ref: cebd9262172a94782ffadd1ebc2bf66dfee971e1
dir: /lib/crypto/curve25519.myr/
/* Copyright 2008, Google Inc. * Translated to Myrddin by Ori Bernstein in 2018 * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * curve25519: Curve25519 elliptic curve, public key function * * http://code.google.com/p/curve25519-donna/ * * Adam Langley <agl@imperialviolet.org> * * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to> * * More information about curve25519 can be found here * http://cr.yp.to/ecdh.html * * djb's sample implementation of curve25519 is written in a special assembly * language called qhasm and uses the floating point registers. * * This is, almost, a clean room reimplementation from the curve25519 paper. It * uses many of the tricks described therein. Only the crecip function is taken * from the sample implementation. */ use std pkg crypto = const Nine : byte[:] const curve25519 : (pub : byte[:/*32*/], secret : byte[:/*32*/], basepoint : byte[:/*32*/] -> void) ;; const Nine = \ "\x09\x00\x00\x00\x00\x00\x00\x00" \ "\x00\x00\x00\x00\x00\x00\x00\x00" \ "\x00\x00\x00\x00\x00\x00\x00\x00" \ "\x00\x00\x00\x00\x00\x00\x00\x00" /* Sum two numbers: out += in */ const fsum = {out, in for var i = 0; i < 10; i += 2 out[0 + i] = out[0 + i] + in[0 + i] out[1 + i] = out[1 + i] + in[1 + i] ;; } /* Find the difference of two numbers: out = in - out * (note the order of the arguments!) */ const fdiff = {out, in for var i = 0; i < 10; ++i out[i] = in[i] - out[i] ;; } /* Multiply a number my a scalar: out = in * scalar */ const fscalarproduct = {out, in, scalar for var i = 0; i < 10; ++i out[i] = in[i] * scalar ;; } /* Multiply two numbers: out = in2 * in * * out must be distinct to both ins. The ins are reduced coefficient * form, the out is not. */ const fproduct = {output, in2, in output[0] = in2[0] * in[0] output[1] = in2[0] * in[1] + \ in2[1] * in[0] output[2] = 2 * in2[1] * in[1] + \ in2[0] * in[2] + \ in2[2] * in[0] output[3] = in2[1] * in[2] + \ in2[2] * in[1] + \ in2[0] * in[3] + \ in2[3] * in[0] output[4] = in2[2] * in[2] + \ 2 * (in2[1] * in[3] + \ in2[3] * in[1]) + \ in2[0] * in[4] + \ in2[4] * in[0] output[5] = in2[2] * in[3] + \ in2[3] * in[2] + \ in2[1] * in[4] + \ in2[4] * in[1] + \ in2[0] * in[5] + \ in2[5] * in[0] output[6] = 2 * (in2[3] * in[3] + \ in2[1] * in[5] + \ in2[5] * in[1]) + \ in2[2] * in[4] + \ in2[4] * in[2] + \ in2[0] * in[6] + \ in2[6] * in[0] output[7] = in2[3] * in[4] + \ in2[4] * in[3] + \ in2[2] * in[5] + \ in2[5] * in[2] + \ in2[1] * in[6] + \ in2[6] * in[1] + \ in2[0] * in[7] + \ in2[7] * in[0] output[8] = in2[4] * in[4] + \ 2 * (in2[3] * in[5] + \ in2[5] * in[3] + \ in2[1] * in[7] + \ in2[7] * in[1]) + \ in2[2] * in[6] + \ in2[6] * in[2] + \ in2[0] * in[8] + \ in2[8] * in[0] output[9] = in2[4] * in[5] + \ in2[5] * in[4] + \ in2[3] * in[6] + \ in2[6] * in[3] + \ in2[2] * in[7] + \ in2[7] * in[2] + \ in2[1] * in[8] + \ in2[8] * in[1] + \ in2[0] * in[9] + \ in2[9] * in[0] output[10] = 2 * (in2[5] * in[5] + \ in2[3] * in[7] + \ in2[7] * in[3] + \ in2[1] * in[9] + \ in2[9] * in[1]) + \ in2[4] * in[6] + \ in2[6] * in[4] + \ in2[2] * in[8] + \ in2[8] * in[2] output[11] = in2[5] * in[6] + \ in2[6] * in[5] + \ in2[4] * in[7] + \ in2[7] * in[4] + \ in2[3] * in[8] + \ in2[8] * in[3] + \ in2[2] * in[9] + \ in2[9] * in[2] output[12] = in2[6] * in[6] + \ 2 * (in2[5] * in[7] + \ in2[7] * in[5] + \ in2[3] * in[9] + \ in2[9] * in[3]) + \ in2[4] * in[8] + \ in2[8] * in[4] output[13] = in2[6] * in[7] + \ in2[7] * in[6] + \ in2[5] * in[8] + \ in2[8] * in[5] + \ in2[4] * in[9] + \ in2[9] * in[4] output[14] = 2 * (in2[7] * in[7] + \ in2[5] * in[9] + \ in2[9] * in[5]) + \ in2[6] * in[8] + \ in2[8] * in[6] output[15] = in2[7] * in[8] + \ in2[8] * in[7] + \ in2[6] * in[9] + \ in2[9] * in[6] output[16] = in2[8] * in[8] + \ 2 * (in2[7] * in[9] + \ in2[9] * in[7]) output[17] = in2[8] * in[9] + \ in2[9] * in[8] output[18] = 2 * in2[9] * in[9] } /* Reduce a long form to a short form by taking the input mod 2^255 - 19. */ const freducedegree= {output output[8] += output[18] << 4; output[8] += output[18] << 1; output[8] += output[18]; output[7] += output[17] << 4; output[7] += output[17] << 1; output[7] += output[17]; output[6] += output[16] << 4; output[6] += output[16] << 1; output[6] += output[16]; output[5] += output[15] << 4; output[5] += output[15] << 1; output[5] += output[15]; output[4] += output[14] << 4; output[4] += output[14] << 1; output[4] += output[14]; output[3] += output[13] << 4; output[3] += output[13] << 1; output[3] += output[13]; output[2] += output[12] << 4; output[2] += output[12] << 1; output[2] += output[12]; output[1] += output[11] << 4; output[1] += output[11] << 1; output[1] += output[11]; output[0] += output[10] << 4; output[0] += output[10] << 1; output[0] += output[10]; } /* Reduce all coeff of the short form in to be -2**25 <= x <= 2**25 */ const freducecoeff = {out var over var hi, sgn, round out[10] = 0; for var i = 0; i < 10; i += 2 /* out[i]/2^26, constant time */ hi = ((out[i] : uint64) >> 32 : uint32) sgn = (hi : int32) >> 31 round = (sgn : uint32) >> 6; /* Should return v / (1<<26) */ over = (out[i] + (round : int64)) >> 26 out[i] -= over << 26; out[i+1] += over; hi = ((out[i + 1] : uint64) >> 32 : uint32) sgn = (hi : int32) >> 31 round = (sgn : uint32) >> 7 /* Should return v / (1<<26) */ over = (out[i+1] + (round : int64)) >> 25 out[i+1] -= over << 25; out[i+2] += over; ;; /* Now |out[10]| < 2 ^ 38 and all other coefficients are reduced. */ out[0] += out[10] << 4 out[0] += out[10] << 1 out[0] += out[10]; out[10] = 0 /* * Now out[1..9] are reduced, and |out[0]| < 2^26 + 19 * 2^38 * So |over| will be no more than 77825 */ /* out[i]/2^26, constant time */ hi = ((out[0] : uint64) >> 32 : uint32) sgn = (hi : int32) >> 31 round = (sgn : uint32) >> 6; /* Should return v / (1<<26) */ over = (out[0] + (round : int64)) >> 26 out[0] -= over << 26; out[1] += over; /* * Now out[0,2..9] are reduced, and |out[1]| < 2^25 + 77825 * So |over| will be no more than 1. * out[1] fits in 32 bits, so we can use div_s32_by_2_25 here. */ /* * Finally, out[0,1,3..9] are reduced, and out[2] is "nearly reduced": * we have |out[2]| <= 2^26. This is good enough for all of our math, * but it will require an extra freduce_coefficients before fcontract. */ } /* A helpful wrapper around fproduct: out = in * in2. * * out must be distinct to both ins. The out is reduced degree and * reduced coefficient. */ const fmul = {out, in, in2 var t : int64[19] fproduct(t[:], in, in2) freducedegree(t[:]) freducecoeff(t[:]) std.slcp(out[:10], t[:10]) } const fsquareinner = {out, in var tmp : int64 out[0] = in[0] * in[0] out[1] = 2 * in[0] * in[1] out[2] = 2 * (in[1] * in[1] + \ in[0] * in[2]) out[3] = 2 * (in[1] * in[2] + \ in[0] * in[3]) out[4] = in[2] * in[2] + \ 4 * in[1] * in[3] + \ 2 * in[0] * in[4] out[5] = 2 * (in[2] * in[3] + \ in[1] * in[4] + \ in[0] * in[5]) out[6] = 2 * (in[3] * in[3] + \ in[2] * in[4] + \ in[0] * in[6] + \ 2 * in[1] * in[5]) out[7] = 2 * (in[3] * in[4] + \ in[2] * in[5] + \ in[1] * in[6] + \ in[0] * in[7]) tmp = in[1] * in[7] + in[3] * in[5] out[8] = in[4] * in[4] + \ 2 * (in[2] * in[6] + \ in[0] * in[8] + \ 2 * tmp) out[9] = 2 * (in[4] * in[5] + \ in[3] * in[6] + \ in[2] * in[7] + \ in[1] * in[8] + \ in[0] * in[9]) tmp = in[3] * in[7] + in[1] * in[9] out[10] = 2 * (in[5] * in[5] + \ in[4] * in[6] + \ in[2] * in[8] + \ 2 * tmp) out[11] = 2 * (in[5] * in[6] + \ in[4] * in[7] + \ in[3] * in[8] + \ in[2] * in[9]) out[12] = in[6] * in[6] + \ 2 * (in[4] * in[8] + \ 2 * (in[5] * in[7] + \ in[3] * in[9])) out[13] = 2 * (in[6] * in[7] + \ in[5] * in[8] + \ in[4] * in[9]) out[14] = 2 * (in[7] * in[7] + \ in[6] * in[8] + \ 2 * in[5] * in[9]) out[15] = 2 * (in[7] * in[8] + \ in[6] * in[9]) out[16] = in[8] * in[8] + \ 4 * in[7] * in[9] out[17] = 2 * in[8] * in[9] out[18] = 2 * in[9] * in[9] } const fsquare = {out, in var t : int64[19] fsquareinner(t[:], in) freducedegree(t[:]) freducecoeff(t[:]) std.slcp(out[:10], t[:10]) } /* Take a little-endian, 32-byte number and expand it into polynomial form */ const fexpand = {out, in /* * #define F(n,start,shift,mask) \ * out[n] = (((in[start + 0] : int64) | \ * (in[start + 1] : int64) << 8 | \ * (in[start + 2] : int64) << 16 | \ * (in[start + 3] : int64) << 24) >> shift) & mask * F(0, 0, 0, 0x3ffffff) * F(1, 3, 2, 0x1ffffff) * F(2, 6, 3, 0x3ffffff) * F(3, 9, 5, 0x1ffffff) * F(4, 12, 6, 0x3ffffff) * F(5, 16, 0, 0x1ffffff) * F(6, 19, 1, 0x3ffffff() * F(7, 22, 3, 0x1ffffff) * F(8, 25, 4, 0x3ffffff) * F(9, 28, 6, 0x1ffffff) * #undef F */ out[0] = (((in[0 + 0] : int64) | (in[0 + 1] : int64) << 8 | (in[0 + 2] : int64) << 16 | (in[0 + 3] : int64) << 24) >> 0) & 0x3ffffff out[1] = (((in[3 + 0] : int64) | (in[3 + 1] : int64) << 8 | (in[3 + 2] : int64) << 16 | (in[3 + 3] : int64) << 24) >> 2) & 0x1ffffff out[2] = (((in[6 + 0] : int64) | (in[6 + 1] : int64) << 8 | (in[6 + 2] : int64) << 16 | (in[6 + 3] : int64) << 24) >> 3) & 0x3ffffff out[3] = (((in[9 + 0] : int64) | (in[9 + 1] : int64) << 8 | (in[9 + 2] : int64) << 16 | (in[9 + 3] : int64) << 24) >> 5) & 0x1ffffff out[4] = (((in[12 + 0] : int64) | (in[12 + 1] : int64) << 8 | (in[12 + 2] : int64) << 16 | (in[12 + 3] : int64) << 24) >> 6) & 0x3ffffff out[5] = (((in[16 + 0] : int64) | (in[16 + 1] : int64) << 8 | (in[16 + 2] : int64) << 16 | (in[16 + 3] : int64) << 24) >> 0) & 0x1ffffff out[6] = (((in[19 + 0] : int64) | (in[19 + 1] : int64) << 8 | (in[19 + 2] : int64) << 16 | (in[19 + 3] : int64) << 24) >> 1) & 0x3ffffff out[7] = (((in[22 + 0] : int64) | (in[22 + 1] : int64) << 8 | (in[22 + 2] : int64) << 16 | (in[22 + 3] : int64) << 24) >> 3) & 0x1ffffff out[8] = (((in[25 + 0] : int64) | (in[25 + 1] : int64) << 8 | (in[25 + 2] : int64) << 16 | (in[25 + 3] : int64) << 24) >> 4) & 0x3ffffff out[9] = (((in[28 + 0] : int64) | (in[28 + 1] : int64) << 8 | (in[28 + 2] : int64) << 16 | (in[28 + 3] : int64) << 24) >> 6) & 0x1ffffff } /* s32_eq returns 0xffffffff iff a == b and zero otherwise. */ const s32_eq = {a, b a = ~(a ^ b) a &= a << 16 a &= a << 8 a &= a << 4 a &= a << 2 a &= a << 1 -> a >> 31 } /* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are both non-negative. */ const s32_gte = {a, b a -= b /* a >= 0 iff a >= b. */ -> ~(a >> 31) } /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array */ const fcontract = {out : byte[:], in_limbs : int64[:] var mask, carry var in : int32[10] for var i = 0; i < 10; i++ in[i] = (in_limbs[i] : int32) ;; for var j = 0; j < 2; ++j for var i = 0; i < 9; ++i if (i & 1) == 1 /* This calculation is a time-invariant way to make in[i] positive * by borrowing from the next-larger int64_t. */ mask = in[i] >> 31 carry = -((in[i] & mask) >> 25); in[i+0] = in[i] + (carry << 25) in[i+1] = in[i+1] - carry else mask = in[i] >> 31 carry = -((in[i] & mask) >> 26) in[i+0] = in[i] + (carry << 26) in[i+1] = in[i+1] - carry ;; ;; mask = in[9] >> 31 carry = -((in[9] & mask) >> 25) in[9] = in[9] + (carry << 25) in[0] = in[0] - (carry * 19) ;; /* The first borrow-propagation pass above ended with every int64_t except (possibly) in[0] non-negative. Since each in int64_t except in[0] is decreased by at most 1 by a borrow-propagation pass, the second borrow-propagation pass could only have wrapped around to decrease in[0] again if the first pass left in[0] negative *and* in[1] through in[9] were all zero. In that case, in[1] is now 2^25 - 1, and this last borrow-propagation step will leave in[1] non-negative. */ mask = in[0] >> 31 carry = -((in[0] & mask) >> 26) in[0] = in[0] + (carry << 26) in[1] = in[1] - carry for var j = 0; j < 2; j++ for var i = 0; i < 9; i++ if (i & 1) == 1 carry = in[1] >> 25 in[i+0] &= 0x1ffffff in[i+1] += carry else carry = in[i] >> 26 in[i+0] &= 0x3ffffff in[i+1] += carry ;; ;; carry = in[9] >> 25 in[9] &= 0x1ffffff in[0] += (19 * carry) ;; mask = s32_gte(in[0], 0x3ffffed) for var i = 1; i < 10; i++ if (i & 1) == 1 mask &= s32_eq(in[i], 0x1ffffff) else mask &= s32_eq(in[i], 0x3ffffff) ;; ;; in[0] -= (mask & 0x3ffffed) for var i = 1; i < 10; i++ if (i & 1) == 1 in[i] -= (mask & 0x1ffffff) else in[i] -= (mask & 0x3ffffff) ;; ;; /* Both passes through the above loop, plus the last 0-to-1 step, are necessary: if in[9] is -1 and in[0] through in[8] are 0, negative values will remain in the array until the end. */ in[1] <<= 2 in[2] <<= 3 in[3] <<= 5 in[4] <<= 6 in[6] <<= 1 in[7] <<= 3 in[8] <<= 4 in[9] <<= 6 out[0] = 0 out[16] = 0 out[ 0+0] |= (in[0] & 0xff : byte); out[ 0+1] = ((in[0] >> 8) & 0xff : byte); out[ 0+2] = ((in[0] >> 16) & 0xff : byte); out[ 0+3] = ((in[0] >> 24) & 0xff : byte) out[ 3+0] |= (in[1] & 0xff : byte); out[ 3+1] = ((in[1] >> 8) & 0xff : byte); out[ 3+2] = ((in[1] >> 16) & 0xff : byte); out[ 3+3] = ((in[1] >> 24) & 0xff : byte) out[ 6+0] |= (in[2] & 0xff : byte); out[ 6+1] = ((in[2] >> 8) & 0xff : byte); out[ 6+2] = ((in[2] >> 16) & 0xff : byte); out[ 6+3] = ((in[2] >> 24) & 0xff : byte) out[ 9+0] |= (in[3] & 0xff : byte); out[ 9+1] = ((in[3] >> 8) & 0xff : byte); out[ 9+2] = ((in[3] >> 16) & 0xff : byte); out[ 9+3] = ((in[3] >> 24) & 0xff : byte) out[12+0] |= (in[4] & 0xff : byte); out[12+1] = ((in[4] >> 8) & 0xff : byte); out[12+2] = ((in[4] >> 16) & 0xff : byte); out[12+3] = ((in[4] >> 24) & 0xff : byte) out[16+0] |= (in[5] & 0xff : byte); out[16+1] = ((in[5] >> 8) & 0xff : byte); out[16+2] = ((in[5] >> 16) & 0xff : byte); out[16+3] = ((in[5] >> 24) & 0xff : byte) out[19+0] |= (in[6] & 0xff : byte); out[19+1] = ((in[6] >> 8) & 0xff : byte); out[19+2] = ((in[6] >> 16) & 0xff : byte); out[19+3] = ((in[6] >> 24) & 0xff : byte) out[22+0] |= (in[7] & 0xff : byte); out[22+1] = ((in[7] >> 8) & 0xff : byte); out[22+2] = ((in[7] >> 16) & 0xff : byte); out[22+3] = ((in[7] >> 24) & 0xff : byte) out[25+0] |= (in[8] & 0xff : byte); out[25+1] = ((in[8] >> 8) & 0xff : byte); out[25+2] = ((in[8] >> 16) & 0xff : byte); out[25+3] = ((in[8] >> 24) & 0xff : byte) out[28+0] |= (in[9] & 0xff : byte); out[28+1] = ((in[9] >> 8) & 0xff : byte); out[28+2] = ((in[9] >> 16) & 0xff : byte); out[28+3] = ((in[9] >> 24) & 0xff : byte) } /* Input: Q, Q', Q-Q' * Output: 2Q, Q+Q' * * x2 z3: long form, out 2Q * x3 z3: long form, out Q + Q' * x z: short form, destroyed, in Q * xprime zprime: short form, destroyed, in Q' * qmqp: short form, preserved, in Q - Q' */ const fmonty = {x2, z2, x3, z3, x, z, xprime, zprime, qmqp var origx : int64[10] var origxprime : int64[10] var zzz : int64 [19] var xx : int64[19] var zz : int64[19] var xxprime : int64[19] var zzprime : int64[19] var zzzprime : int64[19] var xxxprime : int64[19] std.clear(&origx); std.clear(&origxprime); std.clear(&zzz); std.clear(&xx); std.clear(&zz); std.clear(&xxprime); std.clear(&zzprime); std.clear(&zzzprime); std.clear(&xxxprime); std.slcp(origx[:10], x[:10]) fsum(x, z) fdiff(z, origx[:]); // does x - z std.slcp(origxprime[:10], xprime[:10]) fsum(xprime, zprime) fdiff(zprime, origxprime[:]) fproduct(xxprime[:], xprime, z) fproduct(zzprime[:], x, zprime) freducedegree(xxprime[:]) freducecoeff(xxprime[:]) freducedegree(zzprime[:]) freducecoeff(zzprime[:]) std.slcp(origxprime[:10], xxprime[:10]) fsum(xxprime[:], zzprime[:]) fdiff(zzprime[:], origxprime[:]) fsquare(xxxprime[:], xxprime[:]) fsquare(zzzprime[:], zzprime[:]) fproduct(zzprime[:], zzzprime[:], qmqp) freducedegree(zzprime[:]) freducecoeff(zzprime[:]) std.slcp(x3[:10], xxxprime[:10]) std.slcp(z3[:10], zzprime[:10]) fsquare(xx[:], x) fsquare(zz[:], z) fproduct(x2, xx[:], zz[:]) freducedegree(x2) freducecoeff(x2) fdiff(zz[:], xx[:]); // does zz = xx - zz std.slfill(zzz[10:], 0) fscalarproduct(zzz[:], zz[:], 121665) /* No need to call freduce_degree here: fscalar_product doesn't increase the degree of its input. */ freducecoeff(zzz[:]) fsum(zzz[:], xx[:]) fproduct(z2, zz[:], zzz[:]) freducedegree(z2) freducecoeff(z2) } const cswap = {a, b, swap var s, x s = (-swap : int32) for var i = 0; i < 10; ++i x = s & ((a[i] : int32) ^ (b[i] : int32)) a[i] = ((a[i] : int32) ^ x : int64) b[i] = ((b[i] : int32) ^ x : int64) ;; } /* Calculates nQ where Q is the x-coordinate of a point on the curve * * resultx/resultz: the x coordinate of the resulting curve point (short form) * n: a little endian, 32-byte number * q: a point of the curve (short form) */ const cmult = {resultx, resultz, n, q var a : int64[19] = [.[0] = 0, .[18] = 0] var b : int64[19] = [.[0] = 1, .[18] = 0] var c : int64[19] = [.[0] = 1, .[18] = 0] var d : int64[19] = [.[0] = 0, .[18] = 0] var e : int64[19] = [.[0] = 0, .[18] = 0] var f : int64[19] = [.[0] = 1, .[18] = 0] var g : int64[19] = [.[0] = 0, .[18] = 0] var h : int64[19] = [.[0] = 1, .[18] = 0] var nqpqx = a[:] var nqpqz = b[:] var nqx = c[:] var nqz = d[:] var nqpqx2 = e[:] var nqpqz2 = f[:] var nqx2 = g[:] var nqz2 = h[:] var byte var t std.slcp(nqpqx[:10], q[:10]) for var i = 0; i < 32; ++i byte = n[31 - i] for var j = 0; j < 8; ++j var bit = (byte >> 7 : int64) cswap(nqx, nqpqx, bit) cswap(nqz, nqpqz, bit) fmonty(nqx2, nqz2, nqpqx2, nqpqz2, nqx, nqz, nqpqx, nqpqz, q) cswap(nqx2, nqpqx2, bit) cswap(nqz2, nqpqz2, bit) t = nqx nqx = nqx2 nqx2 = t t = nqz nqz = nqz2 nqz2 = t t = nqpqx nqpqx = nqpqx2 nqpqx2 = t t = nqpqz nqpqz = nqpqz2 nqpqz2 = t byte <<= 1 ;; ;; std.slcp(resultx[:10], nqx[:10]) std.slcp(resultz[:10], nqz[:10]) } // ----------------------------------------------------------------------------- // Shamelessly copied from djb's code // ----------------------------------------------------------------------------- const crecip = {out, z var z2 : int64[10] var z9 : int64[10] var z11 : int64[10] var z2_5_0 : int64[10] var z2_10_0 : int64[10] var z2_20_0 : int64[10] var z2_50_0 : int64[10] var z2_100_0 : int64[10] var t0 : int64[10] var t1 : int64[10] var i /* 2 */ fsquare(z2[:], z[:]) /* 4 */ fsquare(t1[:], z2[:]) /* 8 */ fsquare(t0[:], t1[:]) /* 9 */ fmul(z9[:] ,t0[:], z[:]) /* 11 */ fmul(z11[:], z9[:], z2[:]) /* 22 */ fsquare(t0[:], z11[:]) /* 2^5 - 2^0 = 31 */ fmul(z2_5_0[:], t0[:], z9[:]) /* 2^6 - 2^1 */ fsquare(t0[:], z2_5_0[:]) /* 2^7 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^8 - 2^3 */ fsquare(t0[:], t1[:]) /* 2^9 - 2^4 */ fsquare(t1[:], t0[:]) /* 2^10 - 2^5 */ fsquare(t0[:],t1[:]) /* 2^10 - 2^0 */ fmul(z2_10_0[:], t0[:], z2_5_0[:]) /* 2^11 - 2^1 */ fsquare(t0[:], z2_10_0[:]) /* 2^12 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^20 - 2^10 */ for i = 2;i < 10;i += 2 fsquare(t0[:],t1[:]) fsquare(t1[:],t0[:]) ;; /* 2^20 - 2^0 */ fmul(z2_20_0[:], t1[:], z2_10_0[:]) /* 2^21 - 2^1 */ fsquare(t0[:], z2_20_0[:]) /* 2^22 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^40 - 2^20 */ for i = 2;i < 20;i += 2 fsquare(t0[:], t1[:]) fsquare(t1[:], t0[:]) ;; /* 2^40 - 2^0 */ fmul(t0[:], t1[:], z2_20_0[:]) /* 2^41 - 2^1 */ fsquare(t1[:],t0[:]) /* 2^42 - 2^2 */ fsquare(t0[:],t1[:]) /* 2^50 - 2^10 */ for i = 2;i < 10;i += 2 fsquare(t1[:],t0[:]) fsquare(t0[:],t1[:]) ;; /* 2^50 - 2^0 */ fmul(z2_50_0[:], t0[:], z2_10_0[:]) /* 2^51 - 2^1 */ fsquare(t0[:], z2_50_0[:]) /* 2^52 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^100 - 2^50 */ for i = 2;i < 50;i += 2 fsquare(t0[:],t1[:]) fsquare(t1[:],t0[:]) ;; /* 2^100 - 2^0 */ fmul(z2_100_0[:], t1[:], z2_50_0[:]) /* 2^101 - 2^1 */ fsquare(t1[:], z2_100_0[:]) /* 2^102 - 2^2 */ fsquare(t0[:], t1[:]) /* 2^200 - 2^100 */ for i = 2;i < 100;i += 2 fsquare(t1[:],t0[:]) fsquare(t0[:],t1[:]) ;; /* 2^200 - 2^0 */ fmul(t1[:],t0[:], z2_100_0[:]) /* 2^201 - 2^1 */ fsquare(t0[:], t1[:]) /* 2^202 - 2^2 */ fsquare(t1[:], t0[:]) /* 2^250 - 2^50 */ for i = 2;i < 50;i += 2 fsquare(t0[:], t1[:]) fsquare(t1[:], t0[:]) ;; /* 2^250 - 2^0 */ fmul(t0[:], t1[:], z2_50_0[:]) /* 2^251 - 2^1 */ fsquare(t1[:], t0[:]) /* 2^252 - 2^2 */ fsquare(t0[:], t1[:]) /* 2^253 - 2^3 */ fsquare(t1[:], t0[:]) /* 2^254 - 2^4 */ fsquare(t0[:], t1[:]) /* 2^255 - 2^5 */ fsquare(t1[:], t0[:]) /* 2^255 - 21 */ fmul(out,t1[:], z11[:]) } const curve25519 = {pub : byte[:/*32*/], secret : byte[:/*32*/], basepoint : byte[:/*32*/] var bp : int64[10] var x : int64[10] var z : int64[11] /* one extra for reduced coefficients */ var zmone : int64[10] std.assert(pub.len == 32 , "wrong pubkey size\n") std.assert(secret.len == 32 , "wrong secret size\n") std.assert(basepoint.len == 32 , "wrong basepoint size\n") secret[0] &= 248 secret[31] &= 127 secret[31] |= 64 fexpand(bp[:], basepoint[:]) cmult(x[:], z[:], secret[:], bp[:]) crecip(zmone[:], z[:]) fmul(z[:], x[:], zmone[:]) fcontract(pub[:], z[:]) }