ref: 8a3e8add6e0180565312d1079395ad39de4d9ce3
dir: /lib/math/util.myr/
use std
pkg math =
const flt32fromflt64 : (f : flt64 -> flt32)
const flt64fromflt32 : (x : flt32 -> flt64)
/* For use in various normalizations */
const find_first1_64 : (b : uint64, start : int64 -> int64)
const find_first1_64_hl : (h : uint64, l : uint64, start : int64 -> int64)
/* >> and <<, but without wrapping when the shift is >= 64 */
const shr : (u : uint64, s : int64 -> uint64)
const shl : (u : uint64, s : int64 -> uint64)
/* Whether RN() requires incrementing after truncating */
const need_round_away : (h : uint64, l : uint64, bitpos_last : int64 -> bool)
;;
const flt64fromflt32 = {f : flt32
var n, e, s
(n, e, s) = std.flt32explode(f)
var xs : uint64 = (s : uint64)
var xe : int64 = (e : int64)
if e == 128
-> std.flt64assem(n, 1024, xs)
elif e == -127
/*
All subnormals in single precision (except 0.0s)
can be upgraded to double precision, since the
exponent range is so much wider.
*/
var first1 = find_first1_64(xs, 23)
if first1 < 0
-> std.flt64assem(n, -1023, 0)
;;
xs = xs << (52 - (first1 : uint64))
xe = -126 - (23 - first1)
-> std.flt64assem(n, xe, xs)
;;
-> std.flt64assem(n, xe, xs << (52 - 23))
}
const flt32fromflt64 = {f : flt64
var n : bool, e : int64, s : uint64
(n, e, s) = std.flt64explode(f)
var ts : uint32
var te : int32 = (e : int32)
if e >= 128
if e == 1023 && s != 0
/* NaN */
-> std.flt32assem(n, 128, 1)
else
/* infinity */
-> std.flt32assem(n, 128, 0)
;;
;;
if e >= -127
/* normal */
ts = ((s >> (52 - 23)) : uint32)
if need_round_away(0, s, 52 - 23)
ts++
if ts & (1 << 24) != 0
ts >>= 1
te++
;;
;;
if te >= -126
-> std.flt32assem(n, te, ts)
;;
;;
/* subnormal already, will have to go to 0 */
if e == -1023
-> std.flt32assem(n, -127, 0)
;;
/* subnormal (at least, it will be) */
te = -127
var shift : int64 = (52 - 23) + (-126 - e)
var ts1 = shr(s, shift)
ts = (ts1 : uint32)
if need_round_away(0, s, shift)
ts++
if ts & (1 << 23) != 0
/* false alarm, it's normal again */
te++
;;
;;
-> std.flt32assem(n, te, ts)
}
/* >> and <<, but without wrapping when the shift is >= 64 */
const shr = {u : uint64, s : int64
if (s : uint64) >= 64
-> 0
else
-> u >> (s : uint64)
;;
}
const shl = {u : uint64, s : int64
if (s : uint64) >= 64
-> 0
else
-> u << (s : uint64)
;;
}
/* Find the first 1 bit in a bitstring */
const find_first1_64 = {b : uint64, start : int64
for var j = start; j >= 0; --j
var m = shl(1, j)
if b & m != 0
-> j
;;
;;
-> -1
}
const find_first1_64_hl = {h, l, start
var first1_h = find_first1_64(h, start - 64)
if first1_h >= 0
-> first1_h + 64
;;
-> find_first1_64(l, 63)
}
/*
For [ h ][ l ], where bitpos_last is the position of the last
bit that was included in the truncated result (l's last bit has
position 0), decide whether rounding up/away is needed. This is
true if
- following bitpos_last is a 1, then a non-zero sequence, or
- following bitpos_last is a 1, then a zero sequence, and the
round would be to even
*/
const need_round_away = {h : uint64, l : uint64, bitpos_last : int64
var first_omitted_is_1 = false
var nonzero_beyond = false
if bitpos_last > 64
first_omitted_is_1 = h & shl(1, bitpos_last - 1 - 64) != 0
nonzero_beyond = nonzero_beyond || h & shr((-1 : uint64), 2 + 64 - (bitpos_last - 64)) != 0
nonzero_beyond = nonzero_beyond || (l != 0)
else
first_omitted_is_1 = l & shl(1, bitpos_last - 1) != 0
nonzero_beyond = nonzero_beyond || l & shr((-1 : uint64), 1 + 64 - bitpos_last) != 0
;;
if !first_omitted_is_1
-> false
;;
if nonzero_beyond
-> true
;;
var hl_is_odd = false
if bitpos_last >= 64
hl_is_odd = h & shl(1, bitpos_last - 64) != 0
else
hl_is_odd = l & shl(1, bitpos_last) != 0
;;
-> hl_is_odd
}