ref: 70b4fc9127a3e8863f128642d62d2fbcbf7121be
dir: /lib/math/exp-impl.myr/
use std use "fpmath" use "util" /* See [Mul16] (6.2.1), [Tan89], and [Tan92]. While the exp and expm1 functions are similar enough to be in the same file (Tang's algorithms use the same S constants), they are not quite similar enough to be in the same function. */ pkg math = pkglocal const exp32 : (x : flt32 -> flt32) pkglocal const exp64 : (x : flt64 -> flt64) pkglocal const expm132 : (x : flt32 -> flt32) pkglocal const expm164 : (x : flt64 -> flt64) ;; extern const horner_polyu32 : (x : flt32, a : uint32[:] -> flt32) extern const horner_polyu64 : (x : flt64, a : uint64[:] -> flt64) type fltdesc(@f, @u, @i) = struct explode : (f : @f -> (bool, @i, @u)) assem : (n : bool, e : @i, s : @u -> @f) horner : (f : @f, a : @u[:] -> @f) sgnmask : @u tobits : (f : @f -> @u) frombits : (u : @u -> @f) inf : @u nan : @u /* For exp */ thresh_1_min : @u thresh_1_max : @u thresh_2 : @u Ai : @u[:] /* For expm1 */ thresh_tiny : @u thresh_huge_neg : @u Log3_4 : @u Log5_4 : @u Bi : @u[:] precision : @u /* For both */ nabs : @u inv_L : @u L1 : @u L2 : @u S : (@u, @u)[32] ;; const desc32 : fltdesc(flt32, uint32, int32) = [ .explode = std.flt32explode, .assem = std.flt32assem, .horner = horner_polyu32, .sgnmask = (1 << 31), .tobits = std.flt32bits, .frombits = std.flt32frombits, .inf = 0x7f800000, .nan = 0x7fc00000, .thresh_1_min = 0xc2cff1b4, /* ln(2^(-127 - 23)) ~= -103.9720770839917 */ .thresh_1_max = 0x42b17218, /* ln([2 - 2^(-24)] * 2^127) ~= 88.72283905206 */ .inv_L = 0x4238aa3b, /* L = log(2) / 32, this is 1/L in working precision */ .L1 = 0x3cb17200, /* L1 and L2 sum to give L in high precision, */ .L2 = 0x333fbe8e, /* and L1 has some trailing zeroes. */ .nabs = 9, /* L1 has 9 trailing zeroes in binary */ .Ai = [ /* Coefficients for approximating expm1 in a tiny range */ 0x3f000044, 0x3e2aaaec, ][:], .Log3_4 = 0xbe934b11, /* log(1 - 1/4) < x < log(1 + 1/4) */ .Log5_4 = 0x3e647fbf, /* triggers special expm1 case */ .thresh_tiny = 0x33000000, /* similar to thresh_1_{min,max}, but for expm1 */ .thresh_huge_neg = 0xc18aa122, .Bi = [ /* Coefficients for approximating expm1 between log(3/4) and log(5/4) */ 0x3e2aaaaa, 0x3d2aaaa0, 0x3c0889ff, 0x3ab64de5, 0x394ab327, ][:], .S = [ /* Double-precise expansions of 2^(J/32) */ (0x3f800000, 0x00000000), (0x3f82cd80, 0x35531585), (0x3f85aac0, 0x34d9f312), (0x3f889800, 0x35e8092e), (0x3f8b95c0, 0x3471f546), (0x3f8ea400, 0x36e62d17), (0x3f91c3c0, 0x361b9d59), (0x3f94f4c0, 0x36bea3fc), (0x3f9837c0, 0x36c14637), (0x3f9b8d00, 0x36e6e755), (0x3f9ef500, 0x36c98247), (0x3fa27040, 0x34c0c312), (0x3fa5fec0, 0x36354d8b), (0x3fa9a140, 0x3655a754), (0x3fad5800, 0x36fba90b), (0x3fb123c0, 0x36d6074b), (0x3fb504c0, 0x36cccfe7), (0x3fb8fb80, 0x36bd1d8c), (0x3fbd0880, 0x368e7d60), (0x3fc12c40, 0x35cca667), (0x3fc56700, 0x36a84554), (0x3fc9b980, 0x36f619b9), (0x3fce2480, 0x35c151f8), (0x3fd2a800, 0x366c8f89), (0x3fd744c0, 0x36f32b5a), (0x3fdbfb80, 0x36de5f6c), (0x3fe0ccc0, 0x36776155), (0x3fe5b900, 0x355cef90), (0x3feac0c0, 0x355cfba5), (0x3fefe480, 0x36e66f73), (0x3ff52540, 0x36f45492), (0x3ffa8380, 0x36cb6dc9), ], .precision = 24, /* threshold to prevent underflow in a S[high] + 2^-m */ ] const desc64 : fltdesc(flt64, uint64, int64) = [ .explode = std.flt64explode, .assem = std.flt64assem, .horner = horner_polyu64, .sgnmask = (1 << 63), .tobits = std.flt64bits, .frombits = std.flt64frombits, .inf = 0x7ff0000000000000, .nan = 0x7ff8000000000000, .thresh_1_min = 0xc0874910d52d3052, /* ln(2^(-1023 - 52)) ~= -745.1332191019 */ .thresh_1_max = 0x40862e42fefa39ef, /* ln([2 - 2^(-53)] * 2^1023) ~= 709.78271289 */ .inv_L = 0x40471547652b82fe, /* below as in exp32 */ .L1 = 0x3f962e42fef00000, .L2 = 0x3d8473de6af278ed, .nabs = 20, .Ai = [ 0x3fe0000000000000, 0x3fc5555555548f7c, 0x3fa5555555545d4e, 0x3f811115b7aa905e, 0x3f56c1728d739765, ][:], .Log3_4 = 0xbfd269621134db93, .Log5_4 = 0x3fcc8ff7c79a9a22, .thresh_tiny = 0x3c90000000000000, .thresh_huge_neg = 0xc042b708872320e1, .Bi = [ 0x3fc5555555555549, 0x3fa55555555554b6, 0x3f8111111111a9f3, 0x3f56c16c16ce14c6, 0x3f2a01a01159dd2d, 0x3efa019f635825c4, 0x3ec71e14bfe3db59, 0x3e928295484734ea, 0x3e5a2836aa646b96, ][:], .S = [ (0x3ff0000000000000, 0x0000000000000000), (0x3ff059b0d3158540, 0x3d0a1d73e2a475b4), (0x3ff0b5586cf98900, 0x3ceec5317256e308), (0x3ff11301d0125b40, 0x3cf0a4ebbf1aed93), (0x3ff172b83c7d5140, 0x3d0d6e6fbe462876), (0x3ff1d4873168b980, 0x3d053c02dc0144c8), (0x3ff2387a6e756200, 0x3d0c3360fd6d8e0b), (0x3ff29e9df51fdec0, 0x3d009612e8afad12), (0x3ff306fe0a31b700, 0x3cf52de8d5a46306), (0x3ff371a7373aa9c0, 0x3ce54e28aa05e8a9), (0x3ff3dea64c123400, 0x3d011ada0911f09f), (0x3ff44e0860618900, 0x3d068189b7a04ef8), (0x3ff4bfdad5362a00, 0x3d038ea1cbd7f621), (0x3ff5342b569d4f80, 0x3cbdf0a83c49d86a), (0x3ff5ab07dd485400, 0x3d04ac64980a8c8f), (0x3ff6247eb03a5580, 0x3cd2c7c3e81bf4b7), (0x3ff6a09e667f3bc0, 0x3ce921165f626cdd), (0x3ff71f75e8ec5f40, 0x3d09ee91b8797785), (0x3ff7a11473eb0180, 0x3cdb5f54408fdb37), (0x3ff82589994cce00, 0x3cf28acf88afab35), (0x3ff8ace5422aa0c0, 0x3cfb5ba7c55a192d), (0x3ff93737b0cdc5c0, 0x3d027a280e1f92a0), (0x3ff9c49182a3f080, 0x3cf01c7c46b071f3), (0x3ffa5503b23e2540, 0x3cfc8b424491caf8), (0x3ffae89f995ad380, 0x3d06af439a68bb99), (0x3ffb7f76f2fb5e40, 0x3cdbaa9ec206ad4f), (0x3ffc199bdd855280, 0x3cfc2220cb12a092), (0x3ffcb720dcef9040, 0x3d048a81e5e8f4a5), (0x3ffd5818dcfba480, 0x3cdc976816bad9b8), (0x3ffdfc97337b9b40, 0x3cfeb968cac39ed3), (0x3ffea4afa2a490c0, 0x3cf9858f73a18f5e), (0x3fff50765b6e4540, 0x3c99d3e12dd8a18b), ], .precision = 53, ] const exp32 = {x : flt32 -> expgen(x, desc32) } const exp64 = {x : flt64 -> expgen(x, desc64) } generic expgen = {x : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i, roundable @f -> @i var b = d.tobits(x) var n, e, s (n, e, s) = d.explode(x) /* Detect if exp(f) would round to outside representability. We don't do bias adjustment, so Tang's thresholds can be tightened. */ if !n && b >= d.thresh_1_max -> d.frombits(d.inf) elif n && b > d.thresh_1_min -> (0.0 : @f) ;; /* Detect if exp(f) is close to 1. */ if (b & ~d.sgnmask) <= d.thresh_2 -> (1.0 : @f) ;; /* Argument reduction to [ -ln(2)/64, ln(2)/64 ] */ var inv_L = d.frombits(d.inv_L) var N = rn(x * inv_L) var N2 = N % (32 : @i) if N2 < 0 N2 += (32 : @i) ;; var N1 = N - N2 var R1 : @f, R2 : @f var Nf = (N : @f) /* There are few enough significant bits that these are all exact, without need for an FMA. R1 + R2 will approximate (very well) f reduced into [ -ln(2)/64, ln(2)/64 ] */ if std.abs(N) >= (1 << d.nabs) R1 = (x - (N1 : @f) * d.frombits(d.L1)) - ((N2 : @f) * d.frombits(d.L1)) else R1 = x - (N : @f) * d.frombits(d.L1) ;; R2 = -1.0 * (N : @f) * d.frombits(d.L2) var M = (N1 : @i) / 32 var J = (N2 : std.size) /* Compute a polynomial approximation of exp1m */ var R = R1 + R2 var Q = R * R * d.horner(R, d.Ai) var P = R1 + (R2 + Q) /* Expand out from reduced range */ var Su_hi, Su_lo (Su_hi, Su_lo) = d.S[J] var S_hi = d.frombits(Su_hi) var S_lo = d.frombits(Su_lo) var S = S_hi + S_lo var unscaled = S_hi + (S_lo + (P * S)) var nu, eu, su (nu, eu, su) = d.explode(unscaled) var exp = d.assem(nu, eu + M, su) if (d.tobits(exp) == 0) /* Make sure we don't quite return 0 */ -> d.frombits(1) ;; -> exp } const expm132 = {x : flt32 -> expm1gen(x, desc32) } const expm164 = {x : flt64 -> expm1gen(x, desc64) } generic expm1gen = {x : @f, d : fltdesc(@f, @u, @i) :: \ numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i, roundable @f -> @i var b = d.tobits(x) var n, e, s (n, e, s) = d.explode(x) /* Special cases: +/- 0, inf, NaN, tiny, and huge */ if (b & ~d.sgnmask == 0) -> x elif n && (b & ~d.sgnmask == d.inf) -> (-1.0 : @f) elif (b & ~d.sgnmask == d.inf) -> x elif std.isnan(x) -> d.frombits(d.nan) elif (b & ~d.sgnmask) <= d.thresh_tiny var two_to_large = d.assem(false, 100, 0) var two_to_small = d.assem(false, -100, 0) var abs_x = d.assem(false, e, s) -> (two_to_large * x + abs_x) * two_to_small elif !n && b >= d.thresh_1_max /* exp(x) = oo <=> expm1(x) = oo, as it turns out */ -> d.frombits(d.inf) elif n && b >= d.thresh_huge_neg -> (-1.0 : @f) ;; if ((n && b < d.Log3_4) || (!n && b < d.Log5_4)) /* Procedure 2 */ /* compute x^2 / 2 with extra precision */ var u = round(x, d) var v = x - u var y = u * u * (0.5 : @f) var z = v * (x + u) * (0.5 : @f) var q = x * x * x * d.horner(x, d.Bi) var yn, ye, ys (yn, ye, ys) = d.explode(y) if (ye >= -7) -> (u + y) + (q + (v + z)) else -> x + (y + (q + z)) ;; ;; /* Procedure 1 */ var inv_L = d.frombits(d.inv_L) var N = rn(x * inv_L) var N2 = N % (32 : @i) if N2 < 0 N2 += (32 : @i) ;; var N1 = N - N2 var R1 : @f, R2 : @f /* As in the exp case, R1 + R2 very well approximates f reduced into [ -ln(2)/64, ln(2)/64 ] */ if std.abs(N) >= (1 << d.nabs) R1 = (x - (N1 : @f) * d.frombits(d.L1)) - ((N2 : @f) * d.frombits(d.L1)) else R1 = x - (N : @f) * d.frombits(d.L1) ;; R2 = -1.0 * (N : @f) * d.frombits(d.L2) var M = (N1 : @i) / 32 var J = (N2 : std.size) /* Compute a polynomial approximation of exp1m */ var R = R1 + R2 var Q = R * R * d.horner(R, d.Ai) var P = R1 + (R2 + Q) /* Expand out */ var Su_hi, Su_lo (Su_hi, Su_lo) = d.S[J] var S_hi = d.frombits(Su_hi) var S_lo = d.frombits(Su_lo) var S = S_hi + S_lo /* Note that [Tan92] includes cases to avoid tripping the underflow flag when not technically required. We currently do not care about such flags, so that logic is omitted. */ if M >= d.precision -> scale2(S_hi + (S * P + (S_lo - scale2(1.0, -M))), M) elif M <= -8 -> scale2(S_hi + (S * P + S_lo), M) - (1.0 : @f) ;; -> scale2((S_hi - scale2(1.0, -M)) + (S_hi * P + S_lo * (P + (1.0 : @f))), M) } generic round = {f : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i, roundable @f -> @i var b = d.tobits(f) var n, e, s (n, e, s) = d.explode(f) var mask = ~((1 << d.nabs) - 1) if need_round_away(0, ((s & mask) : uint64), (d.nabs : int64) + 1) -> d.assem(n, e, 1 + s & mask) ;; -> d.assem(n, e, s & mask) }