ref: d9b9e15d6bbdae625b3613bb0a704d269cc83098
dir: /sys/src/cmd/python/Parser/pgen.c/
/* Parser generator */ /* For a description, see the comments at end of this file */ #include "Python.h" #include "pgenheaders.h" #include "token.h" #include "node.h" #include "grammar.h" #include "metagrammar.h" #include "pgen.h" extern int Py_DebugFlag; extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */ /* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */ typedef struct _nfaarc { int ar_label; int ar_arrow; } nfaarc; typedef struct _nfastate { int st_narcs; nfaarc *st_arc; } nfastate; typedef struct _nfa { int nf_type; char *nf_name; int nf_nstates; nfastate *nf_state; int nf_start, nf_finish; } nfa; /* Forward */ static void compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb); static void compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb); static void compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb); static void compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb); static int addnfastate(nfa *nf) { nfastate *st; nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state, sizeof(nfastate) * (nf->nf_nstates + 1)); if (nf->nf_state == NULL) Py_FatalError("out of mem"); st = &nf->nf_state[nf->nf_nstates++]; st->st_narcs = 0; st->st_arc = NULL; return st - nf->nf_state; } static void addnfaarc(nfa *nf, int from, int to, int lbl) { nfastate *st; nfaarc *ar; st = &nf->nf_state[from]; st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc, sizeof(nfaarc) * (st->st_narcs + 1)); if (st->st_arc == NULL) Py_FatalError("out of mem"); ar = &st->st_arc[st->st_narcs++]; ar->ar_label = lbl; ar->ar_arrow = to; } static nfa * newnfa(char *name) { nfa *nf; static int type = NT_OFFSET; /* All types will be disjunct */ nf = (nfa *)PyObject_MALLOC(sizeof(nfa)); if (nf == NULL) Py_FatalError("no mem for new nfa"); nf->nf_type = type++; nf->nf_name = name; /* XXX strdup(name) ??? */ nf->nf_nstates = 0; nf->nf_state = NULL; nf->nf_start = nf->nf_finish = -1; return nf; } typedef struct _nfagrammar { int gr_nnfas; nfa **gr_nfa; labellist gr_ll; } nfagrammar; /* Forward */ static void compile_rule(nfagrammar *gr, node *n); static nfagrammar * newnfagrammar(void) { nfagrammar *gr; gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar)); if (gr == NULL) Py_FatalError("no mem for new nfa grammar"); gr->gr_nnfas = 0; gr->gr_nfa = NULL; gr->gr_ll.ll_nlabels = 0; gr->gr_ll.ll_label = NULL; addlabel(&gr->gr_ll, ENDMARKER, "EMPTY"); return gr; } static nfa * addnfa(nfagrammar *gr, char *name) { nfa *nf; nf = newnfa(name); gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa, sizeof(nfa) * (gr->gr_nnfas + 1)); if (gr->gr_nfa == NULL) Py_FatalError("out of mem"); gr->gr_nfa[gr->gr_nnfas++] = nf; addlabel(&gr->gr_ll, NAME, nf->nf_name); return nf; } #ifdef Py_DEBUG static char REQNFMT[] = "metacompile: less than %d children\n"; #define REQN(i, count) \ if (i < count) { \ fprintf(stderr, REQNFMT, count); \ Py_FatalError("REQN"); \ } else #else #define REQN(i, count) /* empty */ #endif static nfagrammar * metacompile(node *n) { nfagrammar *gr; int i; if (Py_DebugFlag) printf("Compiling (meta-) parse tree into NFA grammar\n"); gr = newnfagrammar(); REQ(n, MSTART); i = n->n_nchildren - 1; /* Last child is ENDMARKER */ n = n->n_child; for (; --i >= 0; n++) { if (n->n_type != NEWLINE) compile_rule(gr, n); } return gr; } static void compile_rule(nfagrammar *gr, node *n) { nfa *nf; REQ(n, RULE); REQN(n->n_nchildren, 4); n = n->n_child; REQ(n, NAME); nf = addnfa(gr, n->n_str); n++; REQ(n, COLON); n++; REQ(n, RHS); compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish); n++; REQ(n, NEWLINE); } static void compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb) { int i; int a, b; REQ(n, RHS); i = n->n_nchildren; REQN(i, 1); n = n->n_child; REQ(n, ALT); compile_alt(ll, nf, n, pa, pb); if (--i <= 0) return; n++; a = *pa; b = *pb; *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); for (; --i >= 0; n++) { REQ(n, VBAR); REQN(i, 1); --i; n++; REQ(n, ALT); compile_alt(ll, nf, n, &a, &b); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); } } static void compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb) { int i; int a, b; REQ(n, ALT); i = n->n_nchildren; REQN(i, 1); n = n->n_child; REQ(n, ITEM); compile_item(ll, nf, n, pa, pb); --i; n++; for (; --i >= 0; n++) { REQ(n, ITEM); compile_item(ll, nf, n, &a, &b); addnfaarc(nf, *pb, a, EMPTY); *pb = b; } } static void compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb) { int i; int a, b; REQ(n, ITEM); i = n->n_nchildren; REQN(i, 1); n = n->n_child; if (n->n_type == LSQB) { REQN(i, 3); n++; REQ(n, RHS); *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, *pb, EMPTY); compile_rhs(ll, nf, n, &a, &b); addnfaarc(nf, *pa, a, EMPTY); addnfaarc(nf, b, *pb, EMPTY); REQN(i, 1); n++; REQ(n, RSQB); } else { compile_atom(ll, nf, n, pa, pb); if (--i <= 0) return; n++; addnfaarc(nf, *pb, *pa, EMPTY); if (n->n_type == STAR) *pb = *pa; else REQ(n, PLUS); } } static void compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb) { int i; REQ(n, ATOM); i = n->n_nchildren; REQN(i, 1); n = n->n_child; if (n->n_type == LPAR) { REQN(i, 3); n++; REQ(n, RHS); compile_rhs(ll, nf, n, pa, pb); n++; REQ(n, RPAR); } else if (n->n_type == NAME || n->n_type == STRING) { *pa = addnfastate(nf); *pb = addnfastate(nf); addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str)); } else REQ(n, NAME); } static void dumpstate(labellist *ll, nfa *nf, int istate) { nfastate *st; int i; nfaarc *ar; printf("%c%2d%c", istate == nf->nf_start ? '*' : ' ', istate, istate == nf->nf_finish ? '.' : ' '); st = &nf->nf_state[istate]; ar = st->st_arc; for (i = 0; i < st->st_narcs; i++) { if (i > 0) printf("\n "); printf("-> %2d %s", ar->ar_arrow, PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label])); ar++; } printf("\n"); } static void dumpnfa(labellist *ll, nfa *nf) { int i; printf("NFA '%s' has %d states; start %d, finish %d\n", nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish); for (i = 0; i < nf->nf_nstates; i++) dumpstate(ll, nf, i); } /* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */ static void addclosure(bitset ss, nfa *nf, int istate) { if (addbit(ss, istate)) { nfastate *st = &nf->nf_state[istate]; nfaarc *ar = st->st_arc; int i; for (i = st->st_narcs; --i >= 0; ) { if (ar->ar_label == EMPTY) addclosure(ss, nf, ar->ar_arrow); ar++; } } } typedef struct _ss_arc { bitset sa_bitset; int sa_arrow; int sa_label; } ss_arc; typedef struct _ss_state { bitset ss_ss; int ss_narcs; struct _ss_arc *ss_arc; int ss_deleted; int ss_finish; int ss_rename; } ss_state; typedef struct _ss_dfa { int sd_nstates; ss_state *sd_state; } ss_dfa; /* Forward */ static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits, labellist *ll, char *msg); static void simplify(int xx_nstates, ss_state *xx_state); static void convert(dfa *d, int xx_nstates, ss_state *xx_state); static void makedfa(nfagrammar *gr, nfa *nf, dfa *d) { int nbits = nf->nf_nstates; bitset ss; int xx_nstates; ss_state *xx_state, *yy; ss_arc *zz; int istate, jstate, iarc, jarc, ibit; nfastate *st; nfaarc *ar; ss = newbitset(nbits); addclosure(ss, nf, nf->nf_start); xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state)); if (xx_state == NULL) Py_FatalError("no mem for xx_state in makedfa"); xx_nstates = 1; yy = &xx_state[0]; yy->ss_ss = ss; yy->ss_narcs = 0; yy->ss_arc = NULL; yy->ss_deleted = 0; yy->ss_finish = testbit(ss, nf->nf_finish); if (yy->ss_finish) printf("Error: nonterminal '%s' may produce empty.\n", nf->nf_name); /* This algorithm is from a book written before the invention of structured programming... */ /* For each unmarked state... */ for (istate = 0; istate < xx_nstates; ++istate) { size_t size; yy = &xx_state[istate]; ss = yy->ss_ss; /* For all its states... */ for (ibit = 0; ibit < nf->nf_nstates; ++ibit) { if (!testbit(ss, ibit)) continue; st = &nf->nf_state[ibit]; /* For all non-empty arcs from this state... */ for (iarc = 0; iarc < st->st_narcs; iarc++) { ar = &st->st_arc[iarc]; if (ar->ar_label == EMPTY) continue; /* Look up in list of arcs from this state */ for (jarc = 0; jarc < yy->ss_narcs; ++jarc) { zz = &yy->ss_arc[jarc]; if (ar->ar_label == zz->sa_label) goto found; } /* Add new arc for this state */ size = sizeof(ss_arc) * (yy->ss_narcs + 1); yy->ss_arc = (ss_arc *)PyObject_REALLOC( yy->ss_arc, size); if (yy->ss_arc == NULL) Py_FatalError("out of mem"); zz = &yy->ss_arc[yy->ss_narcs++]; zz->sa_label = ar->ar_label; zz->sa_bitset = newbitset(nbits); zz->sa_arrow = -1; found: ; /* Add destination */ addclosure(zz->sa_bitset, nf, ar->ar_arrow); } } /* Now look up all the arrow states */ for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) { zz = &xx_state[istate].ss_arc[jarc]; for (jstate = 0; jstate < xx_nstates; jstate++) { if (samebitset(zz->sa_bitset, xx_state[jstate].ss_ss, nbits)) { zz->sa_arrow = jstate; goto done; } } size = sizeof(ss_state) * (xx_nstates + 1); xx_state = (ss_state *)PyObject_REALLOC(xx_state, size); if (xx_state == NULL) Py_FatalError("out of mem"); zz->sa_arrow = xx_nstates; yy = &xx_state[xx_nstates++]; yy->ss_ss = zz->sa_bitset; yy->ss_narcs = 0; yy->ss_arc = NULL; yy->ss_deleted = 0; yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish); done: ; } } if (Py_DebugFlag) printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, "before minimizing"); simplify(xx_nstates, xx_state); if (Py_DebugFlag) printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, "after minimizing"); convert(d, xx_nstates, xx_state); /* XXX cleanup */ } static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits, labellist *ll, char *msg) { int i, ibit, iarc; ss_state *yy; ss_arc *zz; printf("Subset DFA %s\n", msg); for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; printf(" Subset %d", i); if (yy->ss_finish) printf(" (finish)"); printf(" { "); for (ibit = 0; ibit < nbits; ibit++) { if (testbit(yy->ss_ss, ibit)) printf("%d ", ibit); } printf("}\n"); for (iarc = 0; iarc < yy->ss_narcs; iarc++) { zz = &yy->ss_arc[iarc]; printf(" Arc to state %d, label %s\n", zz->sa_arrow, PyGrammar_LabelRepr( &ll->ll_label[zz->sa_label])); } } } /* PART THREE -- SIMPLIFY DFA */ /* Simplify the DFA by repeatedly eliminating states that are equivalent to another oner. This is NOT Algorithm 3.3 from [Aho&Ullman 77]. It does not always finds the minimal DFA, but it does usually make a much smaller one... (For an example of sub-optimal behavior, try S: x a b+ | y a b+.) */ static int samestate(ss_state *s1, ss_state *s2) { int i; if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish) return 0; for (i = 0; i < s1->ss_narcs; i++) { if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow || s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label) return 0; } return 1; } static void renamestates(int xx_nstates, ss_state *xx_state, int from, int to) { int i, j; if (Py_DebugFlag) printf("Rename state %d to %d.\n", from, to); for (i = 0; i < xx_nstates; i++) { if (xx_state[i].ss_deleted) continue; for (j = 0; j < xx_state[i].ss_narcs; j++) { if (xx_state[i].ss_arc[j].sa_arrow == from) xx_state[i].ss_arc[j].sa_arrow = to; } } } static void simplify(int xx_nstates, ss_state *xx_state) { int changes; int i, j; do { changes = 0; for (i = 1; i < xx_nstates; i++) { if (xx_state[i].ss_deleted) continue; for (j = 0; j < i; j++) { if (xx_state[j].ss_deleted) continue; if (samestate(&xx_state[i], &xx_state[j])) { xx_state[i].ss_deleted++; renamestates(xx_nstates, xx_state, i, j); changes++; break; } } } } while (changes); } /* PART FOUR -- GENERATE PARSING TABLES */ /* Convert the DFA into a grammar that can be used by our parser */ static void convert(dfa *d, int xx_nstates, ss_state *xx_state) { int i, j; ss_state *yy; ss_arc *zz; for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; yy->ss_rename = addstate(d); } for (i = 0; i < xx_nstates; i++) { yy = &xx_state[i]; if (yy->ss_deleted) continue; for (j = 0; j < yy->ss_narcs; j++) { zz = &yy->ss_arc[j]; addarc(d, yy->ss_rename, xx_state[zz->sa_arrow].ss_rename, zz->sa_label); } if (yy->ss_finish) addarc(d, yy->ss_rename, yy->ss_rename, 0); } d->d_initial = 0; } /* PART FIVE -- GLUE IT ALL TOGETHER */ static grammar * maketables(nfagrammar *gr) { int i; nfa *nf; dfa *d; grammar *g; if (gr->gr_nnfas == 0) return NULL; g = newgrammar(gr->gr_nfa[0]->nf_type); /* XXX first rule must be start rule */ g->g_ll = gr->gr_ll; for (i = 0; i < gr->gr_nnfas; i++) { nf = gr->gr_nfa[i]; if (Py_DebugFlag) { printf("Dump of NFA for '%s' ...\n", nf->nf_name); dumpnfa(&gr->gr_ll, nf); printf("Making DFA for '%s' ...\n", nf->nf_name); } d = adddfa(g, nf->nf_type, nf->nf_name); makedfa(gr, gr->gr_nfa[i], d); } return g; } grammar * pgen(node *n) { nfagrammar *gr; grammar *g; gr = metacompile(n); g = maketables(gr); translatelabels(g); addfirstsets(g); return g; } grammar * Py_pgen(node *n) { return pgen(n); } /* Description ----------- Input is a grammar in extended BNF (using * for repetition, + for at-least-once repetition, [] for optional parts, | for alternatives and () for grouping). This has already been parsed and turned into a parse tree. Each rule is considered as a regular expression in its own right. It is turned into a Non-deterministic Finite Automaton (NFA), which is then turned into a Deterministic Finite Automaton (DFA), which is then optimized to reduce the number of states. See [Aho&Ullman 77] chapter 3, or similar compiler books (this technique is more often used for lexical analyzers). The DFA's are used by the parser as parsing tables in a special way that's probably unique. Before they are usable, the FIRST sets of all non-terminals are computed. Reference --------- [Aho&Ullman 77] Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977 (first edition) */