ref: 7a9f757a79d5c6806252cc1268bda5cdef463e23
dir: /src/render_gl.c/
// macOS #if defined(__APPLE__) && defined(__MACH__) #include <OpenGL/gl.h> #include <OpenGL/glext.h> void glCreateTextures(GLuint ignored, GLsizei n, GLuint *name) { glGenTextures(1, name); } #define glGenVertexArrays glGenVertexArraysAPPLE #define glBindVertexArray glBindVertexArrayAPPLE #define glDeleteVertexArrays glDeleteVertexArraysAPPLE // Linux #elif defined(__unix__) #include <GL/glew.h> #ifdef __EMSCRIPTEN__ void glCreateTextures(GLuint ignored, GLsizei n, GLuint *name) { glGenTextures(1, name); } #endif // WINDOWS #else #include <windows.h> #define GL3_PROTOTYPES 1 #include <glew.h> #pragma comment(lib, "glew32.lib") #include <gl/GL.h> #pragma comment(lib, "opengl32.lib") #endif #include "libs/stb_image_write.h" #include "render.h" #include "mem.h" #include "utils.h" #define NEAR_PLANE 16.0 #define FAR_PLANE 262144.0 #define ATLAS_SIZE 64 #define ATLAS_GRID 32 #define ATLAS_BORDER 16 #define RENDER_TRIS_BUFFER_CAPACITY 2048 #define TEXTURES_MAX 1024 // WebGL (GLES) needs the `precision` to be set, OpenGL 2.something // doesn't like that... #ifdef __EMSCRIPTEN__ #define SHADER_SOURCE(...) "precision highp float;" #__VA_ARGS__ #else #define SHADER_SOURCE(...) #__VA_ARGS__ #endif typedef struct { vec2i_t offset; vec2i_t size; } render_texture_t; uint16_t RENDER_NO_TEXTURE; static GLuint u_color; static GLuint u_view; static GLuint u_model; static GLuint u_projection; static GLuint u_screen; static GLuint u_camera_pos; static GLuint u_fade; static GLuint a_pos; static GLuint a_uv; static GLuint a_color; static GLuint vbo; static tris_t tris_buffer[RENDER_TRIS_BUFFER_CAPACITY]; static uint32_t tris_len = 0; static vec2i_t screen_size; static uint32_t atlas_map[ATLAS_SIZE] = {0}; static GLuint atlas_texture = 0; static render_blend_mode_t blend_mode = RENDER_BLEND_NORMAL; static mat4_t projection_mat_2d = mat4_identity(); static mat4_t projection_mat_3d = mat4_identity(); static mat4_t sprite_mat = mat4_identity(); static mat4_t view_mat = mat4_identity(); static render_texture_t textures[TEXTURES_MAX]; static uint32_t textures_len = 0; static bool texture_mipmap_is_dirty = false; static const char * const VERTEX_SHADER = SHADER_SOURCE( attribute vec3 pos; attribute vec2 uv; attribute vec4 color; varying vec4 v_color; varying vec2 v_uv; uniform mat4 view; uniform mat4 model; uniform mat4 projection; uniform vec2 screen; uniform vec3 camera_pos; uniform vec2 fade; void main() { gl_Position = projection * view * model * vec4(pos, 1.0); gl_Position.xy += screen.xy * gl_Position.w; v_color = color; v_color.a *= smoothstep( fade.y, fade.x, // fadeout far, near length(vec4(camera_pos, 1.0) - model * vec4(pos, 1.0)) ); v_uv = uv; v_uv = uv / 2048.0; // ATLAS_GRID * ATLAS_SIZE } ); static const char * const FRAGMENT_SHADER_YCRCB = SHADER_SOURCE( varying vec4 v_color; varying vec2 v_uv; uniform sampler2D texture; void main() { vec4 tex_color = texture2D(texture, v_uv); vec4 color = tex_color * v_color; if (color.a == 0.0) { discard; } color.rgb = color.rgb * 2.0; gl_FragColor = color; } ); #define render_bind_va_f(index, container, member, start) \ glVertexAttribPointer( \ index, member_size(container, member)/sizeof(float), GL_FLOAT, false, \ sizeof(container), \ (GLvoid*)(offsetof(container, member) + start) \ ) #define render_bind_va_color(index, container, member, start) \ glVertexAttribPointer( \ index, 4, GL_UNSIGNED_BYTE, true, \ sizeof(container), \ (GLvoid*)(offsetof(container, member) + start) \ ) static void render_flush(); static GLuint compile_shader(GLenum type, const char *source); static GLuint compile_shader(GLenum type, const char *source) { GLuint shader = glCreateShader(type); glShaderSource(shader, 1, &source, NULL); glCompileShader(shader); GLint success; glGetShaderiv(shader, GL_COMPILE_STATUS, &success); if (!success) { int log_written; char log[256]; glGetShaderInfoLog(shader, 256, &log_written, log); die("Error compiling shader: %s\n", log); } return shader; } // static void gl_message_callback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar *message, const void *userParam) { // puts(message); // } void render_init(vec2i_t size) { #if defined(__APPLE__) && defined(__MACH__) // OSX // (nothing to do here) #else // Windows, Linux glewExperimental = GL_TRUE; glewInit(); #endif // glEnable(GL_DEBUG_OUTPUT); // glDebugMessageCallback(gl_message_callback, NULL); // glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DONT_CARE, 0, NULL, GL_TRUE); // Atlas Texture glCreateTextures(GL_TEXTURE_2D, 1, &atlas_texture); glBindTexture(GL_TEXTURE_2D, atlas_texture); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, RENDER_USE_MIPMAPS ? GL_LINEAR_MIPMAP_LINEAR : GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); float anisotropy = 0; glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &anisotropy); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropy); uint32_t tw = ATLAS_SIZE * ATLAS_GRID; uint32_t th = ATLAS_SIZE * ATLAS_GRID; glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, tw, th, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); printf("atlas texture %5d\n", atlas_texture); // Shaders GLuint fragment_shader = compile_shader(GL_FRAGMENT_SHADER, FRAGMENT_SHADER_YCRCB); GLuint vertex_shader = compile_shader(GL_VERTEX_SHADER, VERTEX_SHADER); GLuint shader_program = glCreateProgram(); glAttachShader(shader_program, vertex_shader); glAttachShader(shader_program, fragment_shader); glLinkProgram(shader_program); glUseProgram(shader_program); u_color = glGetUniformLocation(shader_program, "color"); u_view = glGetUniformLocation(shader_program, "view"); u_model = glGetUniformLocation(shader_program, "model"); u_projection = glGetUniformLocation(shader_program, "projection"); u_screen = glGetUniformLocation(shader_program, "screen"); u_camera_pos = glGetUniformLocation(shader_program, "camera_pos"); u_fade = glGetUniformLocation(shader_program, "fade"); a_pos = glGetAttribLocation(shader_program, "pos"); a_uv = glGetAttribLocation(shader_program, "uv"); a_color = glGetAttribLocation(shader_program, "color"); // Tris buffer glGenBuffers(1, &vbo); glBindBuffer(GL_ARRAY_BUFFER, vbo); GLuint va; glGenVertexArrays(1, &va); glBindVertexArray(va); // Defaults glEnableVertexAttribArray(a_pos); glEnableVertexAttribArray(a_uv); glEnableVertexAttribArray(a_color); render_bind_va_f(a_pos, vertex_t, pos, 0); render_bind_va_f(a_uv, vertex_t, uv, 0); render_bind_va_color(a_color, vertex_t, color, 0); render_resize(size); render_set_view(vec3(0, 0, 0), vec3(0, 0, 0)); render_set_model_mat(&mat4_identity()); glEnable(GL_CULL_FACE); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); // Create white texture rgba_t white_pixels[4] = { rgba(128,128,128,255), rgba(128,128,128,255), rgba(128,128,128,255), rgba(128,128,128,255) }; RENDER_NO_TEXTURE = render_texture_create(2, 2, white_pixels); } void render_cleanup() { // TODO } static void render_setup_2d_projection_mat() { float near = -1; float far = 1; float left = 0; float right = screen_size.x; float bottom = screen_size.y; float top = 0; float lr = 1 / (left - right); float bt = 1 / (bottom - top); float nf = 1 / (near - far); projection_mat_2d = mat4( -2 * lr, 0, 0, 0, 0, -2 * bt, 0, 0, 0, 0, 2 * nf, 0, (left + right) * lr, (top + bottom) * bt, (far + near) * nf, 1 ); } static void render_setup_3d_projection_mat() { // wipeout has a horizontal fov of 90deg, but we want the fov to be fixed // for the vertical axis, so that widescreen displays just have a wider // view. For the original 4/3 aspect ratio this equates to a vertial fov // of 73.75deg. float aspect = (float)screen_size.x / (float)screen_size.y; float fov = (73.75 / 180.0) * 3.14159265358; float f = 1.0 / tan(fov / 2); float nf = 1.0 / (NEAR_PLANE - FAR_PLANE); projection_mat_3d = mat4( f / aspect, 0, 0, 0, 0, f, 0, 0, 0, 0, (FAR_PLANE + NEAR_PLANE) * nf, -1, 0, 0, 2 * FAR_PLANE * NEAR_PLANE * nf, 0 ); } void render_resize(vec2i_t size) { glViewport(0, 0, size.x, size.y); screen_size = size; render_setup_2d_projection_mat(); render_setup_3d_projection_mat(); } vec2i_t render_size() { return screen_size; } void render_frame_prepare() { glUniform2f(u_screen, 0, 0); glEnable(GL_DEPTH_TEST); glDepthMask(true); glDisable(GL_POLYGON_OFFSET_FILL); glClearColor(0, 0, 0, 1); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnable(GL_DEPTH_TEST); } void render_frame_end() { render_flush(); } void render_flush() { if (tris_len == 0) { return; } if (texture_mipmap_is_dirty) { glGenerateMipmap(GL_TEXTURE_2D); texture_mipmap_is_dirty = false; } glBindBuffer(GL_ARRAY_BUFFER, vbo); glBufferData(GL_ARRAY_BUFFER, sizeof(tris_t) * tris_len, tris_buffer, GL_DYNAMIC_DRAW); glDrawArrays(GL_TRIANGLES, 0, tris_len * 3); tris_len = 0; } void render_set_view(vec3_t pos, vec3_t angles) { render_flush(); render_set_depth_write(true); render_set_depth_test(true); view_mat = mat4_identity(); mat4_set_translation(&view_mat, vec3(0, 0, 0)); mat4_set_roll_pitch_yaw(&view_mat, vec3(angles.x, -angles.y + M_PI, angles.z + M_PI)); mat4_translate(&view_mat, vec3_inv(pos)); mat4_set_yaw_pitch_roll(&sprite_mat, vec3(-angles.x, angles.y - M_PI, 0)); render_set_model_mat(&mat4_identity()); render_flush(); glUniformMatrix4fv(u_view, 1, false, view_mat.m); glUniformMatrix4fv(u_projection, 1, false, projection_mat_3d.m); glUniform3f(u_camera_pos, pos.x, pos.y, pos.z); glUniform2f(u_fade, RENDER_FADEOUT_NEAR, RENDER_FADEOUT_FAR); } void render_set_view_2d() { render_flush(); render_set_depth_test(false); render_set_depth_write(false); render_set_model_mat(&mat4_identity()); glUniform3f(u_camera_pos, 0, 0, 0); glUniformMatrix4fv(u_view, 1, false, mat4_identity().m); glUniformMatrix4fv(u_projection, 1, false, projection_mat_2d.m); } void render_set_model_mat(mat4_t *m) { render_flush(); glUniformMatrix4fv(u_model, 1, false, m->m); } void render_set_depth_write(bool enabled) { render_flush(); glDepthMask(enabled); } void render_set_depth_test(bool enabled) { render_flush(); if (enabled) { glEnable(GL_DEPTH_TEST); } else { glDisable(GL_DEPTH_TEST); } } void render_set_depth_offset(float offset) { render_flush(); if (offset == 0) { glDisable(GL_POLYGON_OFFSET_FILL); return; } glEnable(GL_POLYGON_OFFSET_FILL); glPolygonOffset(offset, 1.0); } void render_set_screen_position(vec2_t pos) { render_flush(); glUniform2f(u_screen, pos.x, -pos.y); } void render_set_blend_mode(render_blend_mode_t new_mode) { if (new_mode == blend_mode) { return; } render_flush(); blend_mode = new_mode; if (blend_mode == RENDER_BLEND_NORMAL) { glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } else if (blend_mode == RENDER_BLEND_LIGHTER) { glBlendFunc(GL_SRC_ALPHA, GL_ONE); } } void render_set_cull_backface(bool enabled) { render_flush(); if (enabled) { glEnable(GL_CULL_FACE); } else { glDisable(GL_CULL_FACE); } } vec3_t render_transform(vec3_t pos) { return vec3_transform(vec3_transform(pos, &view_mat), &projection_mat_3d); } void render_push_tris(tris_t tris, uint16_t texture_index) { error_if(texture_index >= textures_len, "Invalid texture %d", texture_index); if (tris_len >= RENDER_TRIS_BUFFER_CAPACITY) { render_flush(); } render_texture_t *t = &textures[texture_index]; for (int i = 0; i < 3; i++) { tris.vertices[i].uv.x += t->offset.x; tris.vertices[i].uv.y += t->offset.y; } tris_buffer[tris_len++] = tris; } void render_push_sprite(vec3_t pos, vec2i_t size, rgba_t color, uint16_t texture_index) { error_if(texture_index >= textures_len, "Invalid texture %d", texture_index); vec3_t p1 = vec3_add(pos, vec3_transform(vec3(-size.x * 0.5, -size.y * 0.5, 0), &sprite_mat)); vec3_t p2 = vec3_add(pos, vec3_transform(vec3( size.x * 0.5, -size.y * 0.5, 0), &sprite_mat)); vec3_t p3 = vec3_add(pos, vec3_transform(vec3(-size.x * 0.5, size.y * 0.5, 0), &sprite_mat)); vec3_t p4 = vec3_add(pos, vec3_transform(vec3( size.x * 0.5, size.y * 0.5, 0), &sprite_mat)); render_texture_t *t = &textures[texture_index]; render_push_tris((tris_t){ .vertices = { { .pos = p1, .uv = {0, 0}, .color = color }, { .pos = p2, .uv = {0 + t->size.x ,0}, .color = color }, { .pos = p3, .uv = {0, 0 + t->size.y}, .color = color }, } }, texture_index); render_push_tris((tris_t){ .vertices = { { .pos = p3, .uv = {0, 0 + t->size.y}, .color = color }, { .pos = p2, .uv = {0 + t->size.x, 0}, .color = color }, { .pos = p4, .uv = {0 + t->size.x, 0 + t->size.y}, .color = color }, } }, texture_index); } void render_push_2d(vec2i_t pos, vec2i_t size, rgba_t color, uint16_t texture_index) { render_push_2d_tile(pos, vec2i(0, 0), render_texture_size(texture_index), size, color, texture_index); } void render_push_2d_tile(vec2i_t pos, vec2i_t uv_offset, vec2i_t uv_size, vec2i_t size, rgba_t color, uint16_t texture_index) { error_if(texture_index >= textures_len, "Invalid texture %d", texture_index); render_push_tris((tris_t){ .vertices = { { .pos = {pos.x, pos.y + size.y, 0}, .uv = {uv_offset.x , uv_offset.y + uv_size.y}, .color = color }, { .pos = {pos.x + size.x, pos.y, 0}, .uv = {uv_offset.x + uv_size.x, uv_offset.y}, .color = color }, { .pos = {pos.x, pos.y, 0}, .uv = {uv_offset.x , uv_offset.y}, .color = color }, } }, texture_index); render_push_tris((tris_t){ .vertices = { { .pos = {pos.x + size.x, pos.y + size.y, 0}, .uv = {uv_offset.x + uv_size.x, uv_offset.y + uv_size.y}, .color = color }, { .pos = {pos.x + size.x, pos.y, 0}, .uv = {uv_offset.x + uv_size.x, uv_offset.y}, .color = color }, { .pos = {pos.x, pos.y + size.y, 0}, .uv = {uv_offset.x , uv_offset.y + uv_size.y}, .color = color }, } }, texture_index); } uint16_t render_texture_create(uint32_t tw, uint32_t th, rgba_t *pixels) { error_if(textures_len >= TEXTURES_MAX, "TEXTURES_MAX reached"); uint32_t bw = tw + ATLAS_BORDER * 2; uint32_t bh = th + ATLAS_BORDER * 2; // Find a position in the atlas for this texture (with added border) uint32_t grid_width = (bw + ATLAS_GRID - 1) / ATLAS_GRID; uint32_t grid_height = (bh + ATLAS_GRID - 1) / ATLAS_GRID; uint32_t grid_x = 0; uint32_t grid_y = ATLAS_SIZE - grid_height + 1; for (uint32_t cx = 0; cx < ATLAS_SIZE - grid_width; cx++) { if (atlas_map[cx] >= grid_y) { continue; } uint32_t cy = atlas_map[cx]; bool is_best = true; for (uint32_t bx = cx; bx < cx + grid_width; bx++) { if (atlas_map[bx] >= grid_y) { is_best = false; cx = bx; break; } if (atlas_map[bx] > cy) { cy = atlas_map[bx]; } } if (is_best) { grid_y = cy; grid_x = cx; } } error_if(grid_y + grid_height > ATLAS_SIZE, "Render atlas ran out of space"); for (uint32_t cx = grid_x; cx < grid_x + grid_width; cx++) { atlas_map[cx] = grid_y + grid_height; } // Add the border pixels for this texture rgba_t *pb = mem_temp_alloc(sizeof(rgba_t) * bw * bh); if (tw && th) { // Top border for (int32_t y = 0; y < ATLAS_BORDER; y++) { memcpy(pb + bw * y + ATLAS_BORDER, pixels, tw * sizeof(rgba_t)); } // Bottom border for (int32_t y = 0; y < ATLAS_BORDER; y++) { memcpy(pb + bw * (bh - ATLAS_BORDER + y) + ATLAS_BORDER, pixels + tw * (th-1), tw * sizeof(rgba_t)); } // Left border for (int32_t y = 0; y < bh; y++) { for (int32_t x = 0; x < ATLAS_BORDER; x++) { pb[y * bw + x] = pixels[clamp(y-ATLAS_BORDER, 0, th-1) * tw]; } } // Right border for (int32_t y = 0; y < bh; y++) { for (int32_t x = 0; x < ATLAS_BORDER; x++) { pb[y * bw + x + bw - ATLAS_BORDER] = pixels[tw - 1 + clamp(y-ATLAS_BORDER, 0, th-1) * tw]; } } // Texture for (int32_t y = 0; y < th; y++) { memcpy(pb + bw * (y + ATLAS_BORDER) + ATLAS_BORDER, pixels + tw * y, tw * sizeof(rgba_t)); } } uint32_t x = grid_x * ATLAS_GRID; uint32_t y = grid_y * ATLAS_GRID; glBindTexture(GL_TEXTURE_2D, atlas_texture); glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, bw, bh, GL_RGBA, GL_UNSIGNED_BYTE, pb); mem_temp_free(pb); texture_mipmap_is_dirty = RENDER_USE_MIPMAPS; uint16_t texture_index = textures_len; textures_len++; textures[texture_index] = (render_texture_t){ {x + ATLAS_BORDER, y + ATLAS_BORDER}, {tw, th} }; printf("inserted atlas texture (%3dx%3d) at (%3d,%3d)\n", tw, th, grid_x, grid_y); return texture_index; } vec2i_t render_texture_size(uint16_t texture_index) { error_if(texture_index >= textures_len, "Invalid texture %d", texture_index); return textures[texture_index].size; } void render_texture_replace_pixels(int16_t texture_index, rgba_t *pixels) { error_if(texture_index >= textures_len, "Invalid texture %d", texture_index); render_texture_t *t = &textures[texture_index]; glBindTexture(GL_TEXTURE_2D, atlas_texture); glTexSubImage2D(GL_TEXTURE_2D, 0, t->offset.x, t->offset.y, t->size.x, t->size.y, GL_RGBA, GL_UNSIGNED_BYTE, pixels); } uint16_t render_textures_len() { return textures_len; } void render_textures_reset(uint16_t len) { error_if(len > textures_len, "Invalid texture reset len %d >= %d", len, textures_len); render_flush(); textures_len = len; clear(atlas_map); // Clear completely and recreate the default white texture if (len == 0) { rgba_t white_pixels[4] = { rgba(128,128,128,255), rgba(128,128,128,255), rgba(128,128,128,255), rgba(128,128,128,255) }; RENDER_NO_TEXTURE = render_texture_create(2, 2, white_pixels); return; } // Replay all texture grid insertions up to the reset len for (int i = 0; i < textures_len; i++) { uint32_t grid_x = (textures[i].offset.x - ATLAS_BORDER) / ATLAS_GRID; uint32_t grid_y = (textures[i].offset.y - ATLAS_BORDER) / ATLAS_GRID; uint32_t grid_width = (textures[i].size.x + ATLAS_BORDER * 2 + ATLAS_GRID - 1) / ATLAS_GRID; uint32_t grid_height = (textures[i].size.y + ATLAS_BORDER * 2 + ATLAS_GRID - 1) / ATLAS_GRID; for (uint32_t cx = grid_x; cx < grid_x + grid_width; cx++) { atlas_map[cx] = grid_y + grid_height; } } } void render_textures_dump(const char *path) { int width = ATLAS_SIZE * ATLAS_GRID; int height = ATLAS_SIZE * ATLAS_GRID; rgba_t *pixels = malloc(sizeof(rgba_t) * width * height); glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels); stbi_write_png(path, width, height, 4, pixels, 0); free(pixels); }