ref: 8a3e8add6e0180565312d1079395ad39de4d9ce3
dir: /lib/math/fpmath.myr/
use std
pkg math =
trait fpmath @f =
/* exp-impl */
exp : (f : @f -> @f)
expm1 : (f : @f -> @f)
/* fma-impl */
fma : (x : @f, y : @f, z : @f -> @f)
/* poly-impl */
horner_poly : (x : @f, a : @f[:] -> @f)
horner_polyu : (x : @f, a : @u[:] -> @f)
/* scale2-impl */
scale2 : (f : @f, m : @i -> @f)
/* sqrt-impl */
sqrt : (f : @f -> @f)
/* sum-impl */
kahan_sum : (a : @f[:] -> @f)
priest_sum : (a : @f[:] -> @f)
/* trunc-impl */
trunc : (f : @f -> @f)
ceil : (f : @f -> @f)
floor : (f : @f -> @f)
;;
trait roundable @f -> @i =
/* round-impl */
rn : (f : @f -> @i)
;;
impl std.equatable flt32
impl std.equatable flt64
impl roundable flt64 -> int64
impl roundable flt32 -> int32
impl fpmath flt32
impl fpmath flt64
;;
/*
We consider two floating-point numbers equal if their bits are
equal. This does not treat NaNs specially: two distinct NaNs may
compare equal, or they may compare distinct (if they arise from
different bit patterns).
Additionally, +0.0 and -0.0 compare differently.
*/
impl std.equatable flt32 =
eq = {a : flt32, b : flt32; -> std.flt32bits(a) == std.flt32bits(b)}
;;
impl std.equatable flt64 =
eq = {a : flt64, b : flt64; -> std.flt64bits(a) == std.flt64bits(b)}
;;
impl roundable flt32 -> int32 =
rn = {f : flt32; -> rn32(f) }
;;
impl roundable flt64 -> int64 =
rn = {f : flt64; -> rn64(f) }
;;
impl fpmath flt32 =
fma = {x, y, z; -> fma32(x, y, z)}
exp = {f; -> exp32(f)}
expm1 = {f; -> expm132(f)}
horner_poly = {f, a; -> horner_poly32(f, a)}
horner_polyu = {f, a; -> horner_polyu32(f, a)}
scale2 = {f, m; -> scale232(f, m)}
sqrt = {f; -> sqrt32(f)}
kahan_sum = {l; -> kahan_sum32(l) }
priest_sum = {l; -> priest_sum32(l) }
trunc = {f; -> trunc32(f)}
floor = {f; -> floor32(f)}
ceil = {f; -> ceil32(f)}
;;
impl fpmath flt64 =
fma = {x, y, z; -> fma64(x, y, z)}
exp = {f; -> exp64(f)}
expm1 = {f; -> expm164(f)}
horner_poly = {f, a; -> horner_poly64(f, a)}
horner_polyu = {f, a; -> horner_polyu64(f, a)}
scale2 = {f, m; -> scale264(f, m)}
sqrt = {f; -> sqrt64(f)}
kahan_sum = {l; -> kahan_sum64(l) }
priest_sum = {l; -> priest_sum64(l) }
trunc = {f; -> trunc64(f)}
floor = {f; -> floor64(f)}
ceil = {f; -> ceil64(f)}
;;
extern const rn32 : (f : flt32 -> int32)
extern const rn64 : (f : flt64 -> int64)
extern const exp32 : (x : flt32 -> flt32)
extern const exp64 : (x : flt64 -> flt64)
extern const expm132 : (x : flt32 -> flt32)
extern const expm164 : (x : flt64 -> flt64)
extern const fma32 : (x : flt32, y : flt32, z : flt32 -> flt32)
extern const fma64 : (x : flt64, y : flt64, z : flt64 -> flt64)
extern const horner_poly32 : (f : flt32, a : flt32[:] -> flt32)
extern const horner_poly64 : (f : flt64, a : flt64[:] -> flt64)
extern const horner_polyu32 : (f : flt32, a : uint32[:] -> flt32)
extern const horner_polyu64 : (f : flt64, a : uint64[:] -> flt64)
extern const scale232 : (f : flt32, m : int32 -> flt32)
extern const scale264 : (f : flt64, m : int64 -> flt64)
extern const sqrt32 : (x : flt32 -> flt32)
extern const sqrt64 : (x : flt64 -> flt64)
extern const kahan_sum32 : (l : flt32[:] -> flt32)
extern const kahan_sum64 : (l : flt64[:] -> flt64)
extern const priest_sum32 : (l : flt32[:] -> flt32)
extern const priest_sum64 : (l : flt64[:] -> flt64)
extern const trunc32 : (f : flt32 -> flt32)
extern const trunc64 : (f : flt64 -> flt64)
extern const floor32 : (f : flt32 -> flt32)
extern const floor64 : (f : flt64 -> flt64)
extern const ceil32 : (f : flt32 -> flt32)
extern const ceil64 : (f : flt64 -> flt64)