ref: 166acc4dfb5e27cff23b3672366b6979815f5dad
dir: /zelda_cpu_infra.cpp/
// This file handles running zelda through the emulated cpu. #include "zelda_cpu_infra.h" #include "zelda_rtl.h" #include "variables.h" #include "misc.h" #include "nmi.h" #include "poly.h" #include "attract.h" #include "spc_player.h" #include "snes/snes.h" #include "snes/cpu.h" #include "snes/cart.h" #include "tracing.h" #include <vector> Snes *g_snes; Cpu *g_cpu; uint8 g_emulated_ram[0x20000]; void SaveLoadSlot(int cmd, int which); //uint8 *GetPtr(uint32 addr) { // Cart *cart = g_snes->cart; // return &cart->rom[(((addr >> 16) << 15) | (addr & 0x7fff)) & (cart->romSize - 1)]; //} //extern "C" uint8 *GetCartRamPtr(uint32 addr) { // Cart *cart = g_snes->cart; // return &cart->ram[addr]; //} struct Snapshot { uint16 a, x, y, sp, dp, pc; uint8 k, db, flags; uint8 ram[0x20000]; uint16 vram[0x8000]; uint16 sram[0x2000]; }; static Snapshot g_snapshot_mine, g_snapshot_theirs, g_snapshot_before; static void MakeSnapshot(Snapshot *s) { Cpu *c = g_cpu; s->a = c->a, s->x = c->x, s->y = c->y; s->sp = c->sp, s->dp = c->dp, s->db = c->db; s->pc = c->pc, s->k = c->k; s->flags = cpu_getFlags(c); memcpy(s->ram, g_snes->ram, 0x20000); memcpy(s->sram, g_snes->cart->ram, g_snes->cart->ramSize); memcpy(s->vram, g_snes->ppu->vram, sizeof(uint16) * 0x8000); } static void MakeMySnapshot(Snapshot *s) { memcpy(s->ram, g_zenv.ram, 0x20000); memcpy(s->sram, g_zenv.sram, 0x2000); memcpy(s->vram, g_zenv.ppu->vram, sizeof(uint16) * 0x8000); } static void RestoreMySnapshot(Snapshot *s) { memcpy(g_zenv.ram, s->ram, 0x20000); memcpy(g_zenv.sram, s->sram, 0x2000); memcpy(g_zenv.ppu->vram, s->vram, sizeof(uint16) * 0x8000); } static void RestoreSnapshot(Snapshot *s) { Cpu *c = g_cpu; c->a = s->a, c->x = s->x, c->y = s->y; c->sp = s->sp, c->dp = s->dp, c->db = s->db; c->pc = s->pc, c->k = s->k; cpu_setFlags(c, s->flags); memcpy(g_snes->ram, s->ram, 0x20000); memcpy(g_snes->cart->ram, s->sram, g_snes->cart->ramSize); memcpy(g_snes->ppu->vram, s->vram, sizeof(uint16) * 0x8000); } static bool g_fail; static void VerifySnapshotsEq(Snapshot *b, Snapshot *a, Snapshot *prev) { memcpy(b->ram, a->ram, 16); b->ram[0xfa1] = a->ram[0xfa1]; b->ram[0x72] = a->ram[0x72]; b->ram[0x73] = a->ram[0x73]; b->ram[0x74] = a->ram[0x74]; b->ram[0x75] = a->ram[0x75]; b->ram[0xb7] = a->ram[0xb7]; b->ram[0xb8] = a->ram[0xb8]; b->ram[0xb9] = a->ram[0xb9]; b->ram[0xba] = a->ram[0xba]; b->ram[0xbb] = a->ram[0xbb]; b->ram[0xbd] = a->ram[0xbd]; b->ram[0xbe] = a->ram[0xbe]; b->ram[0xc8] = a->ram[0xc8]; b->ram[0xc9] = a->ram[0xc9]; b->ram[0xca] = a->ram[0xca]; b->ram[0xcb] = a->ram[0xcb]; b->ram[0xcc] = a->ram[0xcc]; b->ram[0xcd] = a->ram[0xcd]; b->ram[0xa0] = a->ram[0xa0]; b->ram[0x128] = a->ram[0x128]; // irq_flag b->ram[0x463] = a->ram[0x463]; // which_staircase_index_padding memcpy(&b->ram[0x1f0d], &a->ram[0x1f0d], 0x3f - 0xd); memcpy(b->ram + 0x138, a->ram + 0x138, 256 - 0x38); // copy the stack over if (memcmp(b->ram, a->ram, 0x20000)) { fprintf(stderr, "@%d: Memory compare failed (mine != theirs, prev):\n", frame_counter); int j = 0; for (size_t i = 0; i < 0x20000; i++) { if (a->ram[i] != b->ram[i]) { if (++j < 128) { if ((i&1) == 0 && a->ram[i + 1] != b->ram[i + 1]) { fprintf(stderr, "0x%.6X: %.4X != %.4X (%.4X)\n", (int)i, WORD(b->ram[i]), WORD(a->ram[i]), WORD(prev->ram[i])); i++, j++; } else { fprintf(stderr, "0x%.6X: %.2X != %.2X (%.2X)\n", (int)i, b->ram[i], a->ram[i], prev->ram[i]); } } } } if (j) g_fail = true; fprintf(stderr, " total of %d failed bytes\n", (int)j); } if (memcmp(b->sram, a->sram, 0x2000)) { fprintf(stderr, "@%d: SRAM compare failed (mine != theirs, prev):\n", frame_counter); int j = 0; for (size_t i = 0; i < 0x2000; i++) { if (a->sram[i] != b->sram[i]) { if (++j < 128) { if ((i&1) == 0 && a->sram[i + 1] != b->sram[i + 1]) { fprintf(stderr, "0x%.6X: %.4X != %.4X (%.4X)\n", (int)i, WORD(b->sram[i]), WORD(a->sram[i]), WORD(prev->sram[i])); i++, j++; } else { fprintf(stderr, "0x%.6X: %.2X != %.2X (%.2X)\n", (int)i, b->sram[i], a->sram[i], prev->sram[i]); } } } } if (j) g_fail = true; fprintf(stderr, " total of %d failed bytes\n", (int)j); } if (memcmp(b->vram, a->vram, sizeof(uint16) * 0x8000)) { fprintf(stderr, "@%d: VRAM compare failed (mine != theirs, prev):\n", frame_counter); for (size_t i = 0, j = 0; i < 0x8000; i++) { if (a->vram[i] != b->vram[i]) { fprintf(stderr, "0x%.6X: %.4X != %.4X (%.4X)\n", (int)i, b->vram[i], a->vram[i], prev->vram[i]); g_fail = true; if (++j >= 16) break; } } } } static uint8_t *RomByte(Cart *cart, uint32_t addr) { return &cart->rom[(((addr >> 16) << 15) | (addr & 0x7fff)) & (cart->romSize - 1)]; } void SetSnes(Snes *snes) { g_snes = snes; g_cpu = snes->cpu; } bool g_calling_asm_from_c; void HookedFunctionRts(int is_long) { if (g_calling_asm_from_c) { g_calling_asm_from_c = false; return; } assert(0); } void RunEmulatedFunc(uint32 pc, uint16 a, uint16 x, uint16 y, bool mf, bool xf, int b, int whatflags) { g_snes->debug_cycles = 1; RunEmulatedFuncSilent(pc, a, x, y, mf, xf, b, whatflags | 2); g_snes->debug_cycles = 0; } void RunEmulatedFuncSilent(uint32 pc, uint16 a, uint16 x, uint16 y, bool mf, bool xf, int b, int whatflags) { uint16 org_sp = g_cpu->sp; uint16 org_pc = g_cpu->pc; uint8 org_b = g_cpu->db; uint8 org_dp = g_cpu->dp; if (b != -1) g_cpu->db = b >= 0 ? b : pc >> 16; if (b == -3) g_cpu->dp = 0x1f00; static uint8 *rambak; if (rambak == 0) rambak = (uint8 *)malloc(0x20000); memcpy(rambak, g_emulated_ram, 0x20000); memcpy(g_emulated_ram, g_ram, 0x20000); if (whatflags & 2) g_emulated_ram[0x1ffff] = 0x67; g_cpu->a = a; g_cpu->x = x; g_cpu->y = y; g_cpu->spBreakpoint = g_cpu->sp; g_cpu->k = (pc >> 16); g_cpu->pc = (pc & 0xffff); g_cpu->mf = mf; g_cpu->xf = xf; g_calling_asm_from_c = true; while (g_calling_asm_from_c) { if (g_snes->debug_cycles) { char line[80]; getProcessorStateCpu(g_snes, line); puts(line); } cpu_runOpcode(g_cpu); while (g_snes->dma->dmaBusy) dma_doDma(g_snes->dma); if (whatflags & 1) { /* if (apu_debugging == 2 && g_snes->apu->cpuCyclesLeft == 0) { char line[80]; getProcessorStateSpc(g_snes->apu, line); puts(line); }*/ // apu_cycle(g_snes->apu); } } g_cpu->dp = org_dp; g_cpu->sp = org_sp; g_cpu->db = org_b; g_cpu->pc = org_pc; memcpy(g_ram, g_emulated_ram, 0x20000); memcpy(g_emulated_ram, rambak, 0x20000); } void RunOrigAsmCodeOneLoop(Snes *snes) { // Run until the wait loop in Interrupt_Reset, // Or the polyhedral main function. for(int loops = 0;;loops++) { snes_printCpuLine(snes); cpu_runOpcode(snes->cpu); while (snes->dma->dmaBusy) dma_doDma(snes->dma); uint32_t pc = snes->cpu->k << 16 | snes->cpu->pc; if (pc == 0x8034 || pc == 0x9f81d && loops >= 10) break; } } void RunEmulatedSnesFrame(Snes *snes) { // First call runs until init if (snes->cpu->pc == 0x8000 && snes->cpu->k == 0) { RunOrigAsmCodeOneLoop(snes); g_emulated_ram[0x12] = 1; // Fixup uninitialized variable *(uint16*)(g_emulated_ram+0xAE0) = 0xb280; *(uint16*)(g_emulated_ram+0xAE2) = 0xb280 + 0x60; } RunOrigAsmCodeOneLoop(snes); snes_doAutoJoypad(snes); // animated_tile_vram_addr uninited if (snes->ram[0xadd] == 0) *(uint16_t*)&snes->ram[0xadc] = 0xa680; // In one code path flag_update_hud_in_nmi uses an undefined value snes_write(snes, DMAP0, 0x01); snes_write(snes, BBAD0, 0x18); snes->cpu->nmiWanted = true; for (;;) { snes_printCpuLine(snes); cpu_runOpcode(snes->cpu); while (snes->dma->dmaBusy) dma_doDma(snes->dma); uint32_t pc = snes->cpu->k << 16 | snes->cpu->pc; if (pc == 0x8039 || pc == 0x9f81d) break; } } struct Ppu *GetPpuForRendering() { return g_zenv.ppu; } Dsp *GetDspForRendering() { SpcPlayer_GenerateSamples(g_zenv.player); return g_zenv.player->dsp; } void saveFunc(void *ctx, void *data, size_t data_size) { std::vector<uint8> *vec = (std::vector<uint8> *)ctx; vec->resize(vec->size() + data_size); memcpy(vec->data() + vec->size() - data_size, data, data_size); } struct LoadFuncState { uint8 *p, *pend; }; void loadFunc(void *ctx, void *data, size_t data_size) { LoadFuncState *st = (LoadFuncState *)ctx; assert(st->pend - st->p >= data_size); memcpy(data, st->p, data_size); st->p += data_size; } void CopyStateAfterSnapshotRestore(bool is_reset) { memcpy(g_zenv.ram, g_snes->ram, 0x20000); memcpy(g_zenv.sram, g_snes->cart->ram, g_snes->cart->ramSize); memcpy(g_zenv.ppu->vram, &g_snes->ppu->vram, offsetof(Ppu, pixelBuffer) - offsetof(Ppu, vram)); memcpy(g_zenv.player->ram, g_snes->apu->ram, sizeof(g_snes->apu->ram)); if (!is_reset) { memcpy(g_zenv.player->dsp->ram, g_snes->apu->dsp->ram, sizeof(Dsp) - offsetof(Dsp, ram)); SpcPlayer_CopyVariablesFromRam(g_zenv.player); } memcpy(g_zenv.dma->channel, g_snes->dma->channel, sizeof(Dma) - offsetof(Dma, channel)); g_zenv.player->timer_cycles = 0; if (!is_reset) { // Setup some fake cpu state cause we can't depend on the savegame's Cpu *cpu = g_snes->cpu; cpu->a = cpu->x = cpu->y = 0; cpu->pc = 0x8034; cpu->sp = 0x1ff; cpu->k = cpu->dp = cpu->db = 0; cpu_setFlags(cpu, 0x30); cpu->irqWanted = cpu->nmiWanted = cpu->waiting = cpu->stopped = 0; cpu->e = false; if (thread_other_stack == 0x1f2) { cpu->sp = 0x1f3e; cpu->pc = 0xf81d; cpu->db = cpu->k = 9; cpu->dp = 0x1f00; static const uint8 kStackInit[] = { 0x82, 0, 0, 0, 0, 0, 0, 0, 0x40, 0xb7, 0xb0, 0x34, 0x80, 0 }; memcpy(g_snes->ram + 0x1f2, kStackInit, sizeof(kStackInit)); } } } std::vector<uint8> SaveSnesState() { std::vector<uint8> data; MakeSnapshot(&g_snapshot_before); // Copy from my state into the emulator memcpy(&g_snes->ppu->vram, g_zenv.ppu->vram, offsetof(Ppu, pixelBuffer) - offsetof(Ppu, vram)); memcpy(g_snes->ram, g_zenv.ram, 0x20000); memcpy(g_snes->cart->ram, g_zenv.sram, 0x2000); SpcPlayer_CopyVariablesToRam(g_zenv.player); memcpy(g_snes->apu->ram, g_zenv.player->ram, 0x10000); memcpy(g_snes->apu->dsp->ram, g_zenv.player->dsp->ram, sizeof(Dsp) - offsetof(Dsp, ram)); memcpy(g_snes->dma->channel, g_zenv.dma->channel, sizeof(Dma) - offsetof(Dma, channel)); snes_saveload(g_snes, &saveFunc, &data); RestoreSnapshot(&g_snapshot_before); return data; } class StateRecorder { public: StateRecorder() : last_inputs_(0), frames_since_last_(0), total_frames_(0), replay_mode_(false) {} void Record(uint16 inputs); void RecordPatchByte(uint32 addr, const uint8 *value, int num); void Load(FILE *f, bool replay_mode); void Save(FILE *f); uint16 ReadNextReplayState(); bool is_replay_mode() { return replay_mode_; } void MigrateToBaseSnapshot(); private: void RecordJoypadBit(int command); void AppendByte(uint8 v); void AppendVl(uint32 v); uint16 last_inputs_; uint32 frames_since_last_; uint32 total_frames_; // For replay uint32 replay_pos_, replay_frame_counter_, replay_next_cmd_at_; uint8 replay_cmd_; bool replay_mode_; std::vector<uint8> log_; std::vector<uint8> base_snapshot_; }; uint32 RamChecksum() { uint64_t cksum = 0, cksum2 = 0; for (int i = 0; i < 0x20000; i += 4) { cksum += *(uint32 *)&g_ram[i]; cksum2 += cksum; } return cksum ^ (cksum >> 32) ^ cksum2 ^ (cksum2 >> 32); } void StateRecorder::AppendByte(uint8 v) { log_.push_back(v); printf("%.2x ", v); } void StateRecorder::AppendVl(uint32 v) { for (; v >= 255; v -= 255) AppendByte(255); AppendByte(v); } void StateRecorder::RecordJoypadBit(int command) { int frames = frames_since_last_; AppendByte(command << 4 | (frames < 15 ? frames : 15)); if (frames >= 15) AppendVl(frames - 15); frames_since_last_ = 0; } void StateRecorder::Record(uint16 inputs) { uint16 diff = inputs ^ last_inputs_; if (diff != 0) { last_inputs_ = inputs; printf("0x%.4x %d: ", diff, frames_since_last_); for (int i = 0; i < 12; i++) { if ((diff >> i) & 1) RecordJoypadBit(i); } printf("\n"); } frames_since_last_++; total_frames_++; } void StateRecorder::RecordPatchByte(uint32 addr, const uint8 *value, int num) { assert(addr < 0x20000); printf("%d: PatchByte(0x%x, 0x%x. %d): ", frames_since_last_, addr, *value, num); int frames = frames_since_last_; int lq = (num - 1) <= 3 ? (num - 1) : 3; AppendByte(0xc0 | (frames != 0 ? 1 : 0) | (addr & 0x10000 ? 2 : 0) | lq << 2); if (frames != 0) AppendVl(frames - 1); if (lq == 3) AppendVl(num - 1 - 3); frames_since_last_ = 0; AppendByte(addr >> 8); AppendByte(addr); for(int i = 0; i < num; i++) AppendByte(value[i]); printf("\n"); } void StateRecorder::Load(FILE *f, bool replay_mode) { uint32 hdr[8] = { 0 }; fread(hdr, 8, 4, f); assert(hdr[0] == 1); total_frames_ = hdr[1]; log_.resize(hdr[2]); fread(log_.data(), 1, hdr[2], f); last_inputs_ = hdr[3]; frames_since_last_ = hdr[4]; base_snapshot_.resize((hdr[5] & 1) ? hdr[6] : 0); fread(base_snapshot_.data(), 1, base_snapshot_.size(), f); bool is_reset = false; replay_mode_ = replay_mode; if (replay_mode) { replay_next_cmd_at_ = frames_since_last_ = 0; last_inputs_ = 0; replay_pos_ = 0; replay_frame_counter_ = 0; replay_cmd_ = 0xff; // Load snapshot from |base_snapshot_|, or reset if empty. if (base_snapshot_.size()) { LoadFuncState state = { base_snapshot_.data(), base_snapshot_.data() + base_snapshot_.size() }; snes_saveload(g_snes, &loadFunc, &state); assert(state.p == state.pend); } else { snes_reset(g_snes, true); SpcPlayer_Initialize(g_zenv.player); is_reset = true; } } else { std::vector<uint8> data; data.resize(hdr[6]); fread(data.data(), 1, data.size(), f); LoadFuncState state = { data.data(), data.data() + data.size() }; snes_saveload(g_snes, &loadFunc, &state); assert(state.p == state.pend); } CopyStateAfterSnapshotRestore(is_reset); } void StateRecorder::Save(FILE *f) { uint32 hdr[8] = { 0 }; std::vector<uint8> data = SaveSnesState(); assert(base_snapshot_.size() == 0 || base_snapshot_.size() == data.size()); hdr[0] = 1; hdr[1] = total_frames_; hdr[2] = log_.size(); hdr[3] = last_inputs_; hdr[4] = frames_since_last_; hdr[5] = (base_snapshot_.size() ? 1 : 0); hdr[6] = data.size(); fwrite(hdr, 8, 4, f); fwrite(log_.data(), 1, log_.size(), f); fwrite(base_snapshot_.data(), 1, base_snapshot_.size(), f); fwrite(data.data(), 1, data.size(), f); } void StateRecorder::MigrateToBaseSnapshot() { printf("Migrating to base snapshot!\n"); std::vector<uint8> data = SaveSnesState(); base_snapshot_ = std::move(data); replay_mode_ = false; frames_since_last_ = 0; last_inputs_ = 0; total_frames_ = 0; log_.clear(); } uint16 StateRecorder::ReadNextReplayState() { assert(replay_mode_); while (frames_since_last_ >= replay_next_cmd_at_) { frames_since_last_ = 0; // Apply next command if (replay_cmd_ != 0xff) { if (replay_cmd_ < 0xc0) { last_inputs_ ^= 1 << (replay_cmd_ >> 4); } else if (replay_cmd_ < 0xd0) { int nb = 1 + ((replay_cmd_ >> 2) & 3); uint8 t; if (nb == 4) do { nb += t = log_[replay_pos_++]; } while (t == 255); uint32 addr = ((replay_cmd_ >> 1) & 1) << 16; addr |= log_[replay_pos_++] << 8; addr |= log_[replay_pos_++]; do { g_emulated_ram[addr & 0x1ffff] = g_ram[addr & 0x1ffff] = log_[replay_pos_++]; } while (addr++, --nb); } else { assert(0); } } if (replay_pos_ >= log_.size()) { replay_cmd_ = 0xff; replay_next_cmd_at_ = 0xffffffff; break; } // Read the next one uint8 cmd = log_[replay_pos_++], t; int mask = (cmd < 0xc0) ? 0xf : 0x1; int frames = cmd & mask; if (frames == mask) do { frames += t = log_[replay_pos_++]; } while (t == 255); replay_next_cmd_at_ = frames; replay_cmd_ = cmd; } frames_since_last_++; // Turn off replay mode after we reached the final frame position if (++replay_frame_counter_ >= total_frames_) { replay_mode_ = false; } return last_inputs_; } StateRecorder input_recorder; static int frame_ctr; bool RunOneFrame(Snes *snes, int input_state, bool turbo) { frame_ctr++; if (kIsOrigEmu) { snes_runFrame(snes); return false; } // Either copy state or apply state if (input_recorder.is_replay_mode()) { input_state = input_recorder.ReadNextReplayState(); } else { input_recorder.Record(input_state); turbo = false; // This is whether APUI00 is true or false, this is used by the ancilla code. uint8 apui00 = g_zenv.player->port_to_snes[0] != 0; if (apui00 != g_ram[0x648]) { g_emulated_ram[0x648] = g_ram[0x648] = apui00; input_recorder.RecordPatchByte(0x648, &apui00, 1); } } if (snes == NULL) { ZeldaRunFrame(input_state); return turbo; } MakeSnapshot(&g_snapshot_before); MakeMySnapshot(&g_snapshot_mine); MakeSnapshot(&g_snapshot_theirs); // Compare both snapshots VerifySnapshotsEq(&g_snapshot_mine, &g_snapshot_theirs, &g_snapshot_before); if (g_fail) { printf("early fail\n"); return turbo; } again: // Run orig version then snapshot snes->input1->currentState = input_state; RunEmulatedSnesFrame(snes); MakeSnapshot(&g_snapshot_theirs); // Run my version and snapshot again_mine: ZeldaRunFrame(input_state); MakeMySnapshot(&g_snapshot_mine); // Compare both snapshots VerifySnapshotsEq(&g_snapshot_mine, &g_snapshot_theirs, &g_snapshot_before); if (g_fail) { g_fail = false; RestoreMySnapshot(&g_snapshot_before); // RestoreSnapshot(&g_snapshot_before); //SaveLoadSlot(kSaveLoad_Save, 0); goto again_mine; } return turbo; } void PatchRomBP(uint8_t *rom, uint32_t addr) { rom[(addr >> 16) << 15 | (addr & 0x7fff)] = 0; } void PatchRom(uint8_t *rom) { // fix a bug with unitialized memory { uint8_t *p = rom + 0x36434; memmove(p, p + 2, 7); p[7] = 0xb0; p[8] = 0x40 - 7; } // BufferAndBuildMap16Stripes_Y can read bad memory if int is negative if (1) { uint8_t *p = rom + 0x10000 - 0x8000; int thunk = 0xFF6E; uint8_t *tp = p + thunk; *tp++ = 0xc0; *tp++ = 0x00; *tp++ = 0x20; *tp++ = 0x90; *tp++ = 0x03; *tp++ = 0xa9; *tp++ = 0x00; *tp++ = 0x00; *tp++ = 0x9d; *tp++ = 0x00; *tp++ = 0x05; *tp++ = 0x60; p[0xf4a7] = 0x20; p[0xf4a8] = thunk; p[0xf4a9] = thunk >> 8; p[0xf4b5] = 0x20; p[0xf4b6] = thunk; p[0xf4b7] = thunk >> 8; p[0xf3dd] = 0x20; p[0xf3de] = thunk; p[0xf3df] = thunk >> 8; p[0xf3ef] = 0x20; p[0xf3f0] = thunk; p[0xf3f1] = thunk >> 8; } // Better random numbers if (1) { // 8D:FFC1 new_random_gen: int new_routine = 0xffc1; uint8_t *p = rom + 0x60000, *tp = p + new_routine; *tp++ = 0xad; *tp++ = 0xa1; *tp++ = 0x0f; // mov.b A, byte_7E0FA1 *tp++ = 0x18; *tp++ = 0x65; *tp++ = 0x1a; // add.b A, frame_counter *tp++ = 0x4a; // lsr A *tp++ = 0xb0; *tp++ = 0x02; // jnb loc_8DFFCC *tp++ = 0x49; *tp++ = 0xb8; // eor.b A, #0xB8 *tp++ = 0x8d; *tp++ = 0xa1; *tp++ = 0x0f; // byte_7E0FA1, A *tp++ = 0x18; // clc *tp++ = 0x6b; // retf p[0xBA71] = 0x4c; p[0xBA72] = new_routine; p[0xBA73] = new_routine >> 8; } { } // Fix so SmashRockPile_fromLift / Overworld_DoMapUpdate32x32_B preserves R2/R0 destroyed { /* .9B:BFA2 A5 00 mov.w A, R0 .9B:BFA4 48 push A .9B:BFA5 A5 02 mov.w A, R2 .9B:BFA7 48 push A .9B:C0F1 22 5C AD 02 callf Overworld_DoMapUpdate32x32_B .9B:C048 68 pop A .9B:C049 85 00 mov.w R0, A .9B:C04B 68 pop A .9B:C04C 85 02 mov.w R2, A */ uint8_t *tp = rom + 0x6ffd8; *tp++ = 0xa5; *tp++ = 0x00; *tp++ = 0x48; *tp++ = 0xa5; *tp++ = 0x02; *tp++ = 0x48; *tp++ = 0x22; *tp++ = 0x5c; *tp++ = 0xad; *tp++ = 0x02; *tp++ = 0xc2; *tp++ = 0x30; *tp++ = 0x68; *tp++ = 0x85; *tp++ = 0x02; *tp++ = 0x68; *tp++ = 0x85; *tp++ = 0x00; *tp++ = 0x6b; int target = 0xDFFD8; // DoorAnim_DoWork2_Preserving rom[0xdc0f2] = target; rom[0xdc0f3] = target >> 8; rom[0xdc0f4] = target >> 16; } rom[0x2dec7] = 0; // Fix Uncle_Embark reading bad ram rom[0x4be5e] = 0; // Overlord05_FallingStalfos doesn't initialize the sprite_D memory location rom[0xD79A4] = 0; // 0x1AF9A4: // Lanmola_SpawnShrapnel uses undefined carry value rom[0xF0A46] = 0; // 0x1E8A46 Helmasaur Carry Junk rom[0xF0A52] = 0; // 0x1E8A52 Helmasaur Carry Junk rom[0xef9b9] = 0xb9; // TalkingTree_SpitBomb rom[0xdf107] = 0xa2; rom[0xdf108] = 0x03; rom[0xdf109] = 0x6b; // Palette_AgahnimClone destoys X rom[0x4a966] = 0; // Follower_AnimateMovement_preserved PatchRomBP(rom, 0x1de0e5); PatchRomBP(rom, 0x6d0b6); PatchRomBP(rom, 0x6d0c6); PatchRomBP(rom, 0x1d8f29); // adc instead of add PatchRomBP(rom, 0x06ED0B); PatchRomBP(rom, 0x1dc812); // adc instead of add PatchRomBP(rom, 0x9b46c); // adc instead of add PatchRomBP(rom, 0x9b478); // adc instead of add PatchRomBP(rom, 0x9B468); // sbc PatchRomBP(rom, 0x9B46A); PatchRomBP(rom, 0x9B474); PatchRomBP(rom, 0x9B476); PatchRomBP(rom, 0x9B60C); PatchRomBP(rom, 0x8f708); // don't init scratch_c PatchRomBP(rom, 0x1DCDEB); // y is destroyed earlier, restore it.. // Smithy_Frog doesn't save X memmove(rom + 0x332b8, rom + 0x332b7, 4); rom[0x332b7] = 0xfa; // This needs to be here because the ancilla code reads // from the apu and we don't want to make the core code // dependent on the apu timings, so relocated this value // to 0x648. rom[0x443fe] = 0x48; rom[0x443ff] = 0x6; rom[0x44607] = 0x48; rom[0x44608] = 0x6; // AncillaAdd_AddAncilla_Bank09 destroys R14 rom[0x49d0c] = 0xda; rom[0x49d0d] = 0xfa; rom[0x49d0f] = 0xda; rom[0x49d10] = 0xfa; } static const char *const kReferenceSaves[] = { "Chapter 1 - Zelda's Rescue.sav", "Chapter 2 - After Eastern Palace.sav", "Chapter 3 - After Desert Palace.sav", "Chapter 4 - After Tower of Hera.sav", "Chapter 5 - After Hyrule Castle Tower.sav", "Chapter 6 - After Dark Palace.sav", "Chapter 7 - After Swamp Palace.sav", "Chapter 8 - After Skull Woods.sav", "Chapter 9 - After Gargoyle's Domain.sav", "Chapter 10 - After Ice Palace.sav", "Chapter 11 - After Misery Mire.sav", "Chapter 12 - After Turtle Rock.sav", "Chapter 13 - After Ganon's Tower.sav", }; void SaveLoadSlot(int cmd, int which) { char name[128]; if (which & 256) { if (cmd == kSaveLoad_Save) return; sprintf(name, "saves/ref/%s", kReferenceSaves[which - 256]); } else { sprintf(name, "saves/save%d.sav", which); } FILE *f = fopen(name, cmd != kSaveLoad_Save ? "rb" : "wb"); if (f) { printf("*** %s slot %d\n", cmd==kSaveLoad_Save ? "Saving" : cmd==kSaveLoad_Load ? "Loading" : "Replaying", which); if (cmd != kSaveLoad_Save) input_recorder.Load(f, cmd == kSaveLoad_Replay); else input_recorder.Save(f); fclose(f); } } class PatchRamByteBatch { public: PatchRamByteBatch() : count_(0), addr_(0) {} ~PatchRamByteBatch(); void Patch(uint32 addr, uint8 value); private: uint32 count_, addr_; uint8 vals_[256]; }; PatchRamByteBatch::~PatchRamByteBatch() { if (count_) input_recorder.RecordPatchByte(addr_, vals_, count_); } void PatchRamByteBatch::Patch(uint32 addr, uint8 value) { if (count_ >= 256 || addr != addr_ + count_) { if (count_) input_recorder.RecordPatchByte(addr_, vals_, count_); addr_ = addr; count_ = 0; } vals_[count_++] = value; g_emulated_ram[addr] = g_ram[addr] = value; } void PatchCommand(char c) { PatchRamByteBatch b; if (c == 'w') { b.Patch(0xf372, 80); // health filler b.Patch(0xf373, 80); // magic filler // b.Patch(0x1FE01, 25); } else if (c == 'k') { input_recorder.MigrateToBaseSnapshot(); } else if (c == 'o') { b.Patch(0xf36f, 1); } }