ref: 70b4fc9127a3e8863f128642d62d2fbcbf7121be
dir: /lib/math/references/
References [GB91] Shmuel Gal and Boris Bachelis. “An accurate elementary mathematical library for the IEEE floating point standard”. In: ACM Trans. Math. Software 17.1 (1991), pp. 26–45. issn: 0098- 3500. doi: 10.1145/103147.103151. url: https://doi.acm.org/10.1145/103147.103151. [KM06] Peter Kornerup and Jean-Michel Muller. “Choosing starting values for certain Newton–Raphson iterations”. In: Theoretical Computer Science 351 (1 2006), pp. 101–110. doi: https://doi.org/10.1016/j.tcs.2005.09.056. [Lut95] Wolfram Luther. “Highly accurate tables for elementary functions”. In: BIT Numerical Mathematics 35.3 (Sept. 1995), pp. 352–360. doi: 10.1007/BF01732609. url: https://doi.org/10.1007/BF01732609. [Mar00] Peter Markstein. IA-64 and elementary functions : speed and precision. Upper Saddle River, NJ: Prentice Hall, 2000. isbn: 9780130183484. [Mul+10] Jean-Michel Muller et al. Handbook of floating-point arithmetic. Boston: Birkhäuser, 2010. isbn: 9780817647049. [Mul16] J. M. Muller. Elementary functions : algorithms and implementation. Third edition. New York: Birkhäuser, 2016. isbn: 9781489979810. [Tan89] Ping-Tak Peter Tang. “Table-driven Implementation of the Exponential Function in IEEE Floating-point Arithmetic”. In: ACM Trans. Math. Softw. 15.2 (June 1989), pp. 144–157. issn: 0098-3500. doi: 10.1145/63522.214389. url: http://doi.acm.org/10.1145/63522.214389. [Tan90] Ping-Tak Peter Tang. “Table-driven Implementation of the Logarithm Function in IEEE Floating-point Arithmetic”. In: ACM Trans. Math. Softw. 16.4 (Dec. 1990), pp. 378–400. issn: 0098-3500. doi: 10.1145/98267.98294. url: http://doi.acm.org/10.1145/98267.98294. [Tan92] Ping Tak Peter Tang. “Table-driven Implementation of the Expm1 Function in IEEE Floating-point Arithmetic”. In: ACM Trans. Math. Softw. 18.2 (June 1992), pp. 211–222. issn: 0098-3500. doi: 10.1145/146847.146928. url: http://doi.acm.org/10.1145/146847.146928.