ref: f88a55e79b5bf656e7f9578d1318a955b9a4963a
dir: /sys/src/cmd/postscript/postmd/postmd.c/
/* * * postmd - matrix display program for PostScript printers. * * A simple program that can be used to display a matrix as a gray scale image on * a PostScript printer using the image operator. Much of the code was borrowed * from postdmd, the bitmap display program DMD screen dumps. May help if you have * a large matix (of floating point numbers) and want a simple way to look for * patterns. * * Matrix elements are a series of floating point numbers arranged in the input * file in row major order. The actual matrix elements can be preceeded by a simple * header that sets things like the matrix dimensions, interval list, and possibly * a window into the matrix that we'll use for display. The dimension statement is * perhaps the most important. If present it determines the number of rows and * columns in the matrix. For example, either of the following defines a 50x50 * matrix, * * dimension 50 * dimension 50x50 * * If no dimension statement appears in the input file, the matrix is assumed to * be square, and the number of rows (and columns) is set to the square root of * the number of elements in the input file. * * Each matrix element is mapped into an integer in the range 0 to 255 (actually * 254) and PostScript's image operator then maps that number into a gray scale * appropriate for the particular printer. The mapping from the floating point * matrix elements to integers is accomplished using an interval list that can be * set using the -i option. The format of the interval string is, * * num1,num2,num3,...,numn * * where each num is a floating point number. The list must be given in increasing * numerical order. A list of n numbers partitions the real line into 2n+1 regions * given as, * * region1 element < num1 * region2 element = num1 * region3 element < num2 * region4 element = num2 * . * . * . * region2n element = numn * region2n+1 element > numn * * Every number in a region is mapped one integer in the range 0 to 254, and that * number, when displayed on a printer using the image operator, prints as a square * filled with a gray shade that reflects the integer that was chosen. 0 maps to * black and 255 maps to white (which by default will not be used). * * The default gray scale gets darker as the region number increases, but can be * changed by supplying a gray scale list with the -g option or in the optional * matrix header. The color map is again a comman or space separated list that * looks like, * * color1,color2, ... ,color2n+1 * * where color1 applies to region 1 and color2n+1 applies to region2n+1. Each * number in the list should be an integer between 0 and 255. If less than 2n+1 * colors are given default assignments will be used for missing regions. * * The size of the matrix that we can display reasonably well is a function of the * number of elements in the interval list, paper size, and printer resolution. * For example a 300dpi printer using 8.5x11 inch paper gives us an image area of * about 2400x2400 pixels. An interval list of two numbers generates five separate * regions and will therefore need that many different shades of gray. Since we're * not using white we'll need to partion our image area into 4x4 pixel squares, * and that means a 600x600 matrix is about as big as we can go. In practice that's * optimistic, but the argument illustrates some of the limitations. * * A submatrix can be selected to display by windowing into the matrix. The window * list can be given using the -w option or can be set in the optional header that * can preceed each matrix. The list should be a comma or space separated list * that looks like, * * lower-column, lower-row, upper-column, upper-row * * where each element in the list must be a positive integer. Rows and columns in * the input matrix start at 1. The dimension of the displayed window will be from * lower-column to upper-column and from lower-row to upper-row inclusive. * * The encoding produced by the program is essentially identical to what's done * by postdmd. See the comments at the beginning of that program if you need more * details. The prologue also shares much of the same code. * * The PostScript prologue is copied from *prologue before any of the input files * are translated. The program expects that the following PostScript procedures * are defined in that file: * * setup * * mark ... setup - * * Handles special initialization stuff that depends on how this program * was called. Expects to find a mark followed by key/value pairs on the * stack. The def operator is applied to each pair up to the mark, then * the default state is set up. * * pagesetup * * page pagesetup - * * Does whatever is needed to set things up for the next page. Expects * to find the current page number on the stack. * * bitmap * * columns rows bitmap - * * Prints the image that's read as a hex string from standard input. The * image consists of rows lines, each of which includes columns elements. * Eight bits per pixel are used to encode the matrix elements. * * labelmatrix * * matrixname matrixlimits labelmatrix - * * Prints string matrixname just below the lower left corner of the image * and prints string martixlimits near the lower right corner. Outlines * the entire image with a (one pixel wide) box and then draws tick marks * along the top and left sides of the image. One tick mark is printed * for every ten elements. * * legend * * n1 ... nN N c1 m1 ... cM mM total regions legend - * * Prints the legend as a bar graph below the matrix image. n1 ... nN are * strings that represent the interval list. c1 m1 ... cm mM are pairs * that consist of a region's color and the statistics count. Actually * the c's are trivial procedures that just leave a one character string * on the stack when they're executed by image - which is the way the * bar graph is drawn. * * done * * done * * Makes sure the last page is printed. Only needed when we're printing * more than one page on each sheet of paper. * * Many default values, like the magnification and orientation, are defined in * the prologue, which is where they belong. If they're changed (by options), an * appropriate definition is made after the prologue is added to the output file. * The -P option passes arbitrary PostScript through to the output file. Among * other things it can be used to set (or change) values that can't be accessed by * other options. * */ #include <stdio.h> #include <signal.h> #include <ctype.h> #ifdef plan9 #define isascii(c) ((unsigned char)(c)<=0177) #endif #include <sys/types.h> #include <fcntl.h> #include <string.h> #include "comments.h" /* PostScript file structuring comments */ #include "gen.h" /* general purpose definitions */ #include "path.h" /* for the prologue */ #include "ext.h" /* external variable declarations */ #include "postmd.h" /* special matrix display definitions */ char *optnames = "a:b:c:d:g:i:m:n:o:p:w:x:y:A:C:E:J:L:P:R:DI"; char *prologue = POSTMD; /* default PostScript prologue */ char *formfile = FORMFILE; /* stuff for multiple pages per sheet */ char *temp_dir = TEMPDIR; /* temp directory for copying stdin */ int formsperpage = 1; /* page images on each piece of paper */ int copies = 1; /* and this many copies of each sheet */ int bytespp = 6; /* bytes per pattern - on output */ int dostats = ON; /* permanent statistics flag */ int nxtstat = ON; /* and the one for the next matrix */ char *interval = DFLTILIST; /* string representations of the interval */ char *colormap = NULL; /* color map */ char *window = NULL; /* and window lists */ char *matrixname = "pipe.end"; /* name for the next plot */ Ilist ilist[128]; /* active interval list and color map */ int next = 0; /* one past the last element in ilist[] */ int regions; /* an index assigned to the last region */ int wlist[4]; /* upper left and lower right corners */ int page = 0; /* last page we worked on */ int printed = 0; /* and the number of pages printed */ int dfltrows = 0; /* default rows */ int dfltcols = 0; /* and columns - changed by -d option */ int rows; /* real number of rows */ int columns; /* and columns in the matrix */ int patcount = 0; /* will be set to columns * rows */ double element; /* next matrix element */ char *raster = NULL; /* next raster line */ char *rptr; /* next free byte in raster */ char *eptr; /* one past the last byte in raster */ FILE *fp_in = stdin; /* read from this file */ FILE *fp_out = stdout; /* and write stuff here */ FILE *fp_acct = NULL; /* for accounting data */ /*****************************************************************************/ main(agc, agv) int agc; char *agv[]; { /* * * Bitmap display program for matrices. Only one matrix is allowed per input file, * and each one will be displayed on a page by itself. Input files consist of an * optional header followed by floating point numbers that represent the matrix * elements - in row major order. * */ argc = agc; /* other routines may want them */ argv = agv; prog_name = argv[0]; /* really just for error messages */ init_signals(); /* sets up interrupt handling */ header(); /* PostScript header comments */ options(); /* handle the command line options */ setup(); /* for PostScript */ arguments(); /* followed by each input file */ done(); /* print the last page etc. */ account(); /* job accounting data */ exit(x_stat); /* not much could be wrong */ } /* End of main */ /*****************************************************************************/ init_signals() { /* * * Make sure we handle interrupts. * */ if ( signal(SIGINT, interrupt) == SIG_IGN ) { signal(SIGINT, SIG_IGN); signal(SIGQUIT, SIG_IGN); signal(SIGHUP, SIG_IGN); } else { signal(SIGHUP, interrupt); signal(SIGQUIT, interrupt); } /* End else */ signal(SIGTERM, interrupt); signal(SIGFPE, interrupt); } /* End of init_signals */ /*****************************************************************************/ header() { int ch; /* return value from getopt() */ int old_optind = optind; /* for restoring optind - should be 1 */ /* * * Scans the option list looking for things, like the prologue file, that we need * right away but could be changed from the default. Doing things this way is an * attempt to conform to Adobe's latest file structuring conventions. In particular * they now say there should be nothing executed in the prologue, and they have * added two new comments that delimit global initialization calls. Once we know * where things really are we write out the job header, follow it by the prologue, * and then add the ENDPROLOG and BEGINSETUP comments. * */ while ( (ch = getopt(argc, argv, optnames)) != EOF ) if ( ch == 'L' ) prologue = optarg; else if ( ch == '?' ) error(FATAL, ""); optind = old_optind; /* get ready for option scanning */ fprintf(stdout, "%s", CONFORMING); fprintf(stdout, "%s %s\n", VERSION, PROGRAMVERSION); fprintf(stdout, "%s %s\n", DOCUMENTFONTS, ATEND); fprintf(stdout, "%s %s\n", PAGES, ATEND); fprintf(stdout, "%s", ENDCOMMENTS); if ( cat(prologue) == FALSE ) error(FATAL, "can't read %s", prologue); fprintf(stdout, "%s", ENDPROLOG); fprintf(stdout, "%s", BEGINSETUP); fprintf(stdout, "mark\n"); } /* End of header */ /*****************************************************************************/ options() { int ch; /* return value from getopt() */ /* * * Reads and processes the command line options. Added the -P option so arbitrary * PostScript code can be passed through. Expect it could be useful for changing * definitions in the prologue for which options have not been defined. * */ while ( (ch = getopt(argc, argv, optnames)) != EOF ) { switch ( ch ) { case 'a': /* aspect ratio */ fprintf(stdout, "/aspectratio %s def\n", optarg); break; case 'b': /* bytes per pattern - on output */ bytespp = atoi(optarg); break; case 'c': /* copies */ copies = atoi(optarg); fprintf(stdout, "/#copies %s store\n", optarg); break; case 'd': /* default matrix dimensions */ sscanf(optarg, "%dx%d", &dfltrows, &dfltcols); break; case 'g': /* set the colormap (ie. grayscale) */ colormap = optarg; break; case 'i': /* matrix element interval list */ interval = optarg; break; case 'm': /* magnification */ fprintf(stdout, "/magnification %s def\n", optarg); break; case 'n': /* forms per page */ formsperpage = atoi(optarg); fprintf(stdout, "%s %s\n", FORMSPERPAGE, optarg); fprintf(stdout, "/formsperpage %s def\n", optarg); break; case 'o': /* output page list */ out_list(optarg); break; case 'p': /* landscape or portrait mode */ if ( *optarg == 'l' ) fprintf(stdout, "/landscape true def\n"); else fprintf(stdout, "/landscape false def\n"); break; case 'w': /* set the window */ window = optarg; break; case 'x': /* shift things horizontally */ fprintf(stdout, "/xoffset %s def\n", optarg); break; case 'y': /* and vertically on the page */ fprintf(stdout, "/yoffset %s def\n", optarg); break; case 'A': /* force job accounting */ case 'J': if ( (fp_acct = fopen(optarg, "a")) == NULL ) error(FATAL, "can't open accounting file %s", optarg); break; case 'C': /* copy file straight to output */ if ( cat(optarg) == FALSE ) error(FATAL, "can't read %s", optarg); break; case 'E': /* text font encoding */ fontencoding = optarg; break; case 'L': /* PostScript prologue file */ prologue = optarg; break; case 'P': /* PostScript pass through */ fprintf(stdout, "%s\n", optarg); break; case 'R': /* special global or page level request */ saverequest(optarg); break; case 'D': /* debug flag */ debug = ON; break; case 'I': /* ignore FATAL errors */ ignore = ON; break; case '?': /* don't understand the option */ error(FATAL, ""); break; default: /* don't know what to do for ch */ error(FATAL, "missing case for option %c\n", ch); break; } /* End switch */ } /* End while */ argc -= optind; /* get ready for non-option args */ argv += optind; } /* End of options */ /*****************************************************************************/ setup() { /* * * Handles things that must be done after the options are read but before the * input files are processed. * */ writerequest(0, stdout); /* global requests eg. manual feed */ setencoding(fontencoding); fprintf(stdout, "setup\n"); if ( formsperpage > 1 ) { if ( cat(formfile) == FALSE ) error(FATAL, "can't read %s", formfile); fprintf(stdout, "%d setupforms\n", formsperpage); } /* End if */ fprintf(stdout, "%s", ENDSETUP); } /* End of setup */ /*****************************************************************************/ arguments() { /* * * Makes sure all the non-option command line arguments are processed. If we get * here and there aren't any arguments left, or if '-' is one of the input files * we'll process stdin. * */ if ( argc < 1 ) matrix(); else { /* at least one argument is left */ while ( argc > 0 ) { matrixname = *argv; if ( strcmp(*argv, "-") == 0 ) { fp_in = stdin; matrixname = "pipe.end"; } else if ( (fp_in = fopen(*argv, "r")) == NULL ) error(FATAL, "can't open %s", *argv); matrix(); if ( fp_in != stdin ) fclose(fp_in); argc--; argv++; } /* End while */ } /* End else */ } /* End of arguments */ /*****************************************************************************/ done() { /* * * Finished with all the input files, so mark the end of the pages, make sure the * last page is printed, and restore the initial environment. * */ fprintf(stdout, "%s", TRAILER); fprintf(stdout, "done\n"); fprintf(stdout, "%s %d\n", PAGES, printed); if ( temp_file != NULL ) unlink(temp_file); } /* End of done */ /*****************************************************************************/ account() { /* * * Writes an accounting record to *fp_acct provided it's not NULL. Accounting * is requested using the -A or -J options. * */ if ( fp_acct != NULL ) fprintf(fp_acct, " print %d\n copies %d\n", printed, copies); } /* End of account */ /*****************************************************************************/ matrix() { int count; /* pattern repeats this many times */ long total; /* expect this many patterns */ /* * * Reads a matrix from *fp_in, translates it into a PostScript gray scale image, * and writes the result on stdout. For now only one matrix is allowed per input * file. Matrix elements are floating point numbers arranged in row major order * in the input file. In addition each input file may contain an optional header * that defines special things like the dimension of the matrix, a window into * the matrix that will be displayed, and an interval list. * * If we're reading from stdin we first make a copy in a temporary file so we can * can properly position ourselves after we've looked for the header. Originally * wasn't always making a copy of stdin, but I've added a few things to what's * accepted in the header and this simplifies the job. An alternative would be * to always require a header and mark the end of it by some string. Didn't like * that approach much - may fix things up later. * */ if ( fp_in == stdin ) /* make a copy so we can seek etc. */ copystdin(); rows = dfltrows; /* new dimensions for the next matrix */ columns = dfltcols; buildilist(interval); /* build the default ilist[] */ addcolormap(colormap); /* add the colormap - if not NULL */ setwindow(window); /* and setup the initial matrix window */ nxtstat = dostats; /* want statistics? */ getheader(); /* matrix dimensions at the very least */ dimensions(); /* make sure we have the dimensions etc. */ patcount = 0; total = rows * columns; eptr = rptr + (wlist[2] - wlist[0] + 1); redirect(++page); fprintf(fp_out, "%s %d %d\n", PAGE, page, printed+1); fprintf(fp_out, "/saveobj save def\n"); writerequest(printed+1, fp_out); fprintf(fp_out, "%d %d bitmap\n", wlist[2] - wlist[0] + 1, wlist[3] - wlist[1] + 1); while ( patcount != total && fscanf(fp_in, "%f", &element) != EOF ) { if ( inwindow() ) *rptr++ = mapfloat(element); if ( ++patcount % columns == 0 ) if ( inrange() ) putrow(); } /* End while */ if ( total != patcount ) error(FATAL, "matrix format error"); labelmatrix(); if ( fp_out == stdout ) printed++; fprintf(fp_out, "showpage\n"); fprintf(fp_out, "saveobj restore\n"); fprintf(fp_out, "%s %d %d\n", ENDPAGE, page, printed); } /* End of matrix */ /*****************************************************************************/ copystdin() { int fd_out; /* for the temporary file */ int fd_in; /* for stdin */ int buf[512]; /* buffer for reads and writes */ int count; /* number of bytes put in buf */ /* * * If we're reading the matrix from stdin and the matrix dimension isn't set by * a dimension statement at the beginning of the file we'll copy stdin to a * temporary file and reset *fp_in so reads come from the temp file. Simplifies * reading the header (if present), but is expensive. * */ if ( temp_file != NULL ) /* been here already */ unlink(temp_file); if ( (temp_file = tempnam(temp_dir, "post")) == NULL ) error(FATAL, "can't generate temp file name"); if ( (fd_out = creat(temp_file, 0660)) == -1 ) error(FATAL, "can't create %s", temp_file); fd_in = fileno(stdin); while ( (count = read(fd_in, buf, sizeof(buf))) > 0 ) if ( write(fd_out, buf, count) != count ) error(FATAL, "error writing to %s", temp_file); close(fd_out); if ( (fp_in = fopen(temp_file, "r")) == NULL ) error(FATAL, "can't open %s", temp_file); } /* End of copystdin */ /*****************************************************************************/ getheader() { char buf[512]; /* temporary string space */ char *cmap = NULL; /* remember header colormap list */ long pos; /* for seeking back to first element */ /* * * Looks for the optional header information at the beginning of the input file, * reads it if it's there, and sets *fp_in to be just past the header. That should * be the beginning of the matrix element list. The recognized header keywords are * dimension, interval, colormap (or grayscale), window, name, and statistics. All * are optional, but may be useful in a spooling environment when the user doesn't * doesn't actually run the translator. * * The dimension statement specifies the number of rows and columns. For example * either of the following two lines define a 50 by 50 element matrix, * * dimension 50 * dimension 50x50 * * The first integer is the number of rows and the second, if given, is the number * of columns. If columns are missing from the dimension statement we assume the * matrix is square. * * interval can be used to redefine the interval list used for mapping floating * point numbers into integers in the range 0 to 254. The string following the * interval keyword has the same format as the -i option. For example to set the * interval list to -1, 0, and 1 you can add the line, * * interval -1,0,1 * * The numbers are floats given in increasing order, and separated by commas or * blanks. The last interval list in a header takes precedence. * * colormap can be used to redefine the grayscale list. The string following * the colormap keyword has the same format as the -g option. For example * * colormap 0,50,100,150,200,250 * or grayscale 0,50,100,150,200,250 * * The window keyword can be used to select a submatrix. The numbers following * window are the upper left and lower right matix coordinates. May not be * implemented yet but shouldn't be difficult. For example * * window 10 10 40 40 * * selects the submatrix with corners at (10, 10) and (40, 40). The edges of the * window are included in the display. * * The name keyword can be used to define the title of the display. For example, * * name Plot Of Matrix 1 * * prints the string "Plot Of Matrix 1" at the top of the page. Everything up to * the next newline is taken as the name string. * */ pos = ftell(fp_in); while ( fscanf(fp_in, "%s", buf) != EOF ) { if ( strncmp(buf, "dimension", strlen("dimension")) == 0 ) fscanf(fp_in, "%dx%d", &rows, &columns); else if ( strncmp(buf, "window", strlen("window")) == 0 ) { fgets(buf, sizeof(buf), fp_in); setwindow(buf); } else if ( strncmp(buf, "name", strlen("name")) == 0 ) { fgets(buf, sizeof(buf), fp_in); matrixname = savestring(buf); } else if ( strncmp(buf, "colormap", strlen("colormap")) == 0 ) { fgets(buf, sizeof(buf), fp_in); cmap = savestring(buf); } else if ( strncmp(buf, "grayscale", strlen("grayscale")) == 0 ) { fgets(buf, sizeof(buf), fp_in); cmap = savestring(buf); } else if ( strncmp(buf, "interval", strlen("interval")) == 0 ) { fgets(buf, sizeof(buf), fp_in); buildilist(buf); } else if ( strncmp(buf, "statistics", strlen("statistics")) == 0 ) { fscanf(fp_in, "%s", buf); if ( strcmp(buf, "on") == 0 || strcmp(buf, "ON") == 0 ) nxtstat = ON; else nxtstat = OFF; } else break; pos = ftell(fp_in); } /* End while */ addcolormap(cmap); /* must happen last */ fseek(fp_in, pos, 0); /* back to the start of the matrix */ } /* End of getheader */ /*****************************************************************************/ dimensions() { char buf[100]; /* temporary storage for the elements */ long count = 0; /* number of elements in the matrix */ long pos; /* matrix elements start here */ /* * * Need to know the dimensions of the matrix before we can go any farther. If * rows and columns are still 0 we'll read the entire input file, starting from * the current position, count the number of elements, take the square root of it, * and use it as the number of rows and columns. Then we seek back to the start * of the real matrix, make sure columns is set, and allocate enough memory for * storing each raster line. After we're certain we've got the number of rows and * columns we check the window coordinates, and if they're not legitimate they're * reset to cover the entire matrix. * */ if ( rows == 0 ) { pos = ftell(fp_in); while ( fscanf(fp_in, "%s", buf) != EOF ) count++; rows = sqrt((double) count); fseek(fp_in, pos, 0); } /* End if */ if ( columns <= 0 ) columns = rows; if ( raster != NULL ) free(raster); if ( (rptr = raster = malloc(columns)) == NULL ) error(FATAL, "no memory"); eptr = rptr + columns; if ( rows <= 0 || columns <= 0 ) error(FATAL, "bad matrix dimensions"); if ( wlist[0] > wlist[2] || wlist[1] > wlist[3] ) { wlist[0] = wlist[1] = 1; wlist[2] = columns; wlist[3] = rows; } /* End if */ } /* End of dimensions */ /*****************************************************************************/ buildilist(list) char *list; /* use this as the interval list */ { static char *templist = NULL; /* a working copy of the list */ char *ptr; /* next number in *templist */ int i; /* loop index - for checking the list */ /* * * Reads string *list and builds up the ilist[] that will be used in the next * matrix. Since strtok() modifies the string it's parsing we make a copy first. * The format of the interval list is described in detail in the comments at the * beginning of this program. Basically consists of a comma or space separated * list of floating point numbers that must be given in increasing numerical order. * The list determines how floating point numbers are mapped into integers in the * range 0 to 254. * */ if ( templist != NULL ) /* free the space used by the last list */ free(templist); while ( isascii(*list) && isspace(*list) ) list++; for ( ptr = list, regions = 3; *ptr != '\0'; ptr++ ) { if ( *ptr == ',' || *ptr == '/' || isspace(*ptr) ) regions += 2; while ( isascii(*ptr) && isspace(*ptr) ) ptr++; } /* End for */ next = 0; templist = savestring(list); ptr = strtok(templist, ",/ \t\n"); while ( ptr != NULL ) { ilist[next].count = 0; ilist[next++].color = 254 * (regions - 1 - next) / (regions - 1); ilist[next].val = atof(ptr); ilist[next].count = 0; ilist[next++].color = 254 * (regions - 1 - next) / (regions - 1); ptr = strtok(NULL, ",/ \t\n"); } /* End while */ ilist[next].count = 0; ilist[next].color = 254 * (regions - 1 - next) / (regions - 1); if ( next == 0 ) /* make sure we have a list */ error(FATAL, "missing interval list"); for ( i = 3; i < next; i += 2 ) /* that's in increasing numerical order */ if ( ilist[i].val <= ilist[i-2].val ) error(FATAL, "bad interval list"); } /* End of buildilist */ /*****************************************************************************/ addcolormap(list) char *list; /* use this color map */ { static char *templist = NULL; /* a working copy of the color list */ char *ptr; /* next color in *templist */ int i = 0; /* assigned to this region in ilist[] */ /* * * Assigns the integers in *list to the color field for the regions defined in * ilist[]. Assumes ilist[] has already been setup. * */ if ( list != NULL ) { if ( templist != NULL ) free(templist); templist = savestring(list); ptr = strtok(templist, ",/ \t\n"); while ( ptr != NULL ) { ilist[i++].color = atoi(ptr) % 256; ptr = strtok(NULL, ",/ \t\n"); } /* End while */ } /* End if */ } /* End of addcolormap */ /*****************************************************************************/ setwindow(list) char *list; /* corners of window into the matrix */ { static char *templist = NULL; /* a working copy of the window list */ char *ptr; /* next window coordinate in *templist */ int i = 0; /* assigned to this region in wlist[] */ /* * * Sets up an optional window into the matrix. * */ wlist[0] = wlist[1] = 1; wlist[2] = wlist[3] = 0; if ( list != NULL ) { if ( templist != NULL ) free(templist); templist = savestring(list); ptr = strtok(templist, ",/ \t\n"); while ( ptr != NULL ) { wlist[i++] = atoi(ptr); ptr = strtok(NULL, ",/ \t\n"); } /* End while */ } /* End if */ } /* End of setwindow */ /*****************************************************************************/ inwindow() { int r; /* row of the patcount element */ int c; /* column of the patcount element */ /* * * Checks if the patcount element of the matrix is in the window. * */ r = (patcount/columns) + 1; c = (patcount%columns) + 1; return((c >= wlist[0]) && (r >= wlist[1]) && (c <= wlist[2]) && (r <= wlist[3])); } /* End of inwindow */ /*****************************************************************************/ inrange() { /* * * Checks if the current row lies in the window. Used right before we output the * raster lines. * */ return(((patcount/columns) >= wlist[1]) && ((patcount/columns) <= wlist[3])); } /* End of inrange */ /*****************************************************************************/ mapfloat(element) double element; /* floating point matrix element */ { int i; /* loop index */ /* * * Maps element into an integer in the range 0 to 255, and returns the result to * the caller. Mapping is done using the color map that was saved in ilist[]. Also * updates the count field for the region that contains element - not good! * */ for ( i = 1; i < next && ilist[i].val < element; i += 2 ) ; if ( i > next || element < ilist[i].val ) i--; ilist[i].count++; return(ilist[i].color); } /* End of mapfloat */ /*****************************************************************************/ putrow() { char *p1, *p2; /* starting and ending columns */ int n; /* set to bytes per pattern */ int i; /* loop index */ /* * * Takes the scanline that's been saved in *raster, encodes it according to the * value that's been assigned to bytespp, and writes the result to *fp_out. Each * line in the output bitmap is terminated by a 0 on a line by itself. * */ n = (bytespp <= 0) ? columns : bytespp; for ( p1 = raster, p2 = raster + n; p1 < eptr; p1 = p2 ) if ( patncmp(p1, n) == TRUE ) { while ( patncmp(p2, n) == TRUE ) p2 += n; p2 += n; fprintf(fp_out, "%d ", n); for ( i = 0; i < n; i++, p1++ ) fprintf(fp_out, "%.2X", ((int) *p1) & 0377); fprintf(fp_out, " %d\n", (p2 - p1) / n); } else { while ( p2 < eptr && patncmp(p2, n) == FALSE ) p2 += n; if ( p2 > eptr ) p2 = eptr; fprintf(fp_out, "%d ", p2 - p1); while ( p1 < p2 ) fprintf(fp_out, "%.2X", ((int) *p1++) & 0377); fprintf(fp_out, " 0\n"); } /* End else */ fprintf(fp_out, "0\n"); rptr = raster; } /* End of putrow */ /*****************************************************************************/ labelmatrix() { int total; /* number of elements in the window */ int i; /* loop index */ /* * * Responsible for generating the PostScript calls that label the matrix, generate * the legend, and print the matrix name. * */ fprintf(fp_out, "(%s) ((%d, %d) to (%d, %d)) labelmatrix\n", matrixname, wlist[0], wlist[1], wlist[2], wlist[3]); total = (wlist[2] - wlist[0] + 1) * (wlist[3] - wlist[1] + 1); if ( nxtstat == OFF ) for ( i = 0; i < regions; i++ ) ilist[i].count = 0; for ( i = 1; i < next; i += 2 ) fprintf(fp_out, "(%g) ", ilist[i].val); fprintf(fp_out, "%d ", (regions - 1) / 2); for ( i = regions - 1; i >= 0; i-- ) fprintf(fp_out, "{(\\%.3o)} %d ", ilist[i].color, ilist[i].count); fprintf(fp_out, "%d %d legend\n", total, regions); } /* End of labelmatrix */ /*****************************************************************************/ patncmp(p1, n) char *p1; /* first patterns starts here */ int n; /* and extends this many bytes */ { char *p2; /* address of the second pattern */ /* * * Compares the two n byte patterns *p1 and *(p1+n). FALSE if returned is they're * different or extend past the end of the current raster line. * */ p2 = p1 + n; for ( ; n > 0; n--, p1++, p2++ ) if ( p2 >= eptr || *p1 != *p2 ) return(FALSE); return(TRUE); } /* End of patncmp */ /*****************************************************************************/ char *savestring(str) char *str; /* save this string */ { char *ptr = NULL; /* at this address */ /* * * Copies string *str to a permanent place and returns the address to the caller. * */ if ( str != NULL && *str != '\0' ) { if ( (ptr = malloc(strlen(str) + 1)) == NULL ) error(FATAL, "no memory available for string %s", str); strcpy(ptr, str); } /* End if */ return(ptr); } /* End of savestring */ /*****************************************************************************/ redirect(pg) int pg; /* next page we're printing */ { static FILE *fp_null = NULL; /* if output is turned off */ /* * * If we're not supposed to print page pg, fp_out will be directed to /dev/null, * otherwise output goes to stdout. * */ if ( pg >= 0 && in_olist(pg) == ON ) fp_out = stdout; else if ( (fp_out = fp_null) == NULL ) fp_out = fp_null = fopen("/dev/null", "w"); } /* End of redirect */ /*****************************************************************************/