shithub: riscv

ref: fcd5c498922230021966a389f09622656f7dd563
dir: /sys/man/2/ec/

View raw version
.TH EC 2
.SH NAME
secp256r1,
secp256k1,
secp384r1,
ecdominit,
ecdomfree,
ecassign,
ecadd,
ecmul,
strtoec,
ecgen,
ecverify,
ecpubverify,
ecdsasign,
ecdsaverify,
ecencodepub,
ecdecodepub,
ecpubfree,
X509toECpub,
X509ecdsaverify,
X509ecdsaverifydigest \- elliptic curve cryptography
.SH SYNOPSIS
.B #include <u.h>
.br
.B #include <libc.h>
.br
.B #include <mp.h>
.br
.B #include <libsec.h>
.PP
.B
void	secp256r1(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y, mpint *n, mpint *h)
.PP
.B
void	secp256k1(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y, mpint *n, mpint *h)
.PP
.B
void	secp384r1(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y, mpint *n, mpint *h)
.PP
.B
void	ecdominit(ECdomain *dom, void (*init)(mpint *p, mpint *a, mpint *b, mpint *x, mpint *y, mpint *n, mpint *h))
.PP
.B
void	ecdomfree(ECdomain *dom)
.PP
.B
void	ecassign(ECdomain *dom, ECpoint *old, ECpoint *new)
.PP
.B
void	ecadd(ECdomain *dom, ECpoint *a, ECpoint *b, ECpoint *s)
.PP
.B
void	ecmul(ECdomain *dom, ECpoint *a, mpint *k, ECpoint *s)
.PP
.B
ECpoint*	strtoec(ECdomain *dom, char *s, char **rptr, ECpoint *p)
.PP
.B
ECpriv*	ecgen(ECdomain *dom, ECpriv *p)
.PP
.B
int	ecverify(ECdomain *dom, ECpoint *p)
.PP
.B
int	ecpubverify(ECdomain *dom, ECpub *p)
.PP
.B
void	ecdsasign(ECdomain *dom, ECpriv *priv, uchar *dig, int dlen, mpint *r, mpint *s)
.PP
.B
int	ecdsaverify(ECdomain *dom, ECpub *pub, uchar *dig, int dlen, mpint *r, mpint *s)
.PP
.B
int	ecencodepub(ECdomain *dom, ECpub *pub, uchar *data, int len)
.PP
.B
ECpub*	ecdecodepub(ECdomain *dom, uchar *data, int len)
.PP
.B
void	ecpubfree(ECpub *p);
.PP
.B
ECpub*	X509toECpub(uchar *cert, int ncert, char *name, int nname, ECdomain *dom)
.PP
.B
char*	X509ecdsaverify(uchar *cert, int ncert, ECdomain *dom, ECpub *pub)
.PP
.B
char*	X509ecdsaverifydigest(uchar *sig, int siglen, uchar *edigest, int edigestlen, ECdomain *dom, ECpub *pub)
.DT
.SH DESCRIPTION
These functions implement elliptic curve cryptography.
An elliptic curve together with cryptographic parameters are specified using an
.B ECdomain
struct.
Points on the curve are represented by 
.B ECpoint
structs.
.PP
.B ecdominit
initializes a
.B ECdomain
struct and calls the
.B init
function such as
.B secp256r1
which fills in the parameters of the curve.
.PP
.B ecdomfree
frees the parameters of the curve and zeros the struct. It does
not free the memory of the struct itself.
.PP
.BR ecassign ", " ecadd " and " ecmul
are analogous to their counterparts in
.IR mp (2).
.PP
.B strtoec
converts a hex string representing an octet string as specified in
.I Standards for Efficient Cryptography (SEC) 1
to an
.B ECpoint
struct. Both uncompressed and compressed formats are supported.
If 
.B rptr
is not
.BR nil ,
it is used to return the position in the string where the parser stopped.
If
.BR p " is " nil
space is allocated automatically, else the given struct is used.
.PP
.B ecverify
and
.B ecpubverify
verify that the given point or public key, respectively, is valid.
.PP
.B ecgen
generates a keypair and returns a pointer to it.
If
.BR p " is " nil
space is allocated automatically, else the given struct is used.
.PP
.B ecdsasign
and
.B ecdsaverify
create or verify, respectively, a signature using the ECDSA scheme specified in
.I SEC 1.
It is absolutely vital that
.B dig
is a cryptographic hash to the message.
.B ecdsasign
writes the signature to
.BR r " and " s
which are assumed to be allocated properly.
.PP
.B ecencodepub
and
.B ecdecodepub
handle encoding and decoding of public keys in uncompressed format.
Note that
.B ecdecodepub
also verifies that the public key is valid in the specified domain.
.PP
.B ecpubfree
frees a
.B ECpub
structure and its associated members.
.PP
Given a binary X.509 cert, the function
.B X509toECpub
initializes domain parameters and returns the ECDSA public key. if
.I name
is not
.BR nil ,
the CN part of the Distinguished Name of the certificate's Subject is returned.
.B X509ecdsaverify
and
.B X509ecdsaverifydigest
are analogs to the routines described by
.IR rsa (2).
.SH RETURN VALUE
.B *verify
functions return
.B 1
for a positive result.
Functions returning pointers may return
.B nil
in case of error
.I (e.g.
failing
.IR malloc (2)).
.SH SOURCE
.B /sys/src/libsec/port/ecc.c
.SH SEE ALSO
.IR rsa (2)
.br
.I
Standards for Efficient Cryptography (SEC) 1: Elliptic Curve Cryptography
- Certicom Research, 2009
.SH HISTORY
This implementation of elliptic curve cryptography first appeared in 9front (June, 2012).