shithub: mc

ref: 690ab7aa8e6c56a4ae8a2bd5bce58d1df681234e
dir: /lib/crypto/curve25519.myr/

View raw version
/* Copyright 2008, Google Inc.
 * Translated to Myrddin by Ori Bernstein in 2018
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * curve25519: Curve25519 elliptic curve, public key function
 *
 * http://code.google.com/p/curve25519-donna/
 *
 * Adam Langley <agl@imperialviolet.org>
 *
 * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
 *
 * More information about curve25519 can be found here
 *   http://cr.yp.to/ecdh.html
 *
 * djb's sample implementation of curve25519 is written in a special assembly
 * language called qhasm and uses the floating point registers.
 *
 * This is, almost, a clean room reimplementation from the curve25519 paper. It
 * uses many of the tricks described therein. Only the crecip function is taken
 * from the sample implementation.
 */

use std

pkg crypto =
	const Nine		: byte[:]
	const curve25519	: (pub : byte[:/*32*/], secret : byte[:/*32*/], basepoint : byte[:/*32*/] -> void)
;;

const Nine =  \
	"\x09\x00\x00\x00\x00\x00\x00\x00" \
	"\x00\x00\x00\x00\x00\x00\x00\x00" \
	"\x00\x00\x00\x00\x00\x00\x00\x00" \
	"\x00\x00\x00\x00\x00\x00\x00\x00"

/* Sum two numbers: out += in */
const fsum = {out, in
	for var i = 0; i < 10; i += 2
		out[0 + i] = out[0 + i] + in[0 + i]
		out[1 + i] = out[1 + i] + in[1 + i]
	;;
}

/* Find the difference of two numbers: out = in - out
 * (note the order of the arguments!)
 */
const fdiff = {out, in
	for var i = 0; i < 10; ++i
		out[i] = in[i] - out[i]
	;;
}

/* Multiply a number my a scalar: out = in * scalar */
const fscalarproduct = {out, in, scalar
	for var i = 0; i < 10; ++i
		out[i] = in[i] * scalar
	;;
}

/* Multiply two numbers: out = in2 * in
 *
 * out must be distinct to both ins. The ins are reduced coefficient
 * form, the out is not.
 */
const fproduct = {output, in2, in
	output[0] =      in2[0] * in[0]
	output[1] =      in2[0] * in[1] + \
	                 in2[1] * in[0]
	output[2] =  2 * in2[1] * in[1] + \
	                 in2[0] * in[2] + \
	                 in2[2] * in[0]
	output[3] =      in2[1] * in[2] + \
	                 in2[2] * in[1] + \
	                 in2[0] * in[3] + \
	                 in2[3] * in[0]
	output[4] =      in2[2] * in[2] + \
	             2 * (in2[1] * in[3] + \
	                  in2[3] * in[1]) + \
	                 in2[0] * in[4] + \
	                 in2[4] * in[0]
	output[5] =      in2[2] * in[3] + \
	                 in2[3] * in[2] + \
	                 in2[1] * in[4] + \
	                 in2[4] * in[1] + \
	                 in2[0] * in[5] + \
	                 in2[5] * in[0]
	output[6] =  2 * (in2[3] * in[3] + \
	                  in2[1] * in[5] + \
	                  in2[5] * in[1]) + \
	                 in2[2] * in[4] + \
	                 in2[4] * in[2] + \
	                 in2[0] * in[6] + \
	                 in2[6] * in[0]
	output[7] =      in2[3] * in[4] + \
	                 in2[4] * in[3] + \
	                 in2[2] * in[5] + \
	                 in2[5] * in[2] + \
	                 in2[1] * in[6] + \
	                 in2[6] * in[1] + \
	                 in2[0] * in[7] + \
	                 in2[7] * in[0]
	output[8] =      in2[4] * in[4] + \
	             2 * (in2[3] * in[5] + \
	                  in2[5] * in[3] + \
	                  in2[1] * in[7] + \
	                  in2[7] * in[1]) + \
	                 in2[2] * in[6] + \
	                 in2[6] * in[2] + \
	                 in2[0] * in[8] + \
	                 in2[8] * in[0]
	output[9] =      in2[4] * in[5] + \
	                 in2[5] * in[4] + \
	                 in2[3] * in[6] + \
	                 in2[6] * in[3] + \
	                 in2[2] * in[7] + \
	                 in2[7] * in[2] + \
	                 in2[1] * in[8] + \
	                 in2[8] * in[1] + \
	                 in2[0] * in[9] + \
	                 in2[9] * in[0]
	output[10] = 2 * (in2[5] * in[5] + \
	                  in2[3] * in[7] + \
	                  in2[7] * in[3] + \
	                  in2[1] * in[9] + \
	                  in2[9] * in[1]) + \
	                 in2[4] * in[6] + \
	                 in2[6] * in[4] + \
	                 in2[2] * in[8] + \
	                 in2[8] * in[2]
	output[11] =     in2[5] * in[6] + \
	                 in2[6] * in[5] + \
	                 in2[4] * in[7] + \
	                 in2[7] * in[4] + \
	                 in2[3] * in[8] + \
	                 in2[8] * in[3] + \
	                 in2[2] * in[9] + \
	                 in2[9] * in[2]
	output[12] =     in2[6] * in[6] + \
	             2 * (in2[5] * in[7] + \
	                  in2[7] * in[5] + \
	                  in2[3] * in[9] + \
	                  in2[9] * in[3]) + \
	                 in2[4] * in[8] + \
	                 in2[8] * in[4]
	output[13] =     in2[6] * in[7] + \
	                 in2[7] * in[6] + \
	                 in2[5] * in[8] + \
	                 in2[8] * in[5] + \
	                 in2[4] * in[9] + \
	                 in2[9] * in[4]
	output[14] = 2 * (in2[7] * in[7] + \
	                  in2[5] * in[9] + \
	                  in2[9] * in[5]) + \
	                 in2[6] * in[8] + \
	                 in2[8] * in[6]
	output[15] =     in2[7] * in[8] + \
	                 in2[8] * in[7] + \
	                 in2[6] * in[9] + \
	                 in2[9] * in[6]
	output[16] =     in2[8] * in[8] + \
	             2 * (in2[7] * in[9] + \
	                  in2[9] * in[7])
	output[17] =     in2[8] * in[9] + \
	                 in2[9] * in[8]
	output[18] = 2 * in2[9] * in[9]
}


/* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
const freducedegree= {output
	output[8] += output[18] << 4;
	output[8] += output[18] << 1;
	output[8] += output[18];
	output[7] += output[17] << 4;
	output[7] += output[17] << 1;
	output[7] += output[17];
	output[6] += output[16] << 4;
	output[6] += output[16] << 1;
	output[6] += output[16];
	output[5] += output[15] << 4;
	output[5] += output[15] << 1;
	output[5] += output[15];
	output[4] += output[14] << 4;
	output[4] += output[14] << 1;
	output[4] += output[14];
	output[3] += output[13] << 4;
	output[3] += output[13] << 1;
	output[3] += output[13];
	output[2] += output[12] << 4;
	output[2] += output[12] << 1;
	output[2] += output[12];
	output[1] += output[11] << 4;
	output[1] += output[11] << 1;
	output[1] += output[11];
	output[0] += output[10] << 4;
	output[0] += output[10] << 1;
	output[0] += output[10];
}

/* Reduce all coeff of the short form in to be -2**25 <= x <= 2**25
 */
const freducecoeff = {out
	var over
	var hi, sgn, round

	out[10] = 0;
	for var i = 0; i < 10; i += 2
		/* out[i]/2^26, constant time */
		hi = ((out[i] : uint64) >> 32 : uint32)
		sgn = (hi : int32) >> 31
		round = (sgn : uint32) >> 6;
		/* Should return v / (1<<26) */
		over = (out[i] + (round : int64)) >> 26

		out[i] -= over << 26;
		out[i+1] += over;
		hi = ((out[i + 1] : uint64) >> 32 : uint32)
		sgn = (hi : int32) >> 31
		round = (sgn : uint32) >> 7
		/* Should return v / (1<<26) */
		over = (out[i+1] + (round : int64)) >> 25
		out[i+1] -= over << 25;
		out[i+2] += over;
	;;
	/* Now |out[10]| < 2 ^ 38 and all other coefficients are reduced. */
	out[0] += out[10] << 4
	out[0] += out[10] << 1
	out[0] += out[10];

	out[10] = 0

	/*
	 * Now out[1..9] are reduced, and |out[0]| < 2^26 + 19 * 2^38
	 * So |over| will be no more than 77825
	 */
	/* out[i]/2^26, constant time */
	hi = ((out[0] : uint64) >> 32 : uint32)
	sgn = (hi : int32) >> 31
	round = (sgn : uint32) >> 6;
	/* Should return v / (1<<26) */
	over = (out[0] + (round : int64)) >> 26
	out[0] -= over << 26;
	out[1] += over;

	/*
	 * Now out[0,2..9] are reduced, and |out[1]| < 2^25 + 77825
	 * So |over| will be no more than 1.
	 * out[1] fits in 32 bits, so we can use div_s32_by_2_25 here.
	 */

	/*
	 * Finally, out[0,1,3..9] are reduced, and out[2] is "nearly reduced":
	 * we have |out[2]| <= 2^26.  This is good enough for all of our math,
	 * but it will require an extra freduce_coefficients before fcontract.
	 */
}

/* A helpful wrapper around fproduct: out = in * in2.
 *
 * out must be distinct to both ins. The out is reduced degree and
 * reduced coefficient.
 */
const fmul = {out, in, in2
	var t : int64[19]

	fproduct(t[:], in, in2)
	freducedegree(t[:])
	freducecoeff(t[:])
	std.slcp(out[:10], t[:10])
}

const fsquareinner = {out, in
	var tmp : int64

	out[0] =	in[0] * in[0]
	out[1] =	2 * in[0] * in[1]
	out[2] =	2 * (in[1] * in[1] + \
			     in[0] * in[2])
	out[3] =	2 * (in[1] * in[2] + \
			     in[0] * in[3])
	out[4] =	in[2] * in[2] + \
			4 * in[1] * in[3] + \
			2 * in[0] * in[4]
	out[5] =	2 * (in[2] * in[3] + \
			     in[1] * in[4] + \
			     in[0] * in[5])
	out[6] =	2 * (in[3] * in[3] + \
			     in[2] * in[4] + \
			     in[0] * in[6] + \
			     2 * in[1] * in[5])
	out[7] =	2 * (in[3] * in[4] + \
			     in[2] * in[5] + \
		     	in[1] * in[6] + \
		     	in[0] * in[7])
	tmp = in[1] * in[7] + in[3] * in[5]
	out[8] =	in[4] * in[4] + \
			2 * (in[2] * in[6] + \
		     	     in[0] * in[8] + \
		     	     2 * tmp)
	out[9] =	2 * (in[4] * in[5] + \
		     	in[3] * in[6] + \
		     	in[2] * in[7] + \
		     	in[1] * in[8] + \
		     	in[0] * in[9])
	tmp = 		in[3] * in[7] + in[1] * in[9]
	out[10] =	2 * (in[5] * in[5] + \
		             in[4] * in[6] + \
		             in[2] * in[8] + \
			     2 * tmp)
	out[11] =	2 * (in[5] * in[6] + \
		    	     in[4] * in[7] + \
		     	     in[3] * in[8] + \
			     in[2] * in[9])
	out[12] =	in[6] * in[6] + \
			2 * (in[4] * in[8] + \
			     2 * (in[5] * in[7] + \
		     	          in[3] * in[9]))
	out[13] = 	2 * (in[6] * in[7] + \
			     in[5] * in[8] + \
			     in[4] * in[9])
	out[14] =	2 * (in[7] * in[7] + \
			in[6] * in[8] + \
			2 * in[5] * in[9])
	out[15] =	2 * (in[7] * in[8] + \
			in[6] * in[9])
	out[16] =	in[8] * in[8] + \
			4 * in[7] * in[9]
	out[17] =	2 * in[8] * in[9]
	out[18] =	2 * in[9] * in[9]
}

const fsquare = {out, in
	var t : int64[19]

	fsquareinner(t[:], in)
	freducedegree(t[:])
	freducecoeff(t[:])
	std.slcp(out[:10], t[:10])
}

/* Take a little-endian, 32-byte number and expand it into polynomial form */
const fexpand = {out, in
	/*
	 * #define F(n,start,shift,mask) \
	 * 	out[n] = (((in[start + 0] : int64) | \
	 * 		(in[start + 1] : int64) << 8 | \
	 * 		(in[start + 2] : int64) << 16 | \
	 * 		(in[start + 3] : int64) << 24) >> shift) & mask
	 * 	F(0, 0, 0, 0x3ffffff)
	 * 	F(1, 3, 2, 0x1ffffff)
	 * 	F(2, 6, 3, 0x3ffffff)
	 * 	F(3, 9, 5, 0x1ffffff)
	 * 	F(4, 12, 6, 0x3ffffff)
	 * 	F(5, 16, 0, 0x1ffffff)
	 * 	F(6, 19, 1, 0x3ffffff()
	 * 	F(7, 22, 3, 0x1ffffff)
	 * 	F(8, 25, 4, 0x3ffffff)
	 * 	F(9, 28, 6, 0x1ffffff)
	 * #undef F
	 */
	out[0] = (((in[0 + 0] : int64) | (in[0 + 1] : int64) << 8 | (in[0 + 2] : int64) << 16 | (in[0 + 3] : int64) << 24) >> 0) & 0x3ffffff
	out[1] = (((in[3 + 0] : int64) | (in[3 + 1] : int64) << 8 | (in[3 + 2] : int64) << 16 | (in[3 + 3] : int64) << 24) >> 2) & 0x1ffffff
	out[2] = (((in[6 + 0] : int64) | (in[6 + 1] : int64) << 8 | (in[6 + 2] : int64) << 16 | (in[6 + 3] : int64) << 24) >> 3) & 0x3ffffff
	out[3] = (((in[9 + 0] : int64) | (in[9 + 1] : int64) << 8 | (in[9 + 2] : int64) << 16 | (in[9 + 3] : int64) << 24) >> 5) & 0x1ffffff
	out[4] = (((in[12 + 0] : int64) | (in[12 + 1] : int64) << 8 | (in[12 + 2] : int64) << 16 | (in[12 + 3] : int64) << 24) >> 6) & 0x3ffffff
	out[5] = (((in[16 + 0] : int64) | (in[16 + 1] : int64) << 8 | (in[16 + 2] : int64) << 16 | (in[16 + 3] : int64) << 24) >> 0) & 0x1ffffff
	out[6] = (((in[19 + 0] : int64) | (in[19 + 1] : int64) << 8 | (in[19 + 2] : int64) << 16 | (in[19 + 3] : int64) << 24) >> 1) & 0x3ffffff
	out[7] = (((in[22 + 0] : int64) | (in[22 + 1] : int64) << 8 | (in[22 + 2] : int64) << 16 | (in[22 + 3] : int64) << 24) >> 3) & 0x1ffffff
	out[8] = (((in[25 + 0] : int64) | (in[25 + 1] : int64) << 8 | (in[25 + 2] : int64) << 16 | (in[25 + 3] : int64) << 24) >> 4) & 0x3ffffff
	out[9] = (((in[28 + 0] : int64) | (in[28 + 1] : int64) << 8 | (in[28 + 2] : int64) << 16 | (in[28 + 3] : int64) << 24) >> 6) & 0x1ffffff

}

/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
const s32_eq = {a, b
	a = ~(a ^ b)
	a &= a << 16
	a &= a << 8
	a &= a << 4
	a &= a << 2
	a &= a << 1
	-> a >> 31
}

/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
   both non-negative. */
const s32_gte = {a, b
	a -= b
	/* a >= 0 iff a >= b. */
	-> ~(a >> 31)
}

/* Take a fully reduced polynomial form number and contract it into a
 * little-endian, 32-byte array
 */
const fcontract = {out : byte[:], in_limbs : int64[:]
	var mask, carry
	var in : int32[10]

	for var i = 0; i < 10; i++
		in[i] = (in_limbs[i] : int32)
	;;
	for var j = 0; j < 2; ++j
		for var i = 0; i < 9; ++i
			if (i & 1) == 1
			 	/* This calculation is a time-invariant way to make in[i] positive
			 	 * by borrowing from the next-larger int64_t.
			 	 */
				mask = in[i] >> 31
				carry = -((in[i] & mask) >> 25);
				in[i+0] = in[i] + (carry << 25)
				in[i+1] = in[i+1] - carry
			else
				mask = in[i] >> 31
				carry = -((in[i] & mask) >> 26)
				in[i+0] = in[i] + (carry << 26)
				in[i+1] = in[i+1] - carry
			;;
		;;
		mask = in[9] >> 31
		carry = -((in[9] & mask) >> 25)
		in[9] = in[9] + (carry << 25)
		in[0] = in[0] - (carry * 19)
	;;

	/* The first borrow-propagation pass above ended with every int64_t
	   except (possibly) in[0] non-negative.

	   Since each in int64_t except in[0] is decreased by at most 1
	   by a borrow-propagation pass, the second borrow-propagation pass
	   could only have wrapped around to decrease in[0] again if the
	   first pass left in[0] negative *and* in[1] through in[9]
	   were all zero.  In that case, in[1] is now 2^25 - 1, and this
	   last borrow-propagation step will leave in[1] non-negative.
	*/
	mask = in[0] >> 31
	carry = -((in[0] & mask) >> 26)
	in[0] = in[0] + (carry << 26)
	in[1] = in[1] - carry

	for var j = 0; j < 2; j++
		for var i = 0; i < 9; i++
			if (i & 1) == 1
				carry = in[1] >> 25
				in[i+0] &= 0x1ffffff
				in[i+1] += carry
			else
				carry = in[i] >> 26
				in[i+0] &= 0x3ffffff
				in[i+1] += carry
			;;
		;;
		carry = in[9] >> 25
		in[9] &= 0x1ffffff
		in[0] += (19 * carry)
	;;

	mask = s32_gte(in[0], 0x3ffffed)
	for var i = 1; i < 10; i++
		if (i & 1) == 1
			mask &= s32_eq(in[i], 0x1ffffff)
		else
			mask &= s32_eq(in[i], 0x3ffffff)
		;;
	;;
	in[0] -= (mask & 0x3ffffed)

	for var i = 1; i < 10; i++
		if (i & 1) == 1
			in[i] -= (mask & 0x1ffffff)
		else
			in[i] -= (mask & 0x3ffffff)
		;;
	;;

	/* Both passes through the above loop, plus the last 0-to-1 step, are
	   necessary: if in[9] is -1 and in[0] through in[8] are 0,
	   negative values will remain in the array until the end.
	 */
	in[1] <<= 2
	in[2] <<= 3
	in[3] <<= 5
	in[4] <<= 6
	in[6] <<= 1
	in[7] <<= 3
	in[8] <<= 4
	in[9] <<= 6
	out[0] = 0
	out[16] = 0
	out[ 0+0] |= (in[0] & 0xff : byte); out[ 0+1] = ((in[0] >> 8) & 0xff : byte); out[ 0+2] = ((in[0] >> 16) & 0xff : byte); out[ 0+3] = ((in[0] >> 24) & 0xff : byte)
	out[ 3+0] |= (in[1] & 0xff : byte); out[ 3+1] = ((in[1] >> 8) & 0xff : byte); out[ 3+2] = ((in[1] >> 16) & 0xff : byte); out[ 3+3] = ((in[1] >> 24) & 0xff : byte)
	out[ 6+0] |= (in[2] & 0xff : byte); out[ 6+1] = ((in[2] >> 8) & 0xff : byte); out[ 6+2] = ((in[2] >> 16) & 0xff : byte); out[ 6+3] = ((in[2] >> 24) & 0xff : byte)
	out[ 9+0] |= (in[3] & 0xff : byte); out[ 9+1] = ((in[3] >> 8) & 0xff : byte); out[ 9+2] = ((in[3] >> 16) & 0xff : byte); out[ 9+3] = ((in[3] >> 24) & 0xff : byte)
	out[12+0] |= (in[4] & 0xff : byte); out[12+1] = ((in[4] >> 8) & 0xff : byte); out[12+2] = ((in[4] >> 16) & 0xff : byte); out[12+3] = ((in[4] >> 24) & 0xff : byte)
	out[16+0] |= (in[5] & 0xff : byte); out[16+1] = ((in[5] >> 8) & 0xff : byte); out[16+2] = ((in[5] >> 16) & 0xff : byte); out[16+3] = ((in[5] >> 24) & 0xff : byte)
	out[19+0] |= (in[6] & 0xff : byte); out[19+1] = ((in[6] >> 8) & 0xff : byte); out[19+2] = ((in[6] >> 16) & 0xff : byte); out[19+3] = ((in[6] >> 24) & 0xff : byte)
	out[22+0] |= (in[7] & 0xff : byte); out[22+1] = ((in[7] >> 8) & 0xff : byte); out[22+2] = ((in[7] >> 16) & 0xff : byte); out[22+3] = ((in[7] >> 24) & 0xff : byte)
	out[25+0] |= (in[8] & 0xff : byte); out[25+1] = ((in[8] >> 8) & 0xff : byte); out[25+2] = ((in[8] >> 16) & 0xff : byte); out[25+3] = ((in[8] >> 24) & 0xff : byte)
	out[28+0] |= (in[9] & 0xff : byte); out[28+1] = ((in[9] >> 8) & 0xff : byte); out[28+2] = ((in[9] >> 16) & 0xff : byte); out[28+3] = ((in[9] >> 24) & 0xff : byte)
}

/* Input: Q, Q', Q-Q'
 * Output: 2Q, Q+Q'
 *
 *   x2 z3: long form, out 2Q
 *   x3 z3: long form, out Q + Q'
 *   x z: short form, destroyed, in Q
 *   xprime zprime: short form, destroyed, in Q'
 *   qmqp: short form, preserved, in Q - Q'
 */
const fmonty = {x2, z2, x3, z3, x, z, xprime, zprime, qmqp
	var origx : int64[10]
	var origxprime : int64[10]
	var zzz : int64 [19]
	var xx : int64[19]
	var zz : int64[19]
	var xxprime : int64[19]
	var zzprime : int64[19]
	var zzzprime : int64[19]
	var xxxprime : int64[19]

	std.clear(&origx);
	std.clear(&origxprime);
	std.clear(&zzz);
	std.clear(&xx);
	std.clear(&zz);
	std.clear(&xxprime);
	std.clear(&zzprime);
	std.clear(&zzzprime);
	std.clear(&xxxprime);

	std.slcp(origx[:10], x[:10])
	fsum(x, z)
	fdiff(z, origx[:]);  // does x - z

	std.slcp(origxprime[:10], xprime[:10])
	fsum(xprime, zprime)
	fdiff(zprime, origxprime[:])
	fproduct(xxprime[:], xprime, z)
	fproduct(zzprime[:], x, zprime)
	freducedegree(xxprime[:])
	freducecoeff(xxprime[:])
	freducedegree(zzprime[:])
	freducecoeff(zzprime[:])
	std.slcp(origxprime[:10], xxprime[:10])
	fsum(xxprime[:], zzprime[:])
	fdiff(zzprime[:], origxprime[:])
	fsquare(xxxprime[:], xxprime[:])
	fsquare(zzzprime[:], zzprime[:])
	fproduct(zzprime[:], zzzprime[:], qmqp)
	freducedegree(zzprime[:])
	freducecoeff(zzprime[:])
	std.slcp(x3[:10], xxxprime[:10])
	std.slcp(z3[:10], zzprime[:10])

	fsquare(xx[:], x)
	fsquare(zz[:], z)
	fproduct(x2, xx[:], zz[:])
	freducedegree(x2)
	freducecoeff(x2)
	fdiff(zz[:], xx[:]);  // does zz = xx - zz
	std.slfill(zzz[10:], 0)
	fscalarproduct(zzz[:], zz[:], 121665)
	/* No need to call freduce_degree here:
	   fscalar_product doesn't increase the degree of its input. */
	freducecoeff(zzz[:])
	fsum(zzz[:], xx[:])
	fproduct(z2, zz[:], zzz[:])
	freducedegree(z2)
	freducecoeff(z2)
}

const cswap = {a, b, swap
	var s, x

	s = (-swap : int32)
	for var i = 0; i < 10; ++i
		x = s & ((a[i] : int32) ^ (b[i] : int32))
		a[i] = ((a[i] : int32) ^ x : int64)
		b[i] = ((b[i] : int32) ^ x : int64)
	;;
}

/* Calculates nQ where Q is the x-coordinate of a point on the curve
 *
 *   resultx/resultz: the x coordinate of the resulting curve point (short form)
 *   n: a little endian, 32-byte number
 *   q: a point of the curve (short form)
 */
const cmult = {resultx, resultz, n, q
	var a : int64[19] = [.[0] = 0, .[18] = 0]
	var b : int64[19] = [.[0] = 1, .[18] = 0]
	var c : int64[19] = [.[0] = 1, .[18] = 0]
	var d : int64[19] = [.[0] = 0, .[18] = 0]
	var e : int64[19] = [.[0] = 0, .[18] = 0]
	var f : int64[19] = [.[0] = 1, .[18] = 0]
	var g : int64[19] = [.[0] = 0, .[18] = 0]
	var h : int64[19] = [.[0] = 1, .[18] = 0]
	var nqpqx = a[:]
	var nqpqz = b[:]
	var nqx = c[:]
	var nqz = d[:]
	var nqpqx2 = e[:]
	var nqpqz2 = f[:]
	var nqx2 = g[:]
	var nqz2 = h[:]
	var byte
	var t

	std.slcp(nqpqx[:10], q[:10])
	for var i = 0; i < 32; ++i
		byte = n[31 - i]
		for var j = 0; j < 8; ++j
			var bit = (byte >> 7 : int64)
			cswap(nqx, nqpqx, bit)
			cswap(nqz, nqpqz, bit)
			fmonty(nqx2, nqz2,
			    nqpqx2, nqpqz2,
			    nqx, nqz,
			    nqpqx, nqpqz,
			    q)

		    cswap(nqx2, nqpqx2, bit)
			cswap(nqz2, nqpqz2, bit)

			t = nqx
			nqx = nqx2
			nqx2 = t
			t = nqz
			nqz = nqz2
			nqz2 = t
			t = nqpqx
			nqpqx = nqpqx2
			nqpqx2 = t
			t = nqpqz
			nqpqz = nqpqz2
			nqpqz2 = t

			byte <<= 1
		;;
	;;

	std.slcp(resultx[:10], nqx[:10])
	std.slcp(resultz[:10], nqz[:10])
}

// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code
// -----------------------------------------------------------------------------
const crecip = {out, z
	var z2 : int64[10]
	var z9 : int64[10]
	var z11 : int64[10]
	var z2_5_0 : int64[10]
	var z2_10_0 : int64[10]
	var z2_20_0 : int64[10]
	var z2_50_0 : int64[10]
	var z2_100_0 : int64[10]
	var t0 : int64[10]
	var t1 : int64[10]
	var i

	/* 2 */ fsquare(z2[:], z[:])
	/* 4 */ fsquare(t1[:], z2[:])
	/* 8 */ fsquare(t0[:], t1[:])
	/* 9 */ fmul(z9[:] ,t0[:], z[:])
	/* 11 */ fmul(z11[:], z9[:], z2[:])
	/* 22 */ fsquare(t0[:], z11[:])
	/* 2^5 - 2^0 = 31 */ fmul(z2_5_0[:], t0[:], z9[:])

	/* 2^6 - 2^1 */ fsquare(t0[:], z2_5_0[:])
	/* 2^7 - 2^2 */ fsquare(t1[:], t0[:])
	/* 2^8 - 2^3 */ fsquare(t0[:], t1[:])
	/* 2^9 - 2^4 */ fsquare(t1[:], t0[:])
	/* 2^10 - 2^5 */ fsquare(t0[:],t1[:])
	/* 2^10 - 2^0 */ fmul(z2_10_0[:], t0[:], z2_5_0[:])

	/* 2^11 - 2^1 */ fsquare(t0[:], z2_10_0[:])
	/* 2^12 - 2^2 */ fsquare(t1[:], t0[:])
	/* 2^20 - 2^10 */
	for i = 2;i < 10;i += 2
		fsquare(t0[:],t1[:])
		fsquare(t1[:],t0[:])
	;;
	/* 2^20 - 2^0 */ fmul(z2_20_0[:], t1[:], z2_10_0[:])

	/* 2^21 - 2^1 */ fsquare(t0[:], z2_20_0[:])
	/* 2^22 - 2^2 */ fsquare(t1[:], t0[:])
	/* 2^40 - 2^20 */
	for i = 2;i < 20;i += 2
		fsquare(t0[:], t1[:])
		fsquare(t1[:], t0[:])
	;;
	/* 2^40 - 2^0 */ fmul(t0[:], t1[:], z2_20_0[:])

	/* 2^41 - 2^1 */ fsquare(t1[:],t0[:])
	/* 2^42 - 2^2 */ fsquare(t0[:],t1[:])
	/* 2^50 - 2^10 */
	for i = 2;i < 10;i += 2
		fsquare(t1[:],t0[:])
		fsquare(t0[:],t1[:])
	;;
	/* 2^50 - 2^0 */ fmul(z2_50_0[:], t0[:], z2_10_0[:])

	/* 2^51 - 2^1 */ fsquare(t0[:], z2_50_0[:])
	/* 2^52 - 2^2 */ fsquare(t1[:], t0[:])
	/* 2^100 - 2^50 */
	for i = 2;i < 50;i += 2
		fsquare(t0[:],t1[:])
		fsquare(t1[:],t0[:])
	;;
	/* 2^100 - 2^0 */ fmul(z2_100_0[:], t1[:], z2_50_0[:])

	/* 2^101 - 2^1 */ fsquare(t1[:], z2_100_0[:])
	/* 2^102 - 2^2 */ fsquare(t0[:], t1[:])
	/* 2^200 - 2^100 */
	for i = 2;i < 100;i += 2
		fsquare(t1[:],t0[:])
		fsquare(t0[:],t1[:])
	;;
	/* 2^200 - 2^0 */ fmul(t1[:],t0[:], z2_100_0[:])

	/* 2^201 - 2^1 */ fsquare(t0[:], t1[:])
	/* 2^202 - 2^2 */ fsquare(t1[:], t0[:])
	/* 2^250 - 2^50 */
	for i = 2;i < 50;i += 2
		fsquare(t0[:], t1[:])
		fsquare(t1[:], t0[:])
	;;
	/* 2^250 - 2^0 */ fmul(t0[:], t1[:], z2_50_0[:])

	/* 2^251 - 2^1 */ fsquare(t1[:], t0[:])
	/* 2^252 - 2^2 */ fsquare(t0[:], t1[:])
	/* 2^253 - 2^3 */ fsquare(t1[:], t0[:])
	/* 2^254 - 2^4 */ fsquare(t0[:], t1[:])
	/* 2^255 - 2^5 */ fsquare(t1[:], t0[:])
	/* 2^255 - 21 */ fmul(out,t1[:], z11[:])
}

const curve25519 = {pub : byte[:/*32*/], secret : byte[:/*32*/], basepoint : byte[:/*32*/]
	var bp : int64[10]
	var x : int64[10]
	var z : int64[11]	/* one extra for reduced coefficients */
	var zmone : int64[10]

	std.assert(pub.len == 32 , "wrong pubkey size\n")
	std.assert(secret.len == 32 , "wrong secret size\n")
	std.assert(basepoint.len == 32 , "wrong basepoint size\n")

	secret[0] &= 248
	secret[31] &= 127
	secret[31] |= 64

	fexpand(bp[:], basepoint[:])
	cmult(x[:], z[:], secret[:], bp[:])
	crecip(zmone[:], z[:])
	fmul(z[:], x[:], zmone[:])
	fcontract(pub[:], z[:])
}