ref: cebd9262172a94782ffadd1ebc2bf66dfee971e1
dir: /lib/math/util.myr/
use std pkg math = const flt32fromflt64 : (f : flt64 -> flt32) const flt64fromflt32 : (x : flt32 -> flt64) /* For use in various normalizations */ const find_first1_64 : (b : uint64, start : int64 -> int64) const find_first1_64_hl : (h : uint64, l : uint64, start : int64 -> int64) /* >> and <<, but without wrapping when the shift is >= 64 */ const shr : (u : uint64, s : int64 -> uint64) const shl : (u : uint64, s : int64 -> uint64) /* Whether RN() requires incrementing after truncating */ const need_round_away : (h : uint64, l : uint64, bitpos_last : int64 -> bool) /* Multiply x * y to z1 + z2 */ const two_by_two64 : (x : flt64, y : flt64 -> (flt64, flt64)) const two_by_two32 : (x : flt32, y : flt32 -> (flt32, flt32)) /* Multiply (a_hi + a_lo) * (b_hi + b_lo) to (z_hi + z_lo) */ const hl_mult : (a_h : flt64, a_l : flt64, b_h : flt64, b_l : flt64 -> (flt64, flt64)) /* Add (a_hi + a_lo) * (b_hi + b_lo) to (z_hi + z_lo). Must have |a| > |b|. */ const hl_add : (a_h : flt64, a_l : flt64, b_h : flt64, b_l : flt64 -> (flt64, flt64)) /* Compare by magnitude */ const mag_cmp32 : (f : flt32, g : flt32 -> std.order) const mag_cmp64 : (f : flt64, g : flt64 -> std.order) /* Return (s, t) such that s + t = a + b, with s = rn(a + b). */ generic fast2sum : (x : @f, y : @f -> (@f, @f)) :: floating, numeric @f generic slow2sum : (x : @f, y : @f -> (@f, @f)) :: floating, numeric @f /* return (a, b, c), a decent sum for q */ const triple_compensated_sum : (q : flt64[:] -> (flt64, flt64, flt64)) /* Rounds a + b (as flt64s) to a flt32. */ const round_down : (a : flt64, b : flt64 -> flt32) ;; /* Split precision down the middle */ const twentysix_bits_mask = (0xffffffffffffffff << 27) const flt64fromflt32 = {f : flt32 var n, e, s (n, e, s) = std.flt32explode(f) var xs : uint64 = (s : uint64) var xe : int64 = (e : int64) if e == 128 -> std.flt64assem(n, 1024, xs) elif e == -127 /* All subnormals in single precision (except 0.0s) can be upgraded to double precision, since the exponent range is so much wider. */ var first1 = find_first1_64(xs, 23) if first1 < 0 -> std.flt64assem(n, -1023, 0) ;; xs = xs << (52 - (first1 : uint64)) xe = -126 - (23 - first1) -> std.flt64assem(n, xe, xs) ;; -> std.flt64assem(n, xe, xs << (52 - 23)) } const flt32fromflt64 = {f : flt64 var n : bool, e : int64, s : uint64 (n, e, s) = std.flt64explode(f) var ts : uint32 var te : int32 = (e : int32) if e >= 128 if e == 1023 && s != 0 /* NaN */ -> std.flt32assem(n, 128, 1) else /* infinity */ -> std.flt32assem(n, 128, 0) ;; ;; if e >= -127 /* normal */ ts = ((s >> (52 - 23)) : uint32) if need_round_away(0, s, 52 - 23) ts++ if ts & (1 << 24) != 0 ts >>= 1 te++ ;; ;; if te >= -126 -> std.flt32assem(n, te, ts) ;; ;; /* subnormal already, will have to go to 0 */ if e == -1023 -> std.flt32assem(n, -127, 0) ;; /* subnormal (at least, it will be) */ te = -127 var shift : int64 = (52 - 23) + (-126 - e) var ts1 = shr(s, shift) ts = (ts1 : uint32) if need_round_away(0, s, shift) ts++ if ts & (1 << 23) != 0 /* false alarm, it's normal again */ te++ ;; ;; -> std.flt32assem(n, te, ts) } /* >> and <<, but without wrapping when the shift is >= 64 */ const shr = {u : uint64, s : int64 if (s : uint64) >= 64 -> 0 else -> u >> (s : uint64) ;; } const shl = {u : uint64, s : int64 if (s : uint64) >= 64 -> 0 else -> u << (s : uint64) ;; } /* Find the first 1 bit in a bitstring */ const find_first1_64 = {b : uint64, start : int64 for var j = start; j >= 0; --j var m = shl(1, j) if b & m != 0 -> j ;; ;; -> -1 } const find_first1_64_hl = {h, l, start var first1_h = find_first1_64(h, start - 64) if first1_h >= 0 -> first1_h + 64 ;; -> find_first1_64(l, 63) } /* For [ h ][ l ], where bitpos_last is the position of the last bit that was included in the truncated result (l's last bit has position 0), decide whether rounding up/away is needed. This is true if - following bitpos_last is a 1, then a non-zero sequence, or - following bitpos_last is a 1, then a zero sequence, and the round would be to even */ const need_round_away = {h : uint64, l : uint64, bitpos_last : int64 var first_omitted_is_1 = false var nonzero_beyond = false if bitpos_last > 64 first_omitted_is_1 = h & shl(1, bitpos_last - 1 - 64) != 0 nonzero_beyond = nonzero_beyond || h & shr((-1 : uint64), 2 + 64 - (bitpos_last - 64)) != 0 nonzero_beyond = nonzero_beyond || (l != 0) else first_omitted_is_1 = l & shl(1, bitpos_last - 1) != 0 nonzero_beyond = nonzero_beyond || l & shr((-1 : uint64), 1 + 64 - bitpos_last) != 0 ;; if !first_omitted_is_1 -> false ;; if nonzero_beyond -> true ;; var hl_is_odd = false if bitpos_last >= 64 hl_is_odd = h & shl(1, bitpos_last - 64) != 0 else hl_is_odd = l & shl(1, bitpos_last) != 0 ;; -> hl_is_odd } /* Perform high-prec multiplication: x * y = z1 + z2. */ const two_by_two64 = {x : flt64, y : flt64 var xh : flt64 = std.flt64frombits(std.flt64bits(x) & twentysix_bits_mask) var xl : flt64 = x - xh var yh : flt64 = std.flt64frombits(std.flt64bits(y) & twentysix_bits_mask) var yl : flt64 = y - yh /* Multiply out */ var a1 : flt64 = xh * yh var a2 : flt64 = xh * yl var a3 : flt64 = xl * yh var a4 : flt64 = xl * yl /* By-hand compensated summation */ var yy, u, t, v, z, s, c if a2 < a3 std.swap(&a3, &a2) ;; s = a1 c = 0.0 /* a2 */ (s, c) = fast2sum(s, a2) /* a3 */ (yy, u) = slow2sum(c, a3) (t, v) = fast2sum(s, yy) z = u + v (s, c) = fast2sum(t, z) /* a4 */ (yy, u) = slow2sum(c, a4) (t, v) = fast2sum(s, yy) z = u + v (s, c) = fast2sum(t, z) -> (s, c) } /* The same, for flt32s */ const two_by_two32 = {x : flt32, y : flt32 var xL : flt64 = (x : flt64) var yL : flt64 = (y : flt64) var zL : flt64 = xL * yL var s : flt32 = (zL : flt32) var sL : flt64 = (s : flt64) var cL : flt64 = zL - sL var c : flt32 = (cL : flt32) -> (s, c) } const hl_mult = {a_h : flt64, a_l : flt64, b_h : flt64, b_l : flt64 /* [ a_h ][ a_l ] * [ b_h ][ b_l ] = (A) [ a_h*b_h ] (B) + [ a_h*b_l ] (C) + [ a_l*b_h ] (D) + [ a_l*b_l ] We therefore want to keep all of A, and the top halves of the two smaller products B and C. To be pedantic, *_l could be much smaller than pictured above; *_h and *_l need not butt up right against each other. But that won't cause any problems; there's no way we'll ignore important information. */ var Ah, Al (Ah, Al) = two_by_two64(a_h, b_h) var Bh = a_h * b_l var Ch = a_l * b_h var resh, resl, t1, t2 (resh, resl) = slow2sum(Bh, Ch) (resl, t1) = fast2sum(Al, resl) (resh, t2) = slow2sum(resh, resl) (resh, resl) = slow2sum(Ah, resh) -> (resh, resl + (t1 + t2)) } const hl_add = {a_h : flt64, a_l : flt64, b_h : flt64, b_l : flt64 /* Not terribly clever, we just chain a couple of 2sums together. We are free to impose the requirement that |a_h| > |b_h|, because we'll only be using this for a = 1/5, 1/3, and the log(Fi)s from the C tables. However, we can't guarantee that a_l > b_l. For example, compare C1[10] to C2[18]. */ var resh, resl, t1, t2 (t1, t2) = slow2sum(a_l, b_l) (resl, t1) = slow2sum(b_h, t1) (resh, resl) = fast2sum(a_h, resl) -> (resh, resl + (t1 + t2)) } const mag_cmp32 = {f : flt32, g : flt32 var u = std.flt32bits(f) & ~(1 << 31) var v = std.flt32bits(g) & ~(1 << 31) -> std.numcmp(v, u) } const mag_cmp64 = {f : flt64, g : flt64 var u = std.flt64bits(f) & ~(1 << 63) var v = std.flt64bits(g) & ~(1 << 63) -> std.numcmp(v, u) } /* Return (s, t) such that s + t = a + b, with s = rn(a + b). */ generic slow2sum = {a : @f, b : @f :: floating, numeric @f var s = a + b var aa = s - b var bb = s - aa var da = a - aa var db = b - bb var t = da + db -> (s, t) } /* Return (s, t) such that s + t = a + b, with s = rn(a + b), when you KNOW |a| > |b|. */ generic fast2sum = {a : @f, b : @f :: floating, numeric @f var s = a + b var z = s - a var t = b - z -> (s, t) } const triple_compensated_sum = {q : flt64[:] /* TODO: verify, with GAPPA or something, that this is correct. */ std.sort(q, mag_cmp64) var s1 : flt64, s2 : flt64, s3 var t1 : flt64, t2 : flt64, t3 : flt64, t4 : flt64, t5 : flt64, t6 s1 = q[0] s2 = 0.0 s3 = 0.0 for qq : q[1:] (t5, t6) = slow2sum(s3, qq) (t3, t4) = slow2sum(s2, t5) (t1, t2) = slow2sum(s1, t3) s1 = t1 (s2, s3) = slow2sum(t2, t4 + t6) ;; -> (s1, s2, s3) } /* Round a + b to a flt32. Only notable if round(a) is a rounding tie, and b is non-zero */ const round_down = {a : flt64, b : flt64 var au : uint64 = std.flt64bits(a) if au & 0x0000000070000000 == 0x0000000070000000 if b > 0.0 au++ elif b < 0.0 au-- ;; -> (std.flt64frombits(au) : flt32) ;; -> (a : flt32) }