ref: e14d6249749a1101abdad7998e1cd5cdc49e137a
dir: /sys/src/ape/lib/openssl/crypto/rc4/asm/rc4-x86_64.pl/
#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL # project. Rights for redistribution and usage in source and binary # forms are granted according to the OpenSSL license. # ==================================================================== # # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in # "hand-coded assembler"] doesn't stand for the whole improvement # coefficient. It turned out that eliminating RC4_CHAR from config # line results in ~40% improvement (yes, even for C implementation). # Presumably it has everything to do with AMD cache architecture and # RAW or whatever penalties. Once again! The module *requires* config # line *without* RC4_CHAR! As for coding "secret," I bet on partial # register arithmetics. For example instead of 'inc %r8; and $255,%r8' # I simply 'inc %r8b'. Even though optimization manual discourages # to operate on partial registers, it turned out to be the best bet. # At least for AMD... How IA32E would perform remains to be seen... # As was shown by Marc Bevand reordering of couple of load operations # results in even higher performance gain of 3.3x:-) At least on # Opteron... For reference, 1x in this case is RC4_CHAR C-code # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. # Latter means that if you want to *estimate* what to expect from # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. # Intel P4 EM64T core was found to run the AMD64 code really slow... # The only way to achieve comparable performance on P4 was to keep # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to # compose blended code, which would perform even within 30% marginal # on either AMD and Intel platforms, I implement both cases. See # rc4_skey.c for further details... # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing # those with add/sub results in 50% performance improvement of folded # loop... # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T # performance by >30% [unlike P4 32-bit case that is]. But this is # provided that loads are reordered even more aggressively! Both code # pathes, AMD64 and EM64T, reorder loads in essentially same manner # as my IA-64 implementation. On Opteron this resulted in modest 5% # improvement [I had to test it], while final Intel P4 performance # achieves respectful 432MBps on 2.8GHz processor now. For reference. # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than # RC4_INT code-path. While if executed on Opteron, it's only 25% # slower than the RC4_INT one [meaning that if CPU �-arch detection # is not implemented, then this final RC4_CHAR code-path should be # preferred, as it provides better *all-round* performance]. $output=shift; open STDOUT,"| $^X ../perlasm/x86_64-xlate.pl $output"; $dat="%rdi"; # arg1 $len="%rsi"; # arg2 $inp="%rdx"; # arg3 $out="%rcx"; # arg4 @XX=("%r8","%r10"); @TX=("%r9","%r11"); $YY="%r12"; $TY="%r13"; $code=<<___; .text .globl RC4 .type RC4,\@function,4 .align 16 RC4: or $len,$len jne .Lentry ret .Lentry: push %r12 push %r13 add \$8,$dat movl -8($dat),$XX[0]#d movl -4($dat),$YY#d cmpl \$-1,256($dat) je .LRC4_CHAR inc $XX[0]#b movl ($dat,$XX[0],4),$TX[0]#d test \$-8,$len jz .Lloop1 jmp .Lloop8 .align 16 .Lloop8: ___ for ($i=0;$i<8;$i++) { $code.=<<___; add $TX[0]#b,$YY#b mov $XX[0],$XX[1] movl ($dat,$YY,4),$TY#d ror \$8,%rax # ror is redundant when $i=0 inc $XX[1]#b movl ($dat,$XX[1],4),$TX[1]#d cmp $XX[1],$YY movl $TX[0]#d,($dat,$YY,4) cmove $TX[0],$TX[1] movl $TY#d,($dat,$XX[0],4) add $TX[0]#b,$TY#b movb ($dat,$TY,4),%al ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } $code.=<<___; ror \$8,%rax sub \$8,$len xor ($inp),%rax add \$8,$inp mov %rax,($out) add \$8,$out test \$-8,$len jnz .Lloop8 cmp \$0,$len jne .Lloop1 ___ $code.=<<___; .Lexit: sub \$1,$XX[0]#b movl $XX[0]#d,-8($dat) movl $YY#d,-4($dat) pop %r13 pop %r12 ret .align 16 .Lloop1: add $TX[0]#b,$YY#b movl ($dat,$YY,4),$TY#d movl $TX[0]#d,($dat,$YY,4) movl $TY#d,($dat,$XX[0],4) add $TY#b,$TX[0]#b inc $XX[0]#b movl ($dat,$TX[0],4),$TY#d movl ($dat,$XX[0],4),$TX[0]#d xorb ($inp),$TY#b inc $inp movb $TY#b,($out) inc $out dec $len jnz .Lloop1 jmp .Lexit .align 16 .LRC4_CHAR: add \$1,$XX[0]#b movzb ($dat,$XX[0]),$TX[0]#d test \$-8,$len jz .Lcloop1 push %rbx jmp .Lcloop8 .align 16 .Lcloop8: mov ($inp),%eax mov 4($inp),%ebx ___ # unroll 2x4-wise, because 64-bit rotates kill Intel P4... for ($i=0;$i<4;$i++) { $code.=<<___; add $TX[0]#b,$YY#b lea 1($XX[0]),$XX[1] movzb ($dat,$YY),$TY#d movzb $XX[1]#b,$XX[1]#d movzb ($dat,$XX[1]),$TX[1]#d movb $TX[0]#b,($dat,$YY) cmp $XX[1],$YY movb $TY#b,($dat,$XX[0]) jne .Lcmov$i # Intel cmov is sloooow... mov $TX[0],$TX[1] .Lcmov$i: add $TX[0]#b,$TY#b xor ($dat,$TY),%al ror \$8,%eax ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } for ($i=4;$i<8;$i++) { $code.=<<___; add $TX[0]#b,$YY#b lea 1($XX[0]),$XX[1] movzb ($dat,$YY),$TY#d movzb $XX[1]#b,$XX[1]#d movzb ($dat,$XX[1]),$TX[1]#d movb $TX[0]#b,($dat,$YY) cmp $XX[1],$YY movb $TY#b,($dat,$XX[0]) jne .Lcmov$i # Intel cmov is sloooow... mov $TX[0],$TX[1] .Lcmov$i: add $TX[0]#b,$TY#b xor ($dat,$TY),%bl ror \$8,%ebx ___ push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers } $code.=<<___; lea -8($len),$len mov %eax,($out) lea 8($inp),$inp mov %ebx,4($out) lea 8($out),$out test \$-8,$len jnz .Lcloop8 pop %rbx cmp \$0,$len jne .Lcloop1 jmp .Lexit ___ $code.=<<___; .align 16 .Lcloop1: add $TX[0]#b,$YY#b movzb ($dat,$YY),$TY#d movb $TX[0]#b,($dat,$YY) movb $TY#b,($dat,$XX[0]) add $TX[0]#b,$TY#b add \$1,$XX[0]#b movzb ($dat,$TY),$TY#d movzb ($dat,$XX[0]),$TX[0]#d xorb ($inp),$TY#b lea 1($inp),$inp movb $TY#b,($out) lea 1($out),$out sub \$1,$len jnz .Lcloop1 jmp .Lexit .size RC4,.-RC4 ___ $code =~ s/#([bwd])/$1/gm; print $code; close STDOUT;