ref: e14d6249749a1101abdad7998e1cd5cdc49e137a
dir: /sys/src/ape/lib/openssl/crypto/sha/asm/sha512-sse2.pl/
#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL # project. Rights for redistribution and usage in source and binary # forms are granted according to the OpenSSL license. # ==================================================================== # # SHA512_Transform_SSE2. # # As the name suggests, this is an IA-32 SSE2 implementation of # SHA512_Transform. Motivating factor for the undertaken effort was that # SHA512 was observed to *consistently* perform *significantly* poorer # than SHA256 [2x and slower is common] on 32-bit platforms. On 64-bit # platforms on the other hand SHA512 tend to outperform SHA256 [~50% # seem to be common improvement factor]. All this is perfectly natural, # as SHA512 is a 64-bit algorithm. But isn't IA-32 SSE2 essentially # a 64-bit instruction set? Is it rich enough to implement SHA512? # If answer was "no," then you wouldn't have been reading this... # # Throughput performance in MBps (larger is better): # # 2.4GHz P4 1.4GHz AMD32 1.4GHz AMD64(*) # SHA256/gcc(*) 54 43 59 # SHA512/gcc 17 23 92 # SHA512/sse2 61(**) 57(**) # SHA512/icc 26 28 # SHA256/icc(*) 65 54 # # (*) AMD64 and SHA256 numbers are presented mostly for amusement or # reference purposes. # (**) I.e. it gives ~2-3x speed-up if compared with compiler generated # code. One can argue that hand-coded *non*-SSE2 implementation # would perform better than compiler generated one as well, and # that comparison is therefore not exactly fair. Well, as SHA512 # puts enormous pressure on IA-32 GP register bank, I reckon that # hand-coded version wouldn't perform significantly better than # one compiled with icc, ~20% perhaps... So that this code would # still outperform it with distinguishing marginal. But feel free # to prove me wrong:-) # <appro@fy.chalmers.se> push(@INC,"perlasm","../../perlasm"); require "x86asm.pl"; &asm_init($ARGV[0],"sha512-sse2.pl",$ARGV[$#ARGV] eq "386"); $K512="esi"; # K512[80] table, found at the end... #$W512="esp"; # $W512 is not just W512[16]: it comprises *two* copies # of W512[16] and a copy of A-H variables... $W512_SZ=8*(16+16+8); # see above... #$Kidx="ebx"; # index in K512 table, advances from 0 to 80... $Widx="edx"; # index in W512, wraps around at 16... $data="edi"; # 16 qwords of input data... $A="mm0"; # B-D and $E="mm1"; # F-H are allocated dynamically... $Aoff=256+0; # A-H offsets relative to $W512... $Boff=256+8; $Coff=256+16; $Doff=256+24; $Eoff=256+32; $Foff=256+40; $Goff=256+48; $Hoff=256+56; sub SHA2_ROUND() { local ($kidx,$widx)=@_; # One can argue that one could reorder instructions for better # performance. Well, I tried and it doesn't seem to make any # noticeable difference. Modern out-of-order execution cores # reorder instructions to their liking in either case and they # apparently do decent job. So we can keep the code more # readable/regular/comprehensible:-) # I adhere to 64-bit %mmX registers in order to avoid/not care # about #GP exceptions on misaligned 128-bit access, most # notably in paddq with memory operand. Not to mention that # SSE2 intructions operating on %mmX can be scheduled every # cycle [and not every second one if operating on %xmmN]. &movq ("mm4",&QWP($Foff,$W512)); # load f &movq ("mm5",&QWP($Goff,$W512)); # load g &movq ("mm6",&QWP($Hoff,$W512)); # load h &movq ("mm2",$E); # %mm2 is sliding right &movq ("mm3",$E); # %mm3 is sliding left &psrlq ("mm2",14); &psllq ("mm3",23); &movq ("mm7","mm2"); # %mm7 is T1 &pxor ("mm7","mm3"); &psrlq ("mm2",4); &psllq ("mm3",23); &pxor ("mm7","mm2"); &pxor ("mm7","mm3"); &psrlq ("mm2",23); &psllq ("mm3",4); &pxor ("mm7","mm2"); &pxor ("mm7","mm3"); # T1=Sigma1_512(e) &movq (&QWP($Foff,$W512),$E); # f = e &movq (&QWP($Goff,$W512),"mm4"); # g = f &movq (&QWP($Hoff,$W512),"mm5"); # h = g &pxor ("mm4","mm5"); # f^=g &pand ("mm4",$E); # f&=e &pxor ("mm4","mm5"); # f^=g &paddq ("mm7","mm4"); # T1+=Ch(e,f,g) &movq ("mm2",&QWP($Boff,$W512)); # load b &movq ("mm3",&QWP($Coff,$W512)); # load c &movq ($E,&QWP($Doff,$W512)); # e = d &paddq ("mm7","mm6"); # T1+=h &paddq ("mm7",&QWP(0,$K512,$kidx,8)); # T1+=K512[i] &paddq ("mm7",&QWP(0,$W512,$widx,8)); # T1+=W512[i] &paddq ($E,"mm7"); # e += T1 &movq ("mm4",$A); # %mm4 is sliding right &movq ("mm5",$A); # %mm5 is sliding left &psrlq ("mm4",28); &psllq ("mm5",25); &movq ("mm6","mm4"); # %mm6 is T2 &pxor ("mm6","mm5"); &psrlq ("mm4",6); &psllq ("mm5",5); &pxor ("mm6","mm4"); &pxor ("mm6","mm5"); &psrlq ("mm4",5); &psllq ("mm5",6); &pxor ("mm6","mm4"); &pxor ("mm6","mm5"); # T2=Sigma0_512(a) &movq (&QWP($Boff,$W512),$A); # b = a &movq (&QWP($Coff,$W512),"mm2"); # c = b &movq (&QWP($Doff,$W512),"mm3"); # d = c &movq ("mm4",$A); # %mm4=a &por ($A,"mm3"); # a=a|c &pand ("mm4","mm3"); # %mm4=a&c &pand ($A,"mm2"); # a=(a|c)&b &por ("mm4",$A); # %mm4=(a&c)|((a|c)&b) &paddq ("mm6","mm4"); # T2+=Maj(a,b,c) &movq ($A,"mm7"); # a=T1 &paddq ($A,"mm6"); # a+=T2 } $func="sha512_block_sse2"; &function_begin_B($func); if (0) {# Caller is expected to check if it's appropriate to # call this routine. Below 3 lines are retained for # debugging purposes... &picmeup("eax","OPENSSL_ia32cap"); &bt (&DWP(0,"eax"),26); &jnc ("SHA512_Transform"); } &push ("ebp"); &mov ("ebp","esp"); &push ("ebx"); &push ("esi"); &push ("edi"); &mov ($Widx,&DWP(8,"ebp")); # A-H state, 1st arg &mov ($data,&DWP(12,"ebp")); # input data, 2nd arg &call (&label("pic_point")); # make it PIC! &set_label("pic_point"); &blindpop($K512); &lea ($K512,&DWP(&label("K512")."-".&label("pic_point"),$K512)); $W512 = "esp"; # start using %esp as W512 &sub ($W512,$W512_SZ); &and ($W512,-16); # ensure 128-bit alignment # make private copy of A-H # v assume the worst and stick to unaligned load &movdqu ("xmm0",&QWP(0,$Widx)); &movdqu ("xmm1",&QWP(16,$Widx)); &movdqu ("xmm2",&QWP(32,$Widx)); &movdqu ("xmm3",&QWP(48,$Widx)); &align(8); &set_label("_chunk_loop"); &movdqa (&QWP($Aoff,$W512),"xmm0"); # a,b &movdqa (&QWP($Coff,$W512),"xmm1"); # c,d &movdqa (&QWP($Eoff,$W512),"xmm2"); # e,f &movdqa (&QWP($Goff,$W512),"xmm3"); # g,h &xor ($Widx,$Widx); &movdq2q($A,"xmm0"); # load a &movdq2q($E,"xmm2"); # load e # Why aren't loops unrolled? It makes sense to unroll if # execution time for loop body is comparable with branch # penalties and/or if whole data-set resides in register bank. # Neither is case here... Well, it would be possible to # eliminate few store operations, but it would hardly affect # so to say stop-watch performance, as there is a lot of # available memory slots to fill. It will only relieve some # pressure off memory bus... # flip input stream byte order... &mov ("eax",&DWP(0,$data,$Widx,8)); &mov ("ebx",&DWP(4,$data,$Widx,8)); &bswap ("eax"); &bswap ("ebx"); &mov (&DWP(0,$W512,$Widx,8),"ebx"); # W512[i] &mov (&DWP(4,$W512,$Widx,8),"eax"); &mov (&DWP(128+0,$W512,$Widx,8),"ebx"); # copy of W512[i] &mov (&DWP(128+4,$W512,$Widx,8),"eax"); &align(8); &set_label("_1st_loop"); # 0-15 # flip input stream byte order... &mov ("eax",&DWP(0+8,$data,$Widx,8)); &mov ("ebx",&DWP(4+8,$data,$Widx,8)); &bswap ("eax"); &bswap ("ebx"); &mov (&DWP(0+8,$W512,$Widx,8),"ebx"); # W512[i] &mov (&DWP(4+8,$W512,$Widx,8),"eax"); &mov (&DWP(128+0+8,$W512,$Widx,8),"ebx"); # copy of W512[i] &mov (&DWP(128+4+8,$W512,$Widx,8),"eax"); &set_label("_1st_looplet"); &SHA2_ROUND($Widx,$Widx); &inc($Widx); &cmp ($Widx,15) &jl (&label("_1st_loop")); &je (&label("_1st_looplet")); # playing similar trick on 2nd loop # does not improve performance... $Kidx = "ebx"; # start using %ebx as Kidx &mov ($Kidx,$Widx); &align(8); &set_label("_2nd_loop"); # 16-79 &and($Widx,0xf); # 128-bit fragment! I update W512[i] and W512[i+1] in # parallel:-) Note that I refer to W512[(i&0xf)+N] and not to # W512[(i+N)&0xf]! This is exactly what I maintain the second # copy of W512[16] for... &movdqu ("xmm0",&QWP(8*1,$W512,$Widx,8)); # s0=W512[i+1] &movdqa ("xmm2","xmm0"); # %xmm2 is sliding right &movdqa ("xmm3","xmm0"); # %xmm3 is sliding left &psrlq ("xmm2",1); &psllq ("xmm3",56); &movdqa ("xmm0","xmm2"); &pxor ("xmm0","xmm3"); &psrlq ("xmm2",6); &psllq ("xmm3",7); &pxor ("xmm0","xmm2"); &pxor ("xmm0","xmm3"); &psrlq ("xmm2",1); &pxor ("xmm0","xmm2"); # s0 = sigma0_512(s0); &movdqa ("xmm1",&QWP(8*14,$W512,$Widx,8)); # s1=W512[i+14] &movdqa ("xmm4","xmm1"); # %xmm4 is sliding right &movdqa ("xmm5","xmm1"); # %xmm5 is sliding left &psrlq ("xmm4",6); &psllq ("xmm5",3); &movdqa ("xmm1","xmm4"); &pxor ("xmm1","xmm5"); &psrlq ("xmm4",13); &psllq ("xmm5",42); &pxor ("xmm1","xmm4"); &pxor ("xmm1","xmm5"); &psrlq ("xmm4",42); &pxor ("xmm1","xmm4"); # s1 = sigma1_512(s1); # + have to explictly load W512[i+9] as it's not 128-bit # v aligned and paddq would throw an exception... &movdqu ("xmm6",&QWP(8*9,$W512,$Widx,8)); &paddq ("xmm0","xmm1"); # s0 += s1 &paddq ("xmm0","xmm6"); # s0 += W512[i+9] &paddq ("xmm0",&QWP(0,$W512,$Widx,8)); # s0 += W512[i] &movdqa (&QWP(0,$W512,$Widx,8),"xmm0"); # W512[i] = s0 &movdqa (&QWP(16*8,$W512,$Widx,8),"xmm0"); # copy of W512[i] # as the above fragment was 128-bit, we "owe" 2 rounds... &SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx); &SHA2_ROUND($Kidx,$Widx); &inc($Kidx); &inc($Widx); &cmp ($Kidx,80); &jl (&label("_2nd_loop")); # update A-H state &mov ($Widx,&DWP(8,"ebp")); # A-H state, 1st arg &movq (&QWP($Aoff,$W512),$A); # write out a &movq (&QWP($Eoff,$W512),$E); # write out e &movdqu ("xmm0",&QWP(0,$Widx)); &movdqu ("xmm1",&QWP(16,$Widx)); &movdqu ("xmm2",&QWP(32,$Widx)); &movdqu ("xmm3",&QWP(48,$Widx)); &paddq ("xmm0",&QWP($Aoff,$W512)); # 128-bit additions... &paddq ("xmm1",&QWP($Coff,$W512)); &paddq ("xmm2",&QWP($Eoff,$W512)); &paddq ("xmm3",&QWP($Goff,$W512)); &movdqu (&QWP(0,$Widx),"xmm0"); &movdqu (&QWP(16,$Widx),"xmm1"); &movdqu (&QWP(32,$Widx),"xmm2"); &movdqu (&QWP(48,$Widx),"xmm3"); &add ($data,16*8); # advance input data pointer &dec (&DWP(16,"ebp")); # decrement 3rd arg &jnz (&label("_chunk_loop")); # epilogue &emms (); # required for at least ELF and Win32 ABIs &mov ("edi",&DWP(-12,"ebp")); &mov ("esi",&DWP(-8,"ebp")); &mov ("ebx",&DWP(-4,"ebp")); &leave (); &ret (); &align(64); &set_label("K512"); # Yes! I keep it in the code segment! &data_word(0xd728ae22,0x428a2f98); # u64 &data_word(0x23ef65cd,0x71374491); # u64 &data_word(0xec4d3b2f,0xb5c0fbcf); # u64 &data_word(0x8189dbbc,0xe9b5dba5); # u64 &data_word(0xf348b538,0x3956c25b); # u64 &data_word(0xb605d019,0x59f111f1); # u64 &data_word(0xaf194f9b,0x923f82a4); # u64 &data_word(0xda6d8118,0xab1c5ed5); # u64 &data_word(0xa3030242,0xd807aa98); # u64 &data_word(0x45706fbe,0x12835b01); # u64 &data_word(0x4ee4b28c,0x243185be); # u64 &data_word(0xd5ffb4e2,0x550c7dc3); # u64 &data_word(0xf27b896f,0x72be5d74); # u64 &data_word(0x3b1696b1,0x80deb1fe); # u64 &data_word(0x25c71235,0x9bdc06a7); # u64 &data_word(0xcf692694,0xc19bf174); # u64 &data_word(0x9ef14ad2,0xe49b69c1); # u64 &data_word(0x384f25e3,0xefbe4786); # u64 &data_word(0x8b8cd5b5,0x0fc19dc6); # u64 &data_word(0x77ac9c65,0x240ca1cc); # u64 &data_word(0x592b0275,0x2de92c6f); # u64 &data_word(0x6ea6e483,0x4a7484aa); # u64 &data_word(0xbd41fbd4,0x5cb0a9dc); # u64 &data_word(0x831153b5,0x76f988da); # u64 &data_word(0xee66dfab,0x983e5152); # u64 &data_word(0x2db43210,0xa831c66d); # u64 &data_word(0x98fb213f,0xb00327c8); # u64 &data_word(0xbeef0ee4,0xbf597fc7); # u64 &data_word(0x3da88fc2,0xc6e00bf3); # u64 &data_word(0x930aa725,0xd5a79147); # u64 &data_word(0xe003826f,0x06ca6351); # u64 &data_word(0x0a0e6e70,0x14292967); # u64 &data_word(0x46d22ffc,0x27b70a85); # u64 &data_word(0x5c26c926,0x2e1b2138); # u64 &data_word(0x5ac42aed,0x4d2c6dfc); # u64 &data_word(0x9d95b3df,0x53380d13); # u64 &data_word(0x8baf63de,0x650a7354); # u64 &data_word(0x3c77b2a8,0x766a0abb); # u64 &data_word(0x47edaee6,0x81c2c92e); # u64 &data_word(0x1482353b,0x92722c85); # u64 &data_word(0x4cf10364,0xa2bfe8a1); # u64 &data_word(0xbc423001,0xa81a664b); # u64 &data_word(0xd0f89791,0xc24b8b70); # u64 &data_word(0x0654be30,0xc76c51a3); # u64 &data_word(0xd6ef5218,0xd192e819); # u64 &data_word(0x5565a910,0xd6990624); # u64 &data_word(0x5771202a,0xf40e3585); # u64 &data_word(0x32bbd1b8,0x106aa070); # u64 &data_word(0xb8d2d0c8,0x19a4c116); # u64 &data_word(0x5141ab53,0x1e376c08); # u64 &data_word(0xdf8eeb99,0x2748774c); # u64 &data_word(0xe19b48a8,0x34b0bcb5); # u64 &data_word(0xc5c95a63,0x391c0cb3); # u64 &data_word(0xe3418acb,0x4ed8aa4a); # u64 &data_word(0x7763e373,0x5b9cca4f); # u64 &data_word(0xd6b2b8a3,0x682e6ff3); # u64 &data_word(0x5defb2fc,0x748f82ee); # u64 &data_word(0x43172f60,0x78a5636f); # u64 &data_word(0xa1f0ab72,0x84c87814); # u64 &data_word(0x1a6439ec,0x8cc70208); # u64 &data_word(0x23631e28,0x90befffa); # u64 &data_word(0xde82bde9,0xa4506ceb); # u64 &data_word(0xb2c67915,0xbef9a3f7); # u64 &data_word(0xe372532b,0xc67178f2); # u64 &data_word(0xea26619c,0xca273ece); # u64 &data_word(0x21c0c207,0xd186b8c7); # u64 &data_word(0xcde0eb1e,0xeada7dd6); # u64 &data_word(0xee6ed178,0xf57d4f7f); # u64 &data_word(0x72176fba,0x06f067aa); # u64 &data_word(0xa2c898a6,0x0a637dc5); # u64 &data_word(0xbef90dae,0x113f9804); # u64 &data_word(0x131c471b,0x1b710b35); # u64 &data_word(0x23047d84,0x28db77f5); # u64 &data_word(0x40c72493,0x32caab7b); # u64 &data_word(0x15c9bebc,0x3c9ebe0a); # u64 &data_word(0x9c100d4c,0x431d67c4); # u64 &data_word(0xcb3e42b6,0x4cc5d4be); # u64 &data_word(0xfc657e2a,0x597f299c); # u64 &data_word(0x3ad6faec,0x5fcb6fab); # u64 &data_word(0x4a475817,0x6c44198c); # u64 &function_end_B($func); &asm_finish();