ref: bdf0ed62196f1e67d65b3346ae45d1a0e322bd00
dir: /lib/math/fpmath.myr/
use std use "impls" pkg math = trait fpmath @f = /* atan-impl */ atan : (x : @f -> @f) atan2 : (y : @f, x : @f -> @f) /* exp-impl */ exp : (x : @f -> @f) expm1 : (x : @f -> @f) /* fma-impl */ fma : (x : @f, y : @f, z : @f -> @f) /* log-impl */ log : (x : @f -> @f) log1p : (x : @f -> @f) /* poly-impl */ horner_poly : (x : @f, a : @f[:] -> @f) horner_polyu : (x : @f, a : @u[:] -> @f) /* pown-impl */ pown : (x : @f, n : @i -> @f) rootn : (x : @f, n : @u -> @f) /* powr-impl */ powr : (x : @f, y : @f -> @f) /* scale2-impl */ scale2 : (x : @f, m : @i -> @f) /* sin-impl */ sin : (x : @f -> @f) cos : (x : @f -> @f) sincos : (x : @f -> (@f, @f)) /* sqrt-impl */ sqrt : (x : @f -> @f) /* sum-impl */ kahan_sum : (a : @f[:] -> @f) priest_sum : (a : @f[:] -> @f) /* tan-impl */ tan : (x : @f -> @f) cot : (x : @f -> @f) /* trunc-impl */ trunc : (x : @f -> @f) ceil : (x : @f -> @f) floor : (x : @f -> @f) ;; trait roundable @f -> @i = /* round-impl */ rn : (x : @f -> @i) ;; impl std.equatable flt32 impl std.equatable flt64 impl roundable flt64 -> int64 impl roundable flt32 -> int32 impl fpmath flt32 impl fpmath flt64 ;; /* We consider two floating-point numbers equal if their bits are equal. This does not treat NaNs specially: two distinct NaNs may compare equal, or they may compare distinct (if they arise from different bit patterns). Additionally, +0.0 and -0.0 compare differently. */ impl std.equatable flt32 = eq = {a : flt32, b : flt32; -> std.flt32bits(a) == std.flt32bits(b)} ;; impl std.equatable flt64 = eq = {a : flt64, b : flt64; -> std.flt64bits(a) == std.flt64bits(b)} ;; impl roundable flt32 -> int32 = rn = {x : flt32; -> rn32(x) } ;; impl roundable flt64 -> int64 = rn = {x : flt64; -> rn64(x) } ;; impl fpmath flt32 = atan = {x; -> atan32(x)} atan2 = {y, x; -> atan232(y, x)} fma = {x, y, z; -> fma32(x, y, z)} exp = {x; -> exp32(x)} expm1 = {x; -> expm132(x)} log = {x; -> log32(x)} log1p = {x; -> log1p32(x)} horner_poly = {x, a; -> horner_poly32(x, a)} horner_polyu = {x, a; -> horner_polyu32(x, a)} pown = {x, n; -> pown32(x, n)} rootn = {x, q; -> rootn32(x, q)} powr = {x, y; -> powr32(x, y)} scale2 = {x, m; -> scale232(x, m)} sin = {x; -> sin32(x)} cos = {x; -> cos32(x)} sincos = {x; -> sincos32(x)} sqrt = {x; -> sqrt32(x)} kahan_sum = {l; -> kahan_sum32(l) } priest_sum = {l; -> priest_sum32(l) } tan = {x; -> tan32(x)} cot = {x; -> cot32(x)} trunc = {x; -> trunc32(x)} floor = {x; -> floor32(x)} ceil = {x; -> ceil32(x)} ;; impl fpmath flt64 = atan = {x; -> atan64(x)} atan2 = {y, x; -> atan264(y, x)} fma = {x, y, z; -> fma64(x, y, z)} exp = {x; -> exp64(x)} expm1 = {x; -> expm164(x)} log = {x; -> log64(x)} log1p = {x; -> log1p64(x)} horner_poly = {x, a; -> horner_poly64(x, a)} horner_polyu = {x, a; -> horner_polyu64(x, a)} pown = {x, n; -> pown64(x, n)} rootn = {x, q; -> rootn64(x, q)} powr = {x, y; -> powr64(x, y)} scale2 = {x, m; -> scale264(x, m)} sin = {x; -> sin64(x)} cos = {x; -> cos64(x)} sincos = {x; -> sincos64(x)} sqrt = {x; -> sqrt64(x)} kahan_sum = {l; -> kahan_sum64(l) } priest_sum = {l; -> priest_sum64(l) } tan = {x; -> tan64(x)} cot = {x; -> cot64(x)} trunc = {x; -> trunc64(x)} floor = {x; -> floor64(x)} ceil = {x; -> ceil64(x)} ;;