_image_max_planes] /* [num_planes] */ } gx_image_enum_common_t;</pre> </blockquote> <p> where <b><tt>procs</tt></b> consists of: <blockquote> <pre>typedef struct gx_image_enum_procs_s { /* * Pass the next batch of data for processing. */ #define image_enum_proc_plane_data(proc)\ int proc(gx_device *dev,\ gx_image_enum_common_t *info, const gx_image_plane_t *planes,\ int height) image_enum_proc_plane_data((*plane_data)); /* * End processing an image, freeing the enumerator. */ #define image_enum_proc_end_image(proc)\ int proc(gx_device *dev,\ gx_image_enum_common_t *info, bool draw_last) image_enum_proc_end_image((*end_image)); /* * Flush any intermediate buffers to the target device. * We need this for situations where two images interact * (currently, only the mask and the data of ImageType 3). * This procedure is optional (may be 0). */ #define image_enum_proc_flush(proc)\ int proc(gx_image_enum_common_t *info) image_enum_proc_flush((*flush)); } gx_image_enum_procs_t;</pre> </blockquote> <p> In other words, <b><tt>begin[_typed]_image</tt></b> sets up an enumeration structure that contains the procedures that will process the image data, together with all variables needed to maintain the state of the process. Since this is somewhat tricky to get right, if you plan to create one of your own you should probably read an existing implementation of <b><tt>begin[_typed]_image</tt></b>, such as the one in <a href="../src/gdevbbox.c">gdevbbox.c</a> or <a href="../src/gdevps.c">gdevps.c</a>. <p> The data passed at each call of <b><tt>image_plane_data</tt></b> consists of one or more planes, as appropriate for the type of image. <b><tt>begin[_typed]_image</tt></b> must initialize the <b><tt>plane_depths</tt></b> array in the enumeration structure with the depths (bits per element) of the planes. The array of <b><tt>gx_image_plane_t</tt></b> structures passed to each call of <b><tt>image_plane_data</tt></b> then defines where the data are stored, as follows: <blockquote> <pre>typedef struct gx_image_plane_s { const byte *data; int data_x; uint raster; } gx_image_plane_t;</pre> </blockquote> <dl> <dt><b><tt>int (*begin_image)(gx_device *dev, const gs_imager_state *pis, const gs_image_t *pim, gs_image_format_t format, gs_int_rect *prect, const gx_drawing_color *pdcolor, const gx_clip_path *pcpath, gs_memory_t *memory, gx_image_enum_common_t **pinfo)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Begin the transmission of an image. Zero or more calls of <b><tt>image_plane_data</tt></b> will follow, and then a call of <b><tt>end_image</tt></b>. The parameters of <b><tt>begin_image</tt></b> are as follows: <blockquote><table cellpadding=0 cellspacing=0> <tr valign=top> <td><b><tt>pis</tt></b> <td> <td>pointer to an imager state. The only relevant elements of the imager state are the CTM (coordinate transformation matrix), the logical operation (<b><tt>RasterOp</tt></b> or transparency), and the color rendering information. <tr valign=top> <td><b><tt>pim</tt></b> <td> <td>pointer to the <b><tt>gs_image_t</tt></b> structure that defines the image parameters <tr valign=top> <td><b><tt>format</tt></b> <td> <td>defines how pixels are represented for <b><tt>image_plane_data</tt></b>. See the description of <b><tt>image_plane_data</tt></b> below <tr valign=top> <td><b><tt>prect</tt></b> <td> <td>if not <b><tt>NULL</tt></b>, defines a subrectangle of the image; only the data for this subrectangle will be passed to <b><tt>image_plane_data</tt></b>, and only this subrectangle should be drawn <tr valign=top> <td><b><tt>pdcolor</tt></b> <td> <td>defines a drawing color, only needed for masks or if <b><tt>CombineWithColor</tt></b> is true <tr valign=top> <td><b><tt>pcpath</tt></b> <td> <td>if not <b><tt>NULL</tt></b>, defines an optional clipping path <tr valign=top> <td><b><tt>memory</tt></b> <td> <td>defines the allocator to be used for allocating bookkeeping information <tr valign=top> <td><b><tt>pinfo</tt></b> <td> <td>the implementation should return a pointer to its state structure here </table></blockquote> <p> <b><tt>begin_image</tt></b> is expected to allocate a structure for its bookkeeping needs, using the allocator defined by the memory parameter, and return it in <b><tt>*pinfo</tt></b>. <b><tt>begin_image</tt></b> should not assume that the structures in <b><tt>*pim</tt></b>, <b><tt>*prect</tt></b>, or <b><tt>*pdcolor</tt></b> will survive the call on <b><tt>begin_image</tt></b> (except for the color space in <b><tt>*pim->ColorSpace</tt></b>): it should copy any necessary parts of them into its own bookkeeping structure. It may, however, assume that <b><tt>*pis</tt></b>, <b><tt>*pcpath</tt></b>, and of course <b><tt>*memory</tt></b> will live at least until <b><tt>end_image</tt></b> is called. <p> <b><tt>begin_image</tt></b> returns 0 normally, or 1 if the image does not need any data. In the latter case, <b><tt>begin_image</tt></b> does not allocate an enumeration structure. </dl> <dl> <dt><b><tt>int (*begin_typed_image)(gx_device *dev, const gs_imager_state *pis, const gs_matrix *pmat, const gs_image_common_t *pim, gs_int_rect *prect, const gx_drawing_color *pdcolor, const gx_clip_path *pcpath, gs_memory_t *memory, gx_image_enum_common_t **pinfo)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>This has the same function as <b><tt>begin_image</tt></b>, except <ul> <li>The image may be of any <b><tt>ImageType</tt></b>, not only <b><tt>image_type_simple</tt></b> (1); <li>The image format is included in the image structure, not supplied as a separate argument; <li>The optional <b><tt>pmat</tt></b> argument provides a matrix that substitutes for the one in the imager state; <li>For mask images, if <b><tt>pmat</tt></b> is not <b><tt>NULL</tt></b> and the color is pure, <b><tt>pis</tt></b> may be <b><tt>NULL</tt></b>. </ul> </dl> <p> The actual transmission of data uses the procedures in the enumeration structure, not driver procedures, since the handling of the data usually depends on the image type and parameters rather than the device. These procedures are specified as follows. <dl> <dt><b><tt>int (*image_plane_data)(gx_device *dev, gx_image_enum_common_t *info, const gx_image_plane_t *planes, int height)</tt></b> <dd>This call provides more of the image source data: specifically, <b><tt>height</tt></b> rows, with <b><tt>Width</tt></b> pixels supplied for each row. <p> The data for each row are packed big-endian within each byte, as for <b><tt>copy_color</tt></b>. The <b><tt>data_x</tt></b> (starting X position within the row) and <b><tt>raster</tt></b> (number of bytes per row) are specified separately for each plane, and may include some padding at the beginning or end of each row. Note that for non-mask images, the input data may be in any color space and may have any number of bits per component (1, 2, 4, 8, 12); currently mask images always have 1 bit per component, but in the future, they might allow multiple bits of alpha. Note also that each call of <b><tt>image_plane_data</tt></b> passes complete pixels: for example, for a chunky image with 24 bits per pixel, each call of <b><tt>image_plane_data</tt></b> passes 3N bytes of data (specifically, 3 × Width × height). <p> The interpretation of planes depends on the <b><tt>format</tt></b> member of the <b><tt>gs_image[_common]_t</tt></b> structure: <ul> <li>If the format is <b><tt>gs_image_format_chunky</tt></b>, <b><tt>planes[0].data</tt></b> points to data in "chunky" format, in which the components follow each other (for instance, RGBRGBRGB....) <li>If the format is <b><tt>gs_image_format_component_planar</tt></b>, <b><tt>planes[0 .. N-1].data</tt></b> point to data for the <b><em>N</em></b> components (for example, <b><em>N</em></b>=3 for RGB data); each plane contains samples for a single component, for instance, RR..., GG..., BB.... Note that the planes are divided by component, not by bit: for example, for 24-bit RGB data, <b><em>N</em></b>=3, with 8-bit values in each plane of data. <li>If the format is <b><tt>gs_image_format_bit_planar</tt></b>, <b><tt>planes[0 .. N*B-1].data</tt></b> point to data for the <b><em>N</em></b> components of <b><em>B</em></b> bits each (for example, <b><em>N</em></b>=3 and <b><em>B</em></b>=4 for RGB data with 4 bits per component); each plane contains samples for a single bit, for instance, R0 R1 R2 R3 G0 G1 G2 G3 B0 B1 B2 B3. Note that the most significant bit of each plane comes first. </ul> <p> If, as a result of this call, <b><tt>image_plane_data</tt></b> has been called with all the data for the (sub-)image, it returns 1; otherwise, it returns 0 or an error code as usual. <p> <b><tt>image_plane_data</tt></b>, unlike most other procedures that take bitmaps as arguments, does not require the data to be aligned in any way. <p> Note that for some image types, different planes may have different numbers of bits per pixel, as defined in the <b><tt>plane_depths</tt></b> array. </dl> <dl> <dt><b><tt>int (*end_image)(gx_device *dev, void *info, bool draw_last)</tt></b> <dd>Finish processing an image, either because all data have been supplied or because the caller has decided to abandon this image. <b><tt>end_image</tt></b> may be called at any time after <b><tt>begin_image</tt></b>. It should free the info structure and any subsidiary structures. If <b><tt>draw_last</tt></b> is true, it should finish drawing any buffered lines of the image. </dl> <h5><a name="Images_notes"></a>Notes</h5> <p> While there will almost never be more than one image enumeration in progress -- that is, after a <b><tt>begin_image</tt></b>, <b><tt>end_image</tt></b> will almost always be called before the next <b><tt>begin_image</tt></b> -- driver code should not rely on this property; in particular, it should store all information regarding the image in the info structure, not in the driver structure. <p> Note that if <b><tt>begin_[typed_]image</tt></b> saves its parameters in the info structure, it can decide on each call whether to use its own algorithms or to use the default implementation. (It may need to call <b><tt>gx_default_begin</tt></b>/<b><tt>end_image</tt></b> partway through.) [A later revision of this document may include an example here.] <h4><a name="Text"></a>Text</h4> <p> The third high-level interface handles text. As for images, the interface is based on creating an enumerator which then may execute the operation in multiple steps. As for the other high-level interfaces, the procedures are optional. <dl> <dt><b><tt>int (*text_begin)(gx_device *dev, gs_imager_state *pis, const gs_text_params_t *text, gs_font *font, gx_path *path, const gx_device_color *pdcolor, const gx_clip_path *pcpath, gs_memory_t *memory, gs_text_enum_t **ppte)</tt></b> <b><em>[OPTIONAL]</em></b> <dd> Begin processing text, by creating a state structure and storing it in <b><tt>*ppte</tt></b>. The parameters of <b><tt>text_begin</tt></b> are as follows: </dl> <blockquote><table cellpadding=0 cellspacing=0> <tr valign=top> <td><b><tt>dev</tt></b> <td> <td>The usual pointer to the device. <tr valign=top> <td><b><tt>pis</tt></b> <td> <td>A pointer to an imager state. All elements may be relevant, depending on how the text is rendered. <tr valign=top> <td><b><tt>text</tt></b> <td> <td>A pointer to the structure that defines the text operation and parameters. See <a href="../src/gstext.h">gstext.h</a> for details. <tr valign=top> <td><b><tt>font</tt></b> <td> <td>Defines the font for drawing. <tr valign=top> <td><b><tt>path</tt></b> <td> <td>Defines the path where the character outline will be appended (if the text operation includes <b><tt>TEXT_DO_...PATH</tt></b>), and whose current point indicates where drawing should occur and will be updated by the string width (unless the text operation includes <b><tt>TEXT_DO_NONE</tt></b>). <tr valign=top> <td><b><tt>pdcolor</tt></b> <td> <td>Defines the drawing color for the text. Only relevant if the text operation includes <b><tt>TEXT_DO_DRAW</tt></b>. <tr valign=top> <td><b><tt>pcpath</tt></b> <td> <td>If not <b><tt>NULL</tt></b>, defines an optional clipping path. Only relevant if the text operation includes <b><tt>TEXT_DO_DRAW</tt></b>. <tr valign=top> <td><b><tt>memory</tt></b> <td> <td>Defines the allocator to be used for allocating bookkeeping information. <tr valign=top> <td><b><tt>ppte</tt></b> <td> <td>The implementation should return a pointer to its state structure here. </table></blockquote> <p> <b><tt>text_begin</tt></b> must allocate a structure for its bookkeeping needs, using the allocator defined by the <b><tt>memory</tt></b> parameter, and return it in <b><tt>*ppte</tt></b>. <b><tt>text_begin</tt></b> may assume that the structures passed as parameters will survive until text processing is complete. <p> Clients should not call the driver <b><tt>text_begin</tt></b> procedure directly. Instead, they should call <b><tt>gx_device_text_begin</tt></b>, which takes the same parameters and also initializes certain common elements of the text enumeration structure, or <b><tt>gs_text_begin</tt></b>, which takes many of the parameters from a graphics state structure. For details, see <a href="../src/gstext.h">gstext.h</a>. <p> The actual processing of text uses the procedures in the enumeration structure, not driver procedures, since the handling of the text may depend on the font and parameters rather than the device. Text processing may also require the client to take action between characters, either because the client requested it (<b><tt>TEXT_INTERVENE</tt></b> in the operation) or because rendering a character requires suspending text processing to call an external package such as the PostScript interpreter. (It is a deliberate design decision to handle this by returning to the client, rather than calling out of the text renderer, in order to avoid potentially unknown stack requirements.) Specifically, the client must call the following procedures, which in turn call the procedures in the text enumerator. <dl> <dt><b><tt>int gs_text_process(gs_text_enum_t *pte)</tt></b> <dd>Continue processing text. This procedure may return 0 or a negative error code as usual, or one of the following values (see <a href="../src/gstext.h">gstext.h</a> for details). <blockquote><table cellpadding=0 cellspacing=0> <tr valign=top> <td><b><tt>TEXT_PROCESS_RENDER</tt></b> <td>The client must cause the current character to be rendered. This currently only is used for PostScript Type 0-4 fonts and their CID-keyed relatives. <tr valign=top> <td><b><tt>TEXT_PROCESS_INTERVENE</tt></b> <td>The client has asked to intervene between characters. This is used for <b><tt>cshow</tt></b> and <b><tt>kshow</tt></b>. </table></blockquote> </dl> <dl> <dt><b><tt>int gs_text_release(gs_text_enum_t *pte, client_name_t cname)</tt></b> <dd>Finish processing text and release all associated structures. Clients must call this procedure after <b><tt>gs_text_process</tt></b> returns 0 or an error, and may call it at any time. </dl> <p> There are numerous other procedures that clients may call during text processing. See <a href="../src/gstext.h">gstext.h</a> for details. <h5><a name="Text_notes"></a>Notes</h5> <p> Note that unlike many other optional procedures, the default implementation of <b><tt>text_begin</tt></b> cannot simply return: like the default implementation of <b><tt>begin[_typed]_image</tt></b>, it must create and return an enumerator. Furthermore, the implementation of the <b><tt>process</tt></b> procedure (in the enumerator structure, called by <b><tt>gs_text_process</tt></b>) cannot simply return without doing anything, even if it doesn't want to draw anything on the output. See the comments in <a href="../src/gxtext.h">gxtext.h</a> for details. <h4><a name="Unicode"></a>Unicode support for high level devices</h4> <p> <p>Implementing a new high level device, one may need to translate <b><tt>Postscript</tt></b> character codes into <b><tt>Unicode</tt></b>. This can be done pretty simply. <p>For translating a <b><tt>Postscript</tt></b> text you need to inplement the device virtual function <b><tt>text_begin</tt></b>. It should create a new instance of <b><tt>gs_text_enum_t</tt></b> in the heap (let its pointer be <b><tt>pte</tt></b>), and assign a special function to <b><tt>gs_text_enum_t::procs.process</tt></b>. The function will receive <b><tt>pte</tt></b>. It should take the top level font from <b><tt>pte->orig_font</tt></b>, and iterate with <b><tt>font->procs.next_char_glyph(pte, ..., &glyph)</tt></b>. The last argument receives a <b><tt>gs_glyph</tt></b> value, which encodes a <b><tt>Postscript</tt></b> character name or CID (and also stores it into <b><tt>pte->returned.current_glyph</tt></b>). Then obtain the current subfont with <b><tt>gs_text_current_font(pte)</tt></b> (it can differ from the font) and call <b><tt>subfont->procs.decode_glyph(subfont, glyph)</tt></b>. The return value will be an <b><tt>Unicode</tt></b> code, or <b><tt>GS_NO_CHAR</tt></b> if the glyph can't be translated to Unicode. <h3><a name="Reading_bits_back"></a>Reading bits back</h3> <dl> <dt><b><tt>int (*get_bits_rectangle)(gx_device *dev, const gs_int_rect *prect, gs_get_bits_params_t *params, gs_int_rect **unread)</tt></b> <b><em>[OPTIONAL]</em></b> <dd> Read a rectangle of bits back from the device. The <b><tt>params</tt></b> structure consists of: <table cellpadding=0 cellspacing=0> <tr valign=top> <td><b><tt>options</tt></b> <td> <td>the allowable formats for returning the data <tr valign=top> <td><b><tt>data[32]</tt></b> <td> <td>pointers to the returned data <tr valign=top> <td><b><tt>x_offset</tt></b> <td> <td>the X offset of the first returned pixel in data <tr valign=top> <td><b><tt>raster</tt></b> <td> <td>the distance between scan lines in the returned data </table> <p> <b><tt>options</tt></b> is a bit mask specifying what formats the client is willing to accept. (If the client has more flexibility, the implementation may be able to return the data more efficiently, by avoiding representation conversions.) The options are divided into groups. <blockquote><dl> <dt><b><em>alignment</em></b> <dd>Specifies whether the returned data must be aligned in the normal manner for bitmaps, or whether unaligned data are acceptable. <dt><b><em>pointer or copy</em></b> <dd>Specifies whether the data may be copied into storage provided by the client and/or returned as pointers to existing storage. (Note that if copying is not allowed, it is much more likely that the implementation will return an error, since this requires that the client accept the data in the implementation's internal format.) <dt><b><em>X offset</em></b> <dd>Specifies whether the returned data must have a specific X offset (usually zero, but possibly other values to avoid skew at some later stage of processing) or whether it may have any X offset (which may avoid skew in the <b><tt>get_bits_rectangle</tt></b> operation itself). <dt><b><em>raster</em></b> <dd>Specifies whether the raster (distance between returned scan lines) must have its standard value, must have some other specific value, or may have any value. The standard value for the raster is the device width padded out to the alignment modulus when using pointers, or the minimum raster to accommodate the X offset + width when copying (padded out to the alignment modulus if standard alignment is required). <dt><b><em>format</em></b> <dd>Specifies whether the data are returned in chunky (all components of a single pixel together), component-planar (each component has its own scan lines), or bit-planar (each bit has its own scan lines) format. <dt><b><em>color space</em></b> <dd>Specifies whether the data are returned as native device pixels, or in a standard color space. Currently the only supported standard space is RGB. <dt><b><em>standard component depth</em></b> <dd>Specifies the number of bits per component if the data are returned in the standard color space. (Native device pixels use <b><tt>dev</tt></b>-><b><tt>color_info.depth</tt></b> bits per pixel.) <dt><b><em>alpha</em></b> <dd>Specifies whether alpha channel information should be returned as the first component, the last component, or not at all. Note that for devices that have no alpha capability, the returned alpha values will be all 1s. </dl></blockquote> <p> The client may set more than one option in each of the above groups; the implementation will choose one of the selected options in each group to determine the actual form of the returned data, and will update <b><tt>params[].options</tt></b> to indicate the form. The returned <b><tt>params[].options</tt></b> will normally have only one option set per group. <p> For further details on <b><tt>params</tt></b>, see <a href="../src/gxgetbit.h">gxgetbit.h</a>. For further details on <b><tt>options</tt></b>, see <a href="../src/gxbitfmt.h">gxbitfmt.h</a>. <p> Define w = <b><tt>prect</tt></b>->q.x - <b><tt>prect</tt></b>->p.x, h = <b><tt>prect</tt></b>->q.y - <b><tt>prect</tt></b>->p.y. If the bits cannot be read back (for example, from a printer), return <b><tt>gs_error_unknownerror</tt></b>; if raster bytes is not enough space to hold <b><tt>offset_x</tt></b> + w pixels, or if the source rectangle goes outside the device dimensions (p.x < 0 || p.y < 0 || q.x > <b><tt>dev</tt></b>->width || q.y > <b><tt>dev</tt></b>->height), return <b><tt>gs_error_rangecheck</tt></b>; if any regions could not be read, return <b><tt>gs_error_ioerror</tt></b> if unpainted is <b><tt>NULL</tt></b>, otherwise the number of rectangles (see below); otherwise return 0. <p> The caller supplies a buffer of <b><tt>raster</tt></b> × h bytes starting at <b><tt>data[0]</tt></b> for the returned data in chunky format, or <b><em>N</em></b> buffers of <b><tt>raster</tt></b> × h bytes starting at <b><tt>data[0]</tt></b> through <b><tt>data[</tt></b><b><em>N-1</em></b><b><tt>]</tt></b> in planar format where <b><em>N</em></b> is the number of components or bits. The contents of the bits beyond the last valid bit in each scan line (as defined by w) are unpredictable. data need not be aligned in any way. If <b><tt>x_offset</tt></b> is non-zero, the bits before the first valid bit in each scan line are undefined. If the implementation returns pointers to the data, it stores them into <b><tt>data[0]</tt></b> or <b><tt>data[</tt></b><b><em>0..N-1</em></b><b><tt>]</tt></b>. <p> If not all the source data are available (for example, because the source was a partially obscured window and backing store was not available or not used), or if the rectangle does not fall completely within the device's coordinate system, any unread bits are undefined, and the value returned depends on whether unread is <b><tt>NULL</tt></b>. If unread is <b><tt>NULL</tt></b>, return <b><tt>gs_error_ioerror</tt></b>; in this case, some bits may or may not have been read. If unread is not <b><tt>NULL</tt></b>, allocate (using <b><tt>dev</tt></b>->memory) and fill in a list of rectangles that could not be read, store the pointer to the list in <b><tt>*unread</tt></b>, and return the number of rectangles; in this case, all bits not listed in the rectangle list have been read back properly. The list is not sorted in any particular order, but the rectangles do not overlap. Note that the rectangle list may cover a superset of the region actually obscured: for example, a lazy implementation could return a single rectangle that was the bounding box of the region. </dl> <dl> <dt><b><tt>int (*get_bits)(gx_device *dev, int y, byte *data, byte **actual_data)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Read scan line <b><tt>y</tt></b> of bits back from the device into the area starting at data. This call is functionally equivalent to <blockquote> <pre>(*get_bits_rectangle) (dev, {0, y, dev->width, y+1}, {(GB_ALIGN_ANY | (GB_RETURN_COPY | GB_RETURN_POINTER) | GB_OFFSET_0 | GB_RASTER_STANDARD | GB_FORMAT_CHUNKY | GB_COLORS_NATIVE | GB_ALPHA_NONE), {data}})</pre></blockquote> <p> with the returned value of <b><tt>params</tt></b>-><b><tt>data[0]</tt></b> stored in <b><tt>*actual_data</tt></b>, and will in fact be implemented this way if the device defines a <b><tt>get_bits_rectangle</tt></b> procedure and does not define one for <b><tt>get_bits</tt></b>. (If <b><tt>actual_data</tt></b> is <b><tt>NULL</tt></b>, <b><tt>GB_RETURN_POINTER</tt></b> is omitted from the options.) </dl> <h3><a name="Parameters"></a>Parameters</h3> <p> Devices may have an open-ended set of parameters, which are simply pairs consisting of a name and a value. The value may be of various types: integer (int or long), boolean, float, string, name, <b><tt>NULL</tt></b>, array of integer, array of float, or arrays or dictionaries of mixed types. For example, the <b><tt>Name</tt></b> of a device is a string; the <b><tt>Margins</tt></b> of a device is an array of two floats. See <a href="../src/gsparam.h">gsparam.h</a> for more details. <p> If a device has parameters other than the ones applicable to all devices (or, in the case of printer devices, all printer devices), it must provide <b><tt>get_params</tt></b> and <b><tt>put_params</tt></b> procedures. If your device has parameters beyond those of a straightforward display or printer, we strongly advise using the <b><tt>_get_params</tt></b> and <b><tt>_put_params</tt></b> procedures in an existing device (for example, <a href="../src/gdevcdj.c">gdevcdj.c</a> or <a href="../src/gdevbit.c">gdevbit.c</a>) as a model for your own code. <dl> <dt><b><tt>int (*get_params)(gx_device *dev, gs_param_list *plist)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Read the parameters of the device into the parameter list at <b><tt>plist</tt></b>, using the <b><tt>param_write_*</tt></b> macros or procedures defined in <a href="../src/gsparam.h">gsparam.h</a>. </dl> <dl> <dt><b><tt>int (*get_hardware_params)(gx_device *dev, gs_param_list *plist)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Read the hardware-related parameters of the device into the parameter list at plist. These are any parameters whose values are under control of external forces rather than the program -- for example, front panel switches, paper jam or tray empty sensors, etc. If a parameter involves significant delay or hardware action, the driver should only determine the value of the parameter if it is "requested" by the <b><tt>gs_param_list</tt></b> [<b><tt>param_requested</tt></b>(plist, <b><tt>key_name</tt></b>)]. This function may cause the asynchronous rendering pipeline (if enabled) to be drained, so it should be used sparingly. </dl> <dl> <dt><b><tt>int (*put_params)(gx_device *dev, gs_param_list *plist)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Set the parameters of the device from the parameter list at <b><tt>plist</tt></b>, using the <b><tt>param_read_</tt></b>* macros/procedures defined in <a href="../src/gsparam.h">gsparam.h</a>. All <b><tt>put_params</tt></b> procedures must use a "two-phase commit" algorithm; see <a href="../src/gsparam.h">gsparam.h</a> for details. </dl> <h4><a name="Default_CRD_parameters"></a>Default color rendering dictionary (CRD) parameters</h4> <p> Drivers that want to provide one or more default CIE color rendering dictionaries (CRDs) can do so through <b><tt>get_params</tt></b>. To do this, they create the CRD in the usual way (normally using the <b><tt>gs_cie_render1_build</tt></b> and <b><tt>_initialize</tt></b> procedures defined in <a href="../src/gscrd.h">gscrd.h</a>), and then write it as a parameter using <b><tt>param_write_cie_render1</tt></b> defined in <a href="../src/gscrdp.h">gscrdp.h</a>. However, the TransformPQR procedure requires special handling. If the CRD uses a TransformPQR procedure different from the default (identity), the driver must do the following: <ul> <li>The TransformPQR element of the CRD must include a <b><tt>proc_name</tt></b>, and optionally <b><tt>proc_data</tt></b>. The <b><tt>proc_name</tt></b> is an arbitrary name chosen by the driver to designate the particular TransformPQR function. It must not be the same as any device parameter name; we strongly suggest it include the device name, for instance, "<b><tt>bitTPQRDefault</tt></b>". <li>For each such named TransformPQR procedure, the driver's <b><tt>get_param</tt></b> procedure must provide a parameter of the same name. The parameter value must be a string whose bytes are the actual procedure address. </ul> <p> For a complete example, see the <b><tt>bit_get_params</tt></b> procedure in <a href="../src/gdevbit.c">gdevbit.c</a>. Note that it is essential that the driver return the CRD or the procedure address only if specifically requested (<b><tt>param_requested(...)</tt></b> > 0); otherwise, errors will occur. <h3><a name="External_fonts"></a>External fonts</h3> <p> Drivers may include the ability to display text. More precisely, they may supply a set of procedures that in turn implement some font and text handling capabilities, described in <a href="Xfonts.htm">a separate document</a>. The link between the two is the driver procedure that supplies the font and text procedures: <dl> <dt><b><tt>xfont_procs *(*get_xfont_procs)(gx_device *dev)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Return a structure of procedures for handling external fonts and text display. A <b><tt>NULL</tt></b> value means that this driver doesn't provide this capability. </dl> <p> For technical reasons, a second procedure is also needed: <dl> <dt><b><tt>gx_device *(*get_xfont_device)(gx_device *dev)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Return the device that implements <b><tt>get_xfont_procs</tt></b> in a non-default way for this device, if any. Except for certain special internal devices, this is always the device argument. </dl> <h3><a name="Page_devices"></a>Page devices</h3> <dl> <dt><b><tt>gx_device *(*get_page_device)(gx_device *dev)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>According to the Adobe specifications, some devices are "page devices" and some are not. This procedure returns <b><tt>NULL</tt></b> if the device is not a page device, or the device itself if it is a page device. In the case of forwarding devices, <b><tt>get_page_device</tt></b> returns the underlying page device (or <b><tt>NULL</tt></b> if the underlying device is not a page device). </dl> <h3><a name="Miscellaneous"></a>Miscellaneous</h3> <dl> <dt><b><tt>int (*get_band)(gx_device *dev, int y, int *band_start)</tt></b> <b><em>[OPTIONAL]</em></b> <dd>If the device is a band device, this procedure stores in <b><tt>*band_start</tt></b> the scan line (device Y coordinate) of the band that includes the given Y coordinate, and returns the number of scan lines in the band. If the device is not a band device, this procedure returns 0. The latter is the default implementation. </dl> <dl> <dt><b><tt>void (*get_clipping_box)(gx_device *dev, gs_fixed_rect *pbox))</tt></b> <b><em>[OPTIONAL]</em></b> <dd>Stores in <b><tt>*pbox</tt></b> a rectangle that defines the device's clipping region. For all but a few specialized devices, this is <em>((0,0),(width,height))</em>. </dl> <!-- [2.0 end contents] ==================================================== --> <!-- [3.0 begin visible trailer] =========================================== --> <hr> <p> <small>Copyright © 1996, 2000 Aladdin Enterprises. All rights reserved.</small> <p> This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. For more information about licensing, please refer to http://www.ghostscript.com/licensing/. For information on commercial licensing, go to http://www.artifex.com/licensing/ or contact Artifex Software, Inc., 101 Lucas Valley Road #110, San Rafael, CA 94903, U.S.A., +1(415)492-9861. <p> <small>Ghostscript version 8.53, 20 October 2005 <!-- [3.0 end visible trailer] ============================================= --> </small></body> </html>