ref: 63f4ce6387dea9f943ecc9c9f9b7af147560839d
dir: /lib/crypto/x25519.myr/
/* Copyright 2008, Google Inc. * Translated to Myrddin by Ori Bernstein in 2018 * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * curve25519: Curve25519 elliptic curve, public key function * * http://code.google.com/p/curve25519-donna/ * * Adam Langley <agl@imperialviolet.org> * * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to> * * More information about curve25519 can be found here * http://cr.yp.to/ecdh.html * * djb's sample implementation of curve25519 is written in a special assembly * language called qhasm and uses the floating point registers. * * This is, almost, a clean room reimplementation from the curve25519 paper. It * uses many of the tricks described therein. Only the crecip function is taken * from the sample implementation. */ use std pkg crypto = const x25519 : (out : byte[:], inu : byte[:], inpt : byte[:] -> void) ;; type felem = uint64 /* Sum two numbers: out += in */ const fsum = {out, in for var i = 0; i < 10; i += 2 out[0 + i] = out[0 + i] + in[0 + i] out[1 + i] = out[1 + i] + in[1 + i] ;; } /* Find the difference of two numbers: out = in - out * (note the order of the arguments!) */ const fdiff = {out, in for var i = 0; i < 10; i++ out[i] = (in[i] - out[i]) ;; } /* Multiply a number my a scalar: out = in * scalar */ const fscalarproduct = {out, in, scalar for var i = 0; i < 10; i++ out[i] = in[i] * scalar ;; } /* Multiply two numbers: out = in2 * in * * out must be distinct to both ins. The ins are reduced coefficient * form, the out is not. */ const fproduct = {out, in, in2 out[0] = in2[0] * in[0] out[1] = in2[0] * in[1] + \ in2[1] * in[0] out[2] = 2 * in2[1] * in[1] + \ in2[0] * in[2] + \ in2[2] * in[0] out[3] = in2[1] * in[2] + \ in2[2] * in[1] + \ in2[0] * in[3] + \ in2[3] * in[0] out[4] = in2[2] * in[2] + \ 2 * (in2[1] * in[3] + \ in2[3] * in[1]) + \ in2[0] * in[4] + \ in2[4] * in[0] out[5] = in2[2] * in[3] + \ in2[3] * in[2] + \ in2[1] * in[4] + \ in2[4] * in[1] + \ in2[0] * in[5] + \ in2[5] * in[0] out[6] = 2 * (in2[3] * in[3] + \ in2[1] * in[5] + \ in2[5] * in[1]) + \ in2[2] * in[4] + \ in2[4] * in[2] + \ in2[0] * in[6] + \ in2[6] * in[0] out[7] = in2[3] * in[4] + \ in2[4] * in[3] + \ in2[2] * in[5] + \ in2[5] * in[2] + \ in2[1] * in[6] + \ in2[6] * in[1] + \ in2[0] * in[7] + \ in2[7] * in[0] out[8] = in2[4] * in[4] + \ 2 * (in2[3] * in[5] + \ in2[5] * in[3] + \ in2[1] * in[7] + \ in2[7] * in[1]) + \ in2[2] * in[6] + \ in2[6] * in[2] + \ in2[0] * in[8] + \ in2[8] * in[0] out[9] = in2[4] * in[5] + \ in2[5] * in[4] + \ in2[3] * in[6] + \ in2[6] * in[3] + \ in2[2] * in[7] + \ in2[7] * in[2] + \ in2[1] * in[8] + \ in2[8] * in[1] + \ in2[0] * in[9] + \ in2[9] * in[0] out[10] = 2 * (in2[5] * in[5] + \ in2[3] * in[7] + \ in2[7] * in[3] + \ in2[1] * in[9] + \ in2[9] * in[1]) + \ in2[4] * in[6] + \ in2[6] * in[4] + \ in2[2] * in[8] + \ in2[8] * in[2] out[11] = in2[5] * in[6] + \ in2[6] * in[5] + \ in2[4] * in[7] + \ in2[7] * in[4] + \ in2[3] * in[8] + \ in2[8] * in[3] + \ in2[2] * in[9] + \ in2[9] * in[2] out[12] = in2[6] * in[6] + \ 2 * (in2[5] * in[7] + \ in2[7] * in[5] + \ in2[3] * in[9] + \ in2[9] * in[3]) + \ in2[4] * in[8] + \ in2[8] * in[4] out[13] = in2[6] * in[7] + \ in2[7] * in[6] + \ in2[5] * in[8] + \ in2[8] * in[5] + \ in2[4] * in[9] + \ in2[9] * in[4] out[14] = 2 * (in2[7] * in[7] + \ in2[5] * in[9] + \ in2[9] * in[5]) + \ in2[6] * in[8] + \ in2[8] * in[6] out[15] = in2[7] * in[8] + \ in2[8] * in[7] + \ in2[6] * in[9] + \ in2[9] * in[6] out[16] = in2[8] * in[8] + \ 2 * (in2[7] * in[9] + \ in2[9] * in[7]) out[17] = in2[8] * in[9] + \ in2[9] * in[8] out[18] = 2 * in2[9] * in[9] } /* Reduce a long form to a short form by taking the input mod 2^255 - 19. */ const freducedegree= {out out[8] += 19 * out[18]; out[7] += 19 * out[17]; out[6] += 19 * out[16]; out[5] += 19 * out[15]; out[4] += 19 * out[14]; out[3] += 19 * out[13]; out[2] += 19 * out[12]; out[1] += 19 * out[11]; out[0] += 19 * out[10]; } /* Reduce all coeff of the short form in to be -2**25 <= x <= 2**25 */ const freducecoeff = {out var over, over2 while true out[10] = 0 for var i = 0; i < 10; i += 2 over = out[i] / (0x2000000l : felem) over2 = (over + ((over >> 63) * 2) + 1) / 2 out[i+1] += over2 out[i] -= over2 * (0x4000000l : felem) over = out[i+1] / 0x2000000 out[i+2] += over out[i+1] -= over * 0x2000000 ;; out[0] += 19 * out[10] if out[10] == 0 break ;; ;; } /* A helpful wrapper around fproduct: out = in * in2. * * out must be distinct to both ins. The out is reduced degree and * reduced coefficient. */ const fmul = {out, in, in2 var t : felem[19] fproduct(t[:], in, in2) freducedegree(t[:]) freducecoeff(t[:]) std.slcp(out, t[:10]) } const fsquareinner = {out, in var tmp : felem out[0] = in[0] * in[0] out[1] = 2 * in[0] * in[1] out[2] = 2 * (in[1] * in[1] + \ in[0] * in[2]) out[3] = 2 * (in[1] * in[2] + \ in[0] * in[3]) out[4] = in[2] * in[2] + \ 4 * in[1] * in[3] + \ 2 * in[0] * in[4] out[5] = 2 * (in[2] * in[3] + \ in[1] * in[4] + \ in[0] * in[5]) out[6] = 2 * (in[3] * in[3] + \ in[2] * in[4] + \ in[0] * in[6] + \ 2 * in[1] * in[5]) out[7] = 2 * (in[3] * in[4] + \ in[2] * in[5] + \ in[1] * in[6] + \ in[0] * in[7]) tmp = in[1] * in[7] + in[3] * in[5] out[8] = in[4] * in[4] + \ 2 * (in[2] * in[6] + \ in[0] * in[8] + \ 2 * tmp) out[9] = 2 * (in[4] * in[5] + \ in[3] * in[6] + \ in[2] * in[7] + \ in[1] * in[8] + \ in[0] * in[9]) tmp = in[3] * in[7] + in[1] * in[9] out[10] = 2 * (in[5] * in[5] + \ in[4] * in[6] + \ in[2] * in[8] + \ 2 * tmp) out[11] = 2 * (in[5] * in[6] + \ in[4] * in[7] + \ in[3] * in[8] + \ in[2] * in[9]) out[12] = in[6] * in[6] + \ 2 * (in[4] * in[8] + \ 2 * (in[5] * in[7] + \ in[3] * in[9])) out[13] = 2 * (in[6] * in[7] + \ in[5] * in[8] + \ in[4] * in[9]) out[14] = 2 * (in[7] * in[7] + \ in[6] * in[8] + \ 2 * in[5] * in[9]) out[15] = 2 * (in[7] * in[8] + \ in[6] * in[9]) out[16] = in[8] * in[8] + \ 4 * in[7] * in[9] out[17] = 2 * in[8] * in[9] out[18] = 2 * in[9] * in[9] } const fsquare = {out, in var t : felem[19] fsquareinner(t[:], in) freducedegree(t[:]) freducecoeff(t[:]) std.slcp(out, t[:10]) } /* Take a little-endian, 32-byte number and expand it into polynomial form */ const fexpand = {out, in /* * #define F(n,start,shift,mask) \ * out[n] = (((in[start + 0] : felem) | \ * (in[start + 1] : felem) << 8 | \ * (in[start + 2] : felem) << 16 | \ * (in[start + 3] : felem) << 24) >> shift) & mask * F(0, 0, 0, 0x3ffffff) * F(1, 3, 2, 0x1ffffff) * F(2, 6, 3, 0x3ffffff) * F(3, 9, 5, 0x1ffffff) * F(4, 12, 6, 0x3ffffff) * F(5, 16, 0, 0x1ffffff) * F(6, 19, 1, 0x3ffffff) * F(7, 22, 3, 0x1ffffff) * F(8, 25, 4, 0x3ffffff) * F(9, 28, 6, 0x1ffffff) * #undef F */ out[0] = (((in[0 + 0] : felem) | (in[0 + 1] : felem) << 8 | (in[0 + 2] : felem) << 16 | (in[0 + 3] : felem) << 24) >> 0) & 0x3ffffff out[1] = (((in[3 + 0] : felem) | (in[3 + 1] : felem) << 8 | (in[3 + 2] : felem) << 16 | (in[3 + 3] : felem) << 24) >> 2) & 0x1ffffff out[2] = (((in[6 + 0] : felem) | (in[6 + 1] : felem) << 8 | (in[6 + 2] : felem) << 16 | (in[6 + 3] : felem) << 24) >> 3) & 0x3ffffff out[3] = (((in[9 + 0] : felem) | (in[9 + 1] : felem) << 8 | (in[9 + 2] : felem) << 16 | (in[9 + 3] : felem) << 24) >> 5) & 0x1ffffff out[4] = (((in[12 + 0] : felem) | (in[12 + 1] : felem) << 8 | (in[12 + 2] : felem) << 16 | (in[12 + 3] : felem) << 24) >> 6) & 0x3ffffff out[5] = (((in[16 + 0] : felem) | (in[16 + 1] : felem) << 8 | (in[16 + 2] : felem) << 16 | (in[16 + 3] : felem) << 24) >> 0) & 0x1ffffff out[6] = (((in[19 + 0] : felem) | (in[19 + 1] : felem) << 8 | (in[19 + 2] : felem) << 16 | (in[19 + 3] : felem) << 24) >> 1) & 0x3ffffff out[7] = (((in[22 + 0] : felem) | (in[22 + 1] : felem) << 8 | (in[22 + 2] : felem) << 16 | (in[22 + 3] : felem) << 24) >> 3) & 0x1ffffff out[8] = (((in[25 + 0] : felem) | (in[25 + 1] : felem) << 8 | (in[25 + 2] : felem) << 16 | (in[25 + 3] : felem) << 24) >> 4) & 0x3ffffff out[9] = (((in[28 + 0] : felem) | (in[28 + 1] : felem) << 8 | (in[28 + 2] : felem) << 16 | (in[28 + 3] : felem) << 24) >> 6) & 0x1ffffff } /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array */ const fcontract = {out, in while true for var i = 0; i < 9; ++i if (i & 1) == 1 while in[i] < 0 in[i] += 0x2000000 in[i + 1]-- ;; else while in[i] < 0 in[i] += 0x4000000 in[i + 1]-- ;; ;; ;; while in[9] < 0 in[9] += 0x2000000 in[0] -= 19 ;; if in[0] >= 0 break ;; ;; in[1] <<= 2 in[2] <<= 3 in[3] <<= 5 in[4] <<= 6 in[6] <<= 1 in[7] <<= 3 in[8] <<= 4 in[9] <<= 6 /* * #define F(i, s) \ * out[s+0] |= in[i] & 0xff; \ * out[s+1] = (in[i] >> 8) & 0xff; \ * out[s+2] = (in[i] >> 16) & 0xff; \ * out[s+3] = (in[i] >> 24) & 0xff * out[0] = 0 * out[16] = 0 * F(0,0) * F(1,3) * F(2,6) * F(3,9) * F(4,12) * F(5,16) * F(6,19) * F(7,22) * F(8,25) * F(9,28) * #undef F */ out[0] = 0 out[16] = 0 out[ 0 + 0] |= (in[0] : byte); out[ 0 +1] = (in[0] >> 8 : byte); out[ 0 +2] = (in[0] >> 16 : byte); out[ 0 +3] = (in[0] >> 24 : byte) out[ 3 + 0] |= (in[1] : byte); out[ 3 +1] = (in[1] >> 8 : byte); out[ 3 +2] = (in[1] >> 16 : byte); out[ 3 +3] = (in[1] >> 24 : byte) out[ 6 + 0] |= (in[2] : byte); out[ 6 +1] = (in[2] >> 8 : byte); out[ 6 +2] = (in[2] >> 16 : byte); out[ 6 +3] = (in[2] >> 24 : byte) out[ 9 + 0] |= (in[3] : byte); out[ 9 +1] = (in[3] >> 8 : byte); out[ 9 +2] = (in[3] >> 16 : byte); out[ 9 +3] = (in[3] >> 24 : byte) out[12 + 0] |= (in[4] : byte); out[12 +1] = (in[4] >> 8 : byte); out[12 +2] = (in[4] >> 16 : byte); out[12 +3] = (in[4] >> 24 : byte) out[16 + 0] |= (in[5] : byte); out[16 +1] = (in[5] >> 8 : byte); out[16 +2] = (in[5] >> 16 : byte); out[16 +3] = (in[5] >> 24 : byte) out[19 + 0] |= (in[6] : byte); out[19 +1] = (in[6] >> 8 : byte); out[19 +2] = (in[6] >> 16 : byte); out[19 +3] = (in[6] >> 24 : byte) out[22 + 0] |= (in[7] : byte); out[22 +1] = (in[7] >> 8 : byte); out[22 +2] = (in[7] >> 16 : byte); out[22 +3] = (in[7] >> 24 : byte) out[25 + 0] |= (in[8] : byte); out[25 +1] = (in[8] >> 8 : byte); out[25 +2] = (in[8] >> 16 : byte); out[25 +3] = (in[8] >> 24 : byte) out[28 + 0] |= (in[9] : byte); out[28 +1] = (in[9] >> 8 : byte); out[28 +2] = (in[9] >> 16 : byte); out[28 +3] = (in[9] >> 24 : byte) } /* Input: Q, Q', Q-Q' * Output: 2Q, Q+Q' * * x2 z3: long form, out 2Q * x3 z3: long form, out Q + Q' * x z: short form, destroyed, in Q * xprime zprime: short form, destroyed, in Q' * qmqp: short form, preserved, in Q - Q' */ const fmonty = {x2, z2, x3, z3, x, z, xprime, zprime, qmqp var origx : felem[10] var origxprime : felem[10] var zzz : felem [19] var xx : felem[19] var zz : felem[19] var xxprime : felem[19] var zzprime : felem[19] var zzzprime : felem[19] var xxxprime : felem[19] std.slcp(origx[:], x[:10]) fsum(x, z) fdiff(z, origx[:]); // does x - z std.slcp(origxprime[:], xprime[:10]) fsum(xprime, zprime) fdiff(zprime, origxprime[:]) fproduct(xxprime[:], xprime, z) fproduct(zzprime[:], x, zprime) freducedegree(xxprime[:]) freducecoeff(xxprime[:]) freducedegree(zzprime[:]) freducecoeff(zzprime[:]) std.slcp(origxprime[:], xxprime[:10]) fsum(xxprime[:], zzprime[:]) fdiff(zzprime[:], origxprime[:]) fsquare(xxxprime[:], xxprime[:]) fsquare(zzzprime[:], zzprime[:]) fproduct(zzprime[:], zzzprime[:], qmqp) freducedegree(zzprime[:]) freducecoeff(zzprime[:]) std.slcp(x3, xxxprime[:10]) std.slcp(z3, zzprime[:10]) fsquare(xx[:], x) fsquare(zz[:], z) fproduct(x2, xx[:], zz[:]) freducedegree(x2) freducecoeff(x2) fdiff(zz[:], xx[:]); // does zz = xx - zz std.slfill(zzz[10:], 0) fscalarproduct(zzz, zz, 121665) freducedegree(zzz[:]) freducecoeff(zzz[:]) fsum(zzz[:], xx[:]) fproduct(z2, zz[:], zzz[:]) freducedegree(z2) freducecoeff(z2) } /* Calculates nQ where Q is the x-coordinate of a point on the curve * * resultx/resultz: the x coordinate of the resulting curve point (short form) * n: a little endian, 32-byte number * q: a point of the curve (short form) */ const cmult = {resultx, resultz, n, q var a : felem[19] = [.[0] = 0, .[18] = 0] var b : felem[19] = [.[0] = 1, .[18] = 0] var c : felem[19] = [.[0] = 1, .[18] = 0] var d : felem[19] = [.[0] = 0, .[18] = 0] var e : felem[19] = [.[0] = 0, .[18] = 0] var f : felem[19] = [.[0] = 1, .[18] = 0] var g : felem[19] = [.[0] = 0, .[18] = 0] var h : felem[19] = [.[0] = 1, .[18] = 0] var nqpqx = a[:] var nqpqz = b[:] var nqx = c[:] var nqz = d[:] var nqpqx2 = e[:] var nqpqz2 = f[:] var nqx2 = g[:] var nqz2 = h[:] var t std.slcp(nqpqx[:10], q[:10]) for var i = 0; i < 32; ++i var byte = n[31 - i] for var j = 0; j < 8; ++j if byte & 0x80 != 0 fmonty(nqpqx2, nqpqz2, nqx2, nqz2, nqpqx, nqpqz, nqx, nqz, q) else fmonty(nqx2, nqz2, nqpqx2, nqpqz2, nqx, nqz, nqpqx, nqpqz, q) ;; t = nqx nqx = nqx2 nqx2 = t t = nqz nqz = nqz2 nqz2 = t t = nqpqx nqpqx = nqpqx2 nqpqx2 = t t = nqpqz nqpqz = nqpqz2 nqpqz2 = t byte <<= 1 ;; ;; std.slcp(resultx, nqx[:10]) std.slcp(resultz, nqz[:10]) } // ----------------------------------------------------------------------------- // Shamelessly copied from djb's code // ----------------------------------------------------------------------------- const crecip = {out, z var z2 : felem[10] var z9 : felem[10] var z11 : felem[10] var z2_5_0 : felem[10] var z2_10_0 : felem[10] var z2_20_0 : felem[10] var z2_50_0 : felem[10] var z2_100_0 : felem[10] var t0 : felem[10] var t1 : felem[10] var i /* 2 */ fsquare(z2[:], z[:]) /* 4 */ fsquare(t1[:], z2[:]) /* 8 */ fsquare(t0[:], t1[:]) /* 9 */ fmul(z9[:] ,t0[:], z[:]) /* 11 */ fmul(z11[:], z9[:], z2[:]) /* 22 */ fsquare(t0[:], z11[:]) /* 2^5 - 2^0 = 31 */ fmul(z2_5_0[:], t0[:], z9[:]) /* 2^6 - 2^1 */ fsquare(t0[:], z2_5_0[:]) /* 2^7 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^8 - 2^3 */ fsquare(t0[:], t1[:]) /* 2^9 - 2^4 */ fsquare(t1[:], t0[:]) /* 2^10 - 2^5 */ fsquare(t0[:],t1[:]) /* 2^10 - 2^0 */ fmul(z2_10_0[:], t0[:], z2_5_0[:]) /* 2^11 - 2^1 */ fsquare(t0[:], z2_10_0[:]) /* 2^12 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^20 - 2^10 */ for i = 2;i < 10;i += 2 fsquare(t0[:],t1[:]) fsquare(t1[:],t0[:]) ;; /* 2^20 - 2^0 */ fmul(z2_20_0[:], t1[:], z2_10_0[:]) /* 2^21 - 2^1 */ fsquare(t0[:], z2_20_0[:]) /* 2^22 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^40 - 2^20 */ for var i = 2;i < 20;i += 2 fsquare(t0[:], t1[:]) fsquare(t1[:], t0[:]) ;; /* 2^40 - 2^0 */ fmul(t0[:], t1[:], z2_20_0[:]) /* 2^41 - 2^1 */ fsquare(t1[:],t0[:]) /* 2^42 - 2^2 */ fsquare(t0[:],t1[:]) /* 2^50 - 2^10 */ for var i = 2;i < 10;i += 2 fsquare(t1[:],t0[:]) fsquare(t0[:],t1[:]) ;; /* 2^50 - 2^0 */ fmul(z2_50_0[:], t0[:], z2_10_0[:]) /* 2^51 - 2^1 */ fsquare(t0[:], z2_50_0[:]) /* 2^52 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^100 - 2^50 */ for i = 2;i < 50;i += 2 fsquare(t0[:],t1[:]) fsquare(t1[:],t0[:]) ;; /* 2^100 - 2^0 */ fmul(z2_100_0[:], t1[:], z2_50_0[:]) /* 2^101 - 2^1 */ fsquare(t1[:], z2_100_0[:]) /* 2^102 - 2^2 */ fsquare(t0[:], t1[:]) /* 2^200 - 2^100 */ for i = 2;i < 100;i += 2 fsquare(t1[:],t0[:]) fsquare(t0[:],t1[:]) ;; /* 2^200 - 2^0 */ fmul(t1[:],t0[:], z2_100_0[:]) /* 2^201 - 2^1 */ fsquare(t0[:], t1[:]) /* 2^202 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^250 - 2^50 */ for i = 2;i < 50;i += 2 fsquare(t0[:], t1[:]) fsquare(t1[:], t0[:]) ;; /* 2^250 - 2^0 */ fmul(t0[:], t1[:], z2_50_0[:]) /* 2^251 - 2^1 */ fsquare(t1[:], t0[:]) /* 2^252 - 2^2 */ fsquare(t0[:], t1[:]) /* 2^253 - 2^3 */ fsquare(t1[:], t0[:]) /* 2^254 - 2^4 */ fsquare(t0[:], t1[:]) /* 2^255 - 2^5 */ fsquare(t1[:], t0[:]) /* 2^255 - 21 */ fmul(out,t1[:], z11[:]) } const curve25519 = {pub : byte[:/*32*/], secret : byte[:/*32*/], basepoint : byte[:/*32*/] var bp : felem[10] var x : felem[10] var z : felem[10] var zmone : felem[10] std.assert(pub.len == 32 && secret.len == 32 && basepoint.len == 32, "wrong key sizes") fexpand(bp[:], basepoint[:]) cmult(x[:], z[:], secret[:], bp[:]) crecip(zmone[:], z[:]) fmul(z[:], x[:], zmone[:]) fcontract(pub[:], z[:]) } const x25519 = {out, inu, inscalar }