shithub: mc

ref: 90d9a10c0234f5868c2e86882aae72fc931d53fd
dir: /lib/math/powr-impl.myr/

View raw version
use std

use "fpmath"
use "log-impl"
use "util"

/*
   This is an implementation of powr, not pow, so the special cases
   are tailored more closely to the mathematical x^y = e^(y * log(x))
   than to historical C implementations (pow was aligned to the C99
   standard, which was aligned to codify existing practice).

   Even then, some parts of the powr specification are unclear. For
   example, IEEE 754-2008 does not specify what powr(infty, y) must
   return when y is not 0.0 (an erratum was planned in 2010, but
   does not appear to have been released as of 2018).

   As a note: unlike many other functions in this library, there
   has been no serious analysis of the accuracy and speed of this
   particular implementation. Interested observers wishing to improve
   this library will probably find this file goldmine of mistakes,
   both theoretical and practical.
 */
pkg math =
	pkglocal const powr32 : (x : flt32, y : flt32 -> flt32)
	pkglocal const powr64 : (x : flt64, y : flt64 -> flt64)
;;

type fltdesc(@f, @u, @i) = struct
	explode : (f : @f -> (bool, @i, @u))
	assem : (n : bool, e : @i, s : @u -> @f)
	tobits : (f : @f -> @u)
	frombits : (u : @u -> @f)
	nan : @u
	inf : @u
	expmask : @u
	precision : @u
	emax : @i
	emin : @i
	sgnmask : @u
	sig8mask : @u
	sig8last : @u
	split_prec_mask : @u
	split_prec_mask2 : @u
	C : (@u, @u)[:]
	eps_inf_border : @u
	eps_zero_border : @u
	exp_inf_border : @u
	exp_zero_border : @u
	exp_subnormal_border : @u
	itercount : @u
;;

const desc32 : fltdesc(flt32, uint32, int32) =  [
	.explode = std.flt32explode,
	.assem = std.flt32assem,
	.tobits = std.flt32bits,
	.frombits = std.flt32frombits,
	.nan = 0x7fc00000,
	.inf = 0x7f800000,
	.expmask = 0x7f800000, /* mask to detect inf or NaN (inf, repeated for clarity) */
	.precision = 24,
	.emax = 127,
	.emin = -126,
	.sgnmask = 1 << 31,
	.sig8mask = 0xffff0000, /* Mask to get 8 significant bits */
	.sig8last = 16, /* Last bit kept when masking */
	.split_prec_mask = 0xffff0000, /* 16 trailing zeros */
	.split_prec_mask2 = 0xfffff000, /* 12 trailing zeros */
	.C = accurate_logs32[0:130], /* See log-impl.myr */
	.eps_inf_border = 0x4eb00f34, /* maximal y st. (1.00..1)^y < oo */
	.eps_zero_border = 0x4ecff1b4, /* minimal y st. (0.99..9)^y > 0 */
	.exp_inf_border = 0x42b17218, /* maximal y such that e^y < oo */
	.exp_zero_border = 0xc2cff1b4, /* minimal y such that e^y > 0 */
	.exp_subnormal_border = 0xc2aeac50, /* minimal y such that e^y is normal */
	.itercount = 4, /* How many iterations of Taylor series for (1 + f)^y' */
]

const desc64 : fltdesc(flt64, uint64, int64) =  [
	.explode = std.flt64explode,
	.assem = std.flt64assem,
	.tobits = std.flt64bits,
	.frombits = std.flt64frombits,
	.nan = 0x7ff8000000000000,
	.inf = 0x7ff0000000000000,
	.expmask = 0x7ff0000000000000,
	.precision = 53,
	.emax = 1023,
	.emin = -1022,
	.sgnmask = 1 << 63,
	.sig8mask = 0xffffe00000000000, /* Mask to get 8 significant bits */
	.sig8last = 45, /* Last bit kept when masking */
	.split_prec_mask = 0xffffff0000000000, /* 40 trailing zeroes */
	.split_prec_mask2 = 0xfffffffffffc0000, /* 18 trailing zeroes */
	.C = accurate_logs64[0:130], /* See log-impl.myr */
	.eps_inf_border = 0x43d628b76e3a7b61, /* maximal y st. (1.00..1)^y < oo */
	.eps_zero_border = 0x43d74e9c65eceee0, /*  minimal y st. (0.99..9)^y > 0 */
	.exp_inf_border = 0x40862e42fefa39ef, /* maximal y such that e^y < oo */
	.exp_zero_border = 0xc0874910d52d3052, /* minimal y such that e^y > 0 */
	.exp_subnormal_border = 0xc086232bdd7abcd2, /* minimal y such that e^y is normal */
	.itercount = 8,
]

const powr32 = {x : flt32, y : flt32
	-> powrgen(x, y, desc32)
}

const powr64 = {x : flt64, y : flt64
	-> powrgen(x, y, desc64)
}

generic powrgen = {x : @f, y : @f, d : fltdesc(@f, @u, @i) :: numeric,floating,std.equatable @f, numeric,integral @u, numeric,integral @i
	var xb, yb
	xb = d.tobits(x)
	yb = d.tobits(y)

	var xn : bool, xe : @i, xs : @u
	var yn : bool, ye : @i, ys : @u
	(xn, xe, xs) = d.explode(x)
	(yn, ye, ys) = d.explode(y)

	/*
	   Special cases. Note we do not follow IEEE exceptions.
	 */
	if std.isnan(x) || std.isnan(y)
		/* Propagate NaN */
		-> d.frombits(d.nan)
	elif (xb & ~d.sgnmask == 0)
		if (yb & ~d.sgnmask == 0)
			/* 0^0 is undefined. */
			-> d.frombits(d.nan)
		elif yn
			/* 0^(< 0) is infinity */
			-> d.frombits(d.inf)
		else
			/* otherwise, 0^y = 0. */
			-> (0.0 : @f)
		;;
	elif xn
		/*
		   (< 0)^(anything) is undefined. This comes from
		   thinking of floating-point numbers as representing
		   small ranges of real numbers. If you really want
		   to compute (-1.23)^5, use pown.
		 */
		-> d.frombits(d.nan)
	elif (xb & ~d.sgnmask == d.inf)
		if (yb & ~d.sgnmask == 0)
			/* oo^0 is undefined */
			-> d.frombits(d.nan)
		elif yn
			/* +/-oo^(< 0) is +/-0 */
			-> d.assem(xn, 0, 0)
		elif xn
			/* (-oo)^(anything) is undefined */
			-> d.frombits(d.nan)
		else
			/* oo^(> 0) is oo */
			-> d.frombits(d.inf)
		;;
	elif std.eq(y, (1.0 : @f))
		/* x^1 = x */
		-> x
	elif yb & ~d.sgnmask == 0
		/* (finite, positive)^0 = 1 */
		-> (1.0 : @f)
	elif std.eq(x, (1.0 : @f))
		if yb & ~d.sgnmask == d.inf
			/* 1^oo is undefined */
			-> d.frombits(d.nan)
		else
			/* 1^(finite, positive) = 1 */
			-> (1.0 : @f)
		;;
	elif yb & ~d.sgnmask == d.inf
		if xe < 0
			/* (0 < x < 1)^oo = 0 */
			-> (0.0 : @f)
		else
			/* (x > 1)^oo = oo */
			-> d.frombits(d.inf)
		;;
	;;

	/* Normalize x and y */
	if xe < d.emin
		var first_1 = find_first1_64((xs : uint64), (d.precision : int64))
		var offset = (d.precision : @u) - 1 - (first_1 : @u)
		xs = xs << offset
		xe = d.emin - offset
	;;

	if ye < d.emin
		var first_1 = find_first1_64((ys : uint64), (d.precision : int64))
		var offset = (d.precision : @u) - 1 - (first_1 : @u)
		ys = ys << offset
		ye = d.emin - offset
	;;

	/*
           Split x into 2^N * F * (1 + f), with F = 1 + j/128 (some
           j) and f tiny. Compute F naively by truncation. Compute
           f via f = (x' - 1 - F)/(1 + F), where 1/(1 + F) is
           precomputed and x' is x/2^N. 128 is chosen so that we
           can borrow some constants from log-impl.myr.

           [Tan90] hints at a method of computing x^y which may be
           comparable to this approach, but which is unfortunately
           has not been elaborated on (as far as I can discover).
	 */
	var N = xe
	var j, F, Fn, Fe, Fs
	var xprime = d.assem(false, 0, xs)

	if need_round_away(0, (xs : uint64), (d.sig8last : int64))
		F = d.frombits((d.tobits(xprime) & d.sig8mask) + (1 << d.sig8last))
	else
		F = d.frombits(d.tobits(xprime) & d.sig8mask)
	;;

	(Fn, Fe, Fs) = d.explode(F)

	if Fe != 0
		j = 128
	else
		j = 0x7f & ((d.sig8mask & Fs) >> d.sig8last)
	;;

	var f = (xprime - F)/F

	/*
	   y could actually be above integer infinity, in which
	   case x^y is most certainly infinity of 0. More importantly,
	   we can't safely compute M (below).
	 */
	if x > (1.0 : @f)
		if y > d.frombits(d.eps_inf_border)
			-> d.frombits(d.inf)
		elif -y > d.frombits(d.eps_inf_border)
			-> (0.0 : @f)
		;;
	elif x < (1.0 : @f)
		if y > d.frombits(d.eps_zero_border) && x < (1.0 : @f)
			-> (0.0 : @f)
		elif -y > d.frombits(d.eps_zero_border) && x < (1.0 : @f)
			-> d.frombits(d.inf)
		;;
	;;

	/* Split y into M + y', with |y'| <= 0.5 and M an integer */
	var M = floor(y)
	var yprime = y - M
	if yprime > (0.5 : @f)
		M += (1.0 : @f)
		yprime = y - M
	elif yprime < (-0.5 : @f)
		M -= (1.0: @f)
		yprime = y - M
	;;

	/*
	   We'll multiply y' by log(2) and try to keep extra
	   precision, so we need to split y'. Since the high word
	   of C has 24 - 10 = 14 significant bits (53 - 16 = 37 in
	   flt64 case), we ensure 15 (39) trailing zeroes in
	   yprime_hi.  (We also need this for y'*N, M, &c).
	 */
	var yprime_hi = d.frombits(d.tobits(yprime) & d.split_prec_mask)
	var yprime_lo = yprime - yprime_hi
	var yprimeN_hi = d.frombits(d.tobits((N : @f) * yprime) & d.split_prec_mask)
	var yprimeN_lo = fma((N : @f),  yprime, -yprimeN_hi)
	var M_hi = d.frombits(d.tobits(M) & d.split_prec_mask)
	var M_lo = M - M_hi

	/* 
	   At this point, we've built out
	   
	       x^y = [ 2^N * F * (1 + f) ]^(M + y')
	
	   where N, M are integers, F is well-known, and f, y' are
	   tiny. So we can get to computing

	        /-1-\     /-------------------2--------------------------\     /-3--\
	       2^(N*M) * exp(log(F)*y' + log2*N*y' + log(F)*M + M*log(1+f)) * (1+f)^y'

	   where 1 can be handled by scale2, 2 we can mostly fake
	   by sticking high-precision values for log(F) and log(2)
	   through exp(), and 3 is composed of small numbers,
	   therefore can be reasonably approximated by a Taylor
	   expansion.
	 */

	/* t2 */
	var log2_lo, log2_hi, Cu_hi, Cu_lo
	(log2_hi, log2_lo) = d.C[128]
	(Cu_hi, Cu_lo) = d.C[j]

	var es : @f[20]
	std.slfill(es[:], (0.0 : @f))

	/* log(F) * y' */
	es[0] = d.frombits(Cu_hi) * yprime_hi
	es[1] = d.frombits(Cu_lo) * yprime_hi
	es[2] = d.frombits(Cu_hi) * yprime_lo
	es[3] = d.frombits(Cu_lo) * yprime_lo

	/* log(2) * N * y' */
	es[4] = d.frombits(log2_hi) * yprimeN_hi
	es[5] = d.frombits(log2_lo) * yprimeN_hi
	es[6] = d.frombits(log2_hi) * yprimeN_lo
	es[7] = d.frombits(log2_lo) * yprimeN_lo

	/* log(F) * M */
	es[8] = d.frombits(Cu_hi) * M_hi
	es[9] = d.frombits(Cu_lo) * M_hi
	es[10] = d.frombits(Cu_hi) * M_lo
	es[11] = d.frombits(Cu_lo) * M_lo

	/* log(1 + f) * M */
	var lf = log1p(f)
	var lf_hi = d.frombits(d.tobits(lf) & d.split_prec_mask)
	var lf_lo = lf - lf_hi
	es[12] = lf_hi * M_hi
	es[13] = lf_lo * M_hi
	es[14] = lf_hi * M_lo
	es[15] = lf_lo * M_lo

	/*
	   The correct way to handle this would be to compare
	   magnitudes of eis and parenthesize the additions correctly.
	   We take the cheap way out.
	 */
	var exp_hi = priest_sum(es[0:16])

	/*
	   We would like to just compute exp(exp_hi) * exp(exp_lo).
	   However, if that takes us into subnormal territory, yet
	   N * M is large, that will throw away a few bits of
	   information. We can correct for this by adding in a few
	   copies of P*log(2), then subtract off P when we compute
	   scale2() at the end.

	   We also have to be careful that P doesn't have too many
	   significant bits, otherwise we throw away some information
	   of log2_hi.
	 */
	var P = -rn(exp_hi / d.frombits(log2_hi))
	var P_f = (P : @f)
	P_f = d.frombits(d.tobits(P_f) & d.split_prec_mask2)
	P = rn(P_f)

	es[16] = P_f * d.frombits(log2_hi)
	es[17] = P_f * d.frombits(log2_lo)
	exp_hi = priest_sum(es[0:18])
	es[18] = -exp_hi
	var exp_lo = priest_sum(es[0:19])


	var t2 = exp(exp_hi) * exp(exp_lo)

	/*
	   t3: Abbreviated Taylor expansion for (1 + f)^y' - 1.
	   Since f is on the order of 2^-7 (and y' is on the order
	   of 2^-1), we need to go up to f^3 for single-precision,
	   and f^7 for double. We can then compute (1 + t3) * t2

	   The expansion is \Sum_{k=1}^{\infty} {y' \choose k} x^k
	 */
	var terms : @f[10] = [
		(0.0 : @f),  (0.0 : @f),  (0.0 : @f),  (0.0 : @f),  (0.0 : @f),
		(0.0 : @f),  (0.0 : @f),  (0.0 : @f),  (0.0 : @f),  (0.0 : @f),
	]
	var current = (1.0 : @f)
	for var j = 0; j <= d.itercount; ++j
		current = current * f * (yprime - (j : @f)) / ((j : @f) + (1.0 : @f))
		terms[j] = current
	;;
	var t3 = priest_sum(terms[0:d.itercount + 1])

	var total_exp_f = (N : @f) * M - (P : @f)
	if total_exp_f > ((d.emax - d.emin + d.precision + 1) : @f)
		-> d.frombits(d.inf)
	elif total_exp_f < -((d.emax - d.emin + d.precision + 1) : @f)
		-> (0.0 : @f)
	;;

	/*
	   Pull t2's exponent out so that we don't hit subnormal
	   calculation with the t3 multiplication
	 */
	var t2n, t2e, t2s
	(t2n, t2e, t2s) = d.explode(t2)

	if t2e < d.emin
		var t2_first_1 = find_first1_64((t2s : uint64), (d.precision : int64))
		var t2_offset = (d.precision : @u) - 1 - (t2_first_1 : @u)
		t2s = t2s << t2_offset
		t2e = d.emin - (t2_offset : @i)
	;;

	t2 = d.assem(t2n, 0, t2s)
	P -= t2e

	var base = fma(t2, t3, t2)
	-> scale2(base, N * rn(M) - P)
}