ref: cec2ed10f355e59322f3d148837dca47aab083a6
dir: /lib/math/log-overkill.myr/
use std use "fpmath" use "log-impl" use "exp-impl" use "sum-impl" use "util" /* This is an implementation of log following [Mul16] 8.3.2, returning far too much precision. These are slower than the table-and-low-degree-polynomial implementations of exp-impl.myr and log-impl.myr, but are needed to handle the powr, pown, and rootn functions. This is only for flt64, because if you want this for flt32 you should just cast to flt64, use the fast functions, and then split back. Note that the notation of [Mul16] 8.3.2 is confusing, to say the least. [NM96] is, perhaps, a clearer presentation. To recap, we use an iteration, starting with t_1 = 0, L_1 = x, and iterate as t_{n+1} = t_{n} - ln(1 + d_n 2^{-n}) L_{n+1} = L_n (1 + d_n 2^{-n}) where d_n is in {-1, 0, 1}, chosen so that as n -> oo, L_n approaches 1, then t_n approaches ln(x). If we let l_n = L_n - 1, we initialize l_1 = x - 1 and iterate as l_{n+1} = l_n (1 + d_n 2^{-n}) + d_n 2^{-n} If we further consider l'_n = 2^n l_n, we initialize l'_1 = x - 1, and iterate as l'_{n + 1} = 2 l'_{n} (1 + d_n 2^{-n}) + 2 d_n The nice thing about this is that we can pick d_n easily based on comparing l'_n to some easy constants: { +1 if [l'_n] <= -1/2 d_n = { 0 if [l'_n] = 0 or 1/2 { -1 if [l'_n] >= 1 */ pkg math = pkglocal const logoverkill32 : (x : flt32 -> (flt32, flt32)) pkglocal const logoverkill64 : (x : flt64 -> (flt64, flt64)) ;; /* Tables of 1 +/- 2^-k, for k = 0 to 159, with k = 0 a dummy row. 159 is chosen as the first k such that the error between 2^(-53 * 2) and 2^(-53 * 2) + log(1 + 2^(-k)) is less than 1 ulp, therefore we'll have a full 53 * 2 bits of precision available with these tables. The layout for C_plus is ( ln(1 + 2^-k)[hi], ln(1 + 2^-k)[lo], ln(1 + 2^-k)[very lo]) , and for C_minus it is similar, but handling ln(1 - 2^-k). They are generated by ancillary/log-overkill-constants.c. Conveniently, for k > 27, we can calculate the entry exactly using a few terms of the Taylor expansion for ln(1 + x), with the x^{2+} terms vanishing past k = 53. This is possible since we only care about two flt64s worth of precision. */ const C_plus : (uint64, uint64, uint64)[28] = [ (0x0000000000000000, 0x0000000000000000, 0x0000000000000000), /* dummy */ (0x3fd9f323ecbf984c, 0xbc4a92e513217f5c, 0x38e0c0cfa41ff669), /* k = 1 */ (0x3fcc8ff7c79a9a22, 0xbc64f689f8434012, 0x390a24ae3b2f53a1), /* k = 2 */ (0x3fbe27076e2af2e6, 0xbc361578001e0162, 0x38b55db94ebc4018), /* k = 3 */ (0x3faf0a30c01162a6, 0x3c485f325c5bbacd, 0xb8e0ece597165991), /* k = 4 */ (0x3f9f829b0e783300, 0x3c333e3f04f1ef23, 0xb8d814544147acc9), /* k = 5 */ (0x3f8fc0a8b0fc03e4, 0xbc183092c59642a1, 0xb8b52414fc416fc2), /* k = 6 */ (0x3f7fe02a6b106789, 0xbbce44b7e3711ebf, 0x386a567b6587df34), /* k = 7 */ (0x3f6ff00aa2b10bc0, 0x3c02821ad5a6d353, 0xb8912dcccb588a4a), /* k = 8 */ (0x3f5ff802a9ab10e6, 0x3bfe29e3a153e3b2, 0xb89538d49c4f745e), /* k = 9 */ (0x3f4ffc00aa8ab110, 0xbbe0fecbeb9b6cdb, 0xb877171cf29e89d1), /* k = 10 */ (0x3f3ffe002aa6ab11, 0x3b999e2b62cc632d, 0xb81eae851c58687c), /* k = 11 */ (0x3f2fff000aaa2ab1, 0x3ba0bbc04dc4e3dc, 0x38152723342e000b), /* k = 12 */ (0x3f1fff8002aa9aab, 0x3b910e6678af0afc, 0x382ed521af29bc8d), /* k = 13 */ (0x3f0fffc000aaa8ab, 0xbba3bbc110fec82c, 0xb84f79185e42fbaf), /* k = 14 */ (0x3effffe0002aaa6b, 0xbb953bbbe6661d42, 0xb835071791df7d3e), /* k = 15 */ (0x3eeffff0000aaaa3, 0xbb8553bbbd110fec, 0xb82ff1fae6cea01a), /* k = 16 */ (0x3edffff80002aaaa, 0xbb75553bbbc66662, 0x3805f05f166325ff), /* k = 17 */ (0x3ecffffc0000aaab, 0xbb6d5553bbbc1111, 0x37a380f8138f70f4), /* k = 18 */ (0x3ebffffe00002aab, 0xbb5655553bbbbe66, 0xb7f987507707503c), /* k = 19 */ (0x3eafffff00000aab, 0xbb45755553bbbbd1, 0xb7c10fec7ed7ec7e), /* k = 20 */ (0x3e9fffff800002ab, 0xbb355955553bbbbc, 0xb7d9999875075875), /* k = 21 */ (0x3e8fffffc00000ab, 0xbb2555d55553bbbc, 0x37bf7777809c09a1), /* k = 22 */ (0x3e7fffffe000002b, 0xbb15556555553bbc, 0x37b106666678af8b), /* k = 23 */ (0x3e6ffffff000000b, 0xbb055557555553bc, 0x37a110bbbbbc04e0), /* k = 24 */ (0x3e5ffffff8000003, 0xbaf555559555553c, 0x3791110e6666678b), /* k = 25 */ (0x3e4ffffffc000001, 0xbae555555d555554, 0x37811110fbbbbbc0), /* k = 26 */ (0x3e3ffffffe000000, 0x3ac5555553555556, 0xb76ddddddf333333), /* k = 27 */ ] const C_minus : (uint64, uint64, uint64)[28] = [ (0x0000000000000000, 0x0000000000000000, 0x0000000000000000), /* dummy */ (0xbfe62e42fefa39ef, 0xbc7abc9e3b39803f, 0xb907b57a079a1934), /* k = 1 */ (0xbfd269621134db92, 0xbc7e0efadd9db02b, 0x39163d5cf0b6f233), /* k = 2 */ (0xbfc1178e8227e47c, 0x3c50e63a5f01c691, 0xb8f03c776a3fb0f1), /* k = 3 */ (0xbfb08598b59e3a07, 0x3c5dd7009902bf32, 0x38ea7da07274e01d), /* k = 4 */ (0xbfa0415d89e74444, 0xbc4c05cf1d753622, 0xb8d3bc1c184cef0a), /* k = 5 */ (0xbf90205658935847, 0xbc327c8e8416e71f, 0x38b19642aac1310f), /* k = 6 */ (0xbf8010157588de71, 0xbc146662d417ced0, 0xb87e91702f8418af), /* k = 7 */ (0xbf70080559588b35, 0xbc1f96638cf63677, 0x38a90badb5e868b4), /* k = 8 */ (0xbf60040155d5889e, 0x3be8f98e1113f403, 0x38601ac2204fbf4b), /* k = 9 */ (0xbf50020055655889, 0xbbe9abe6bf0fa436, 0x3867c7d335b216f3), /* k = 10 */ (0xbf40010015575589, 0x3bec8863f23ef222, 0x38852c36a3d20146), /* k = 11 */ (0xbf30008005559559, 0x3bddd332a0e20e2f, 0x385c8b6b9ff05329), /* k = 12 */ (0xbf20004001555d56, 0x3bcddd88863f53f6, 0xb859332cbe6e6ac5), /* k = 13 */ (0xbf10002000555655, 0xbbb62224ccd5f17f, 0xb8366327cc029156), /* k = 14 */ (0xbf00001000155575, 0xbba5622237779c0a, 0xb7d38f7110a9391d), /* k = 15 */ (0xbef0000800055559, 0xbb95562222cccd5f, 0xb816715f87b8e1ee), /* k = 16 */ (0xbee0000400015556, 0x3b75553bbbb1110c, 0x381fb17b1f791778), /* k = 17 */ (0xbed0000200005555, 0xbb79555622224ccd, 0x3805074f75071791), /* k = 18 */ (0xbec0000100001555, 0xbb65d55562222377, 0xb80de7027127028d), /* k = 19 */ (0xbeb0000080000555, 0xbb5565555622222d, 0x37e9995075035075), /* k = 20 */ (0xbea0000040000155, 0xbb45575555622222, 0xb7edddde70270670), /* k = 21 */ (0xbe90000020000055, 0xbb35559555562222, 0xb7c266666af8af9b), /* k = 22 */ (0xbe80000010000015, 0xbb25555d55556222, 0xb7b11bbbbbce04e0), /* k = 23 */ (0xbe70000008000005, 0xbb15555655555622, 0xb7a111666666af8b), /* k = 24 */ (0xbe60000004000001, 0xbb05555575555562, 0xb7911113bbbbbce0), /* k = 25 */ (0xbe50000002000000, 0xbaf5555559555556, 0xb78111112666666b), /* k = 26 */ (0xbe40000001000000, 0xbac5555557555556, 0x376ddddddc888888), /* k = 27 */ ] const logoverkill32 = {x : flt32 var x64 : flt64 = (x : flt64) var l64 : flt64 = log64(x64) var y1 : flt32 = (l64 : flt32) var y2 : flt32 = ((l64 - (y1 : flt64)) : flt32) -> (y1, y2) } const logoverkill64 = {x : flt64 var xn, xe, xs (xn, xe, xs) = std.flt64explode(x) /* Special cases */ if std.isnan(x) -> (std.flt64frombits(0x7ff8000000000000), std.flt64frombits(0x7ff8000000000000)) elif xe == -1024 && xs == 0 /* log (+/- 0) is -infinity */ -> (std.flt64frombits(0xfff0000000000000), std.flt64frombits(0xfff0000000000000)) elif xe == 1023 -> (std.flt64frombits(0xfff8000000000000), std.flt64frombits(0xfff8000000000000)) elif xn /* log(-anything) is NaN */ -> (std.flt64frombits(0x7ff8000000000000), std.flt64frombits(0x7ff8000000000000)) ;; /* Deal with 2^xe up front: multiply xe by a high-precision log(2). We'll add them back in to the giant mess of tis later. */ var xef : flt64 = (xe : flt64) var log_2_hi, log_2_lo (log_2_hi, log_2_lo) = accurate_logs64[128] /* See log-impl.myr */ var lxe_1, lxe_2, lxe_3, lxe_4 (lxe_1, lxe_2) = two_by_two64(xef, std.flt64frombits(log_2_hi)) (lxe_3, lxe_4) = two_by_two64(xef, std.flt64frombits(log_2_lo)) /* We split t into three parts, so that we can gradually build up two flt64s worth of information */ var t1 = 0.0 var t2 = 0.0 var t3 = 0.0 /* We also split lprime. */ var lprime1 var lprime2 (lprime1, lprime2) = slow2sum(std.flt64assem(false, 1, xs), -2.0) var lprime3 = 0.0 for var k = 1; k <= 107; ++k /* Calculate d_k and some quanitites for iteration */ var d = 0.0 var ln_hi : flt64, ln_mi : flt64, ln_lo : flt64 /* Note the truncation method for [Mul16] is for signed-digit systems, which we don't have. This comparison follows from the remark following (8.23), though. */ if lprime1 <= -0.5 d = 1.0 (ln_hi, ln_mi, ln_lo) = get_C_plus(k) elif lprime1 < 1.0 d = 0.0 /* In this case, t_n is unchanged, and we just scale lprime by 2 */ lprime1 = lprime1 * 2.0 lprime2 = lprime2 * 2.0 lprime3 = lprime3 * 2.0 /* If you're looking for a way to speed this up, calculate how many k we can skip here, preferably by a lookup table. */ continue else d = -1.0 (ln_hi, ln_mi, ln_lo) = get_C_minus(k) ;; /* t_{n + 1} */ (t1, t2, t3) = foursum(t1, t2, t3, -1.0 * ln_hi) (t1, t2, t3) = foursum(t1, t2, t3, -1.0 * ln_mi) (t1, t2, t3) = foursum(t1, t2, t3, -1.0 * ln_lo) /* lprime_{n + 1} */ lprime1 *= 2.0 lprime2 *= 2.0 lprime3 *= 2.0 var lp1m = d * scale2(lprime1, -k) var lp2m = d * scale2(lprime2, -k) var lp3m = d * scale2(lprime3, -k) (lprime1, lprime2, lprime3) = foursum(lprime1, lprime2, lprime3, lp1m) (lprime1, lprime2, lprime3) = foursum(lprime1, lprime2, lprime3, lp2m) (lprime1, lprime2, lprime3) = foursum(lprime1, lprime2, lprime3, lp3m) (lprime1, lprime2, lprime3) = foursum(lprime1, lprime2, lprime3, 2.0 * d) ;; var l : flt64[:] = [t1, t2, t3, lxe_1, lxe_2, lxe_3, lxe_4][:] std.sort(l, mag_cmp64) -> double_compensated_sum(l) } /* significand for 1/3 (if you reconstruct without compensating, you get 4/3) */ const one_third_sig = 0x0015555555555555 /* and for 1/5 (if you reconstruct, you get 8/5) */ const one_fifth_sig = 0x001999999999999a /* These calculations are incredibly slow. Somebody should speed them up. */ const get_C_plus = {k : int64 if k < 0 -> (0.0, 0.0, 0.0) elif k < 28 var t1, t2, t3 (t1, t2, t3) = C_plus[k] -> (std.flt64frombits(t1), std.flt64frombits(t2), std.flt64frombits(t3)) elif k < 36 var t1 = std.flt64assem(false, -k, 1 << 53) /* x [ = 2^-k ] */ var t2 = std.flt64assem(true, -2*k - 1, 1 << 53) /* -x^2 / 2 */ var t3 = std.flt64assem(false, -3*k - 2, one_third_sig) /* x^3 / 3 */ var t4 = std.flt64assem(true, -4*k - 2, 1 << 53) /* -x^4 / 4 */ var t5 = std.flt64assem(false, -5*k - 3, one_fifth_sig) /* x^5 / 5 */ -> fast_fivesum(t1, t2, t3, t4, t5) elif k < 54 var t1 = std.flt64assem(false, -k, 1 << 53) /* x [ = 2^-k ] */ var t2 = std.flt64assem(true, -2*k - 1, 1 << 53) /* -x^2 / 2 */ var t3 = std.flt64assem(false, -3*k - 2, one_third_sig) /* x^3 / 3 */ var t4 = std.flt64assem(true, -4*k - 2, 1 << 53) /* -x^4 / 4 */ -> fast_foursum(t1, t2, t3, t4) else var t1 = std.flt64assem(false, -k, 1 << 53) /* x [ = 2^-k ] */ var t2 = std.flt64assem(true, -2*k - 1, 1 << 53) /* -x^2 / 2 */ var t3 = std.flt64assem(false, -3*k - 2, one_third_sig) /* x^3 / 3 */ -> (t1, t2, t3) ;; } const get_C_minus = {k : int64 if k < 0 -> (0.0, 0.0, 0.0) elif k < 28 var t1, t2, t3 (t1, t2, t3) = C_minus[k] -> (std.flt64frombits(t1), std.flt64frombits(t2), std.flt64frombits(t3)) elif k < 36 var t1 = std.flt64assem(true, -k, 1 << 53) /* x [ = 2^-k ] */ var t2 = std.flt64assem(true, -2*k - 1, 1 << 53) /* -x^2 / 2 */ var t3 = std.flt64assem(true, -3*k - 2, one_third_sig) /* x^3 / 3 */ var t4 = std.flt64assem(true, -4*k - 2, 1 << 53) /* -x^4 / 4 */ var t5 = std.flt64assem(true, -5*k - 3, one_fifth_sig) /* x^5 / 5 */ -> fast_fivesum(t1, t2, t3, t4, t5) elif k < 54 var t1 = std.flt64assem(true, -k, 1 << 53) /* x [ = 2^-k ] */ var t2 = std.flt64assem(true, -2*k - 1, 1 << 53) /* -x^2 / 2 */ var t3 = std.flt64assem(true, -3*k - 2, one_third_sig) /* x^3 / 3 */ var t4 = std.flt64assem(true, -4*k - 2, 1 << 53) /* -x^4 / 4 */ -> fast_foursum(t1, t2, t3, t4) else var t1 = std.flt64assem(true, -k, 1 << 53) /* x [ = 2^-k ] */ var t2 = std.flt64assem(true, -2*k - 1, 1 << 53) /* -x^2 / 2 */ var t3 = std.flt64assem(true, -3*k - 2, one_third_sig) /* x^3 / 3 */ -> (t1, t2, t3) ;; } const foursum = {a1 : flt64, a2 : flt64, a3 : flt64, x : flt64 var t1, t2, t3, t4, t5, t6, s1, s2, s3, s4 (t5, t6) = slow2sum(a3, x) (t3, t4) = slow2sum(a2, t5) (t1, t2) = slow2sum(a1, t3) (s3, s4) = slow2sum(t4, t6) (s1, s2) = slow2sum(t2, s3) -> (t1, s1, s2 + s4) } /* Specifically for use in get_C_{plus,minus}, in which we know the magnitude orders of the ais. */ const fast_foursum = {a1 : flt64, a2 : flt64, a3 : flt64, a4 : flt64 (a3, a4) = fast2sum(a3, a4) (a2, a3) = fast2sum(a2, a3) (a1, a2) = fast2sum(a1, a2) (a3, a4) = slow2sum(a3, a4) (a2, a3) = slow2sum(a2, a3) -> (a1, a2, a3 + a4) } const fast_fivesum = {a1 : flt64, a2 : flt64, a3 : flt64, a4 : flt64, a5 : flt64 (a4, a5) = fast2sum(a4, a5) (a3, a4) = fast2sum(a3, a4) (a2, a3) = fast2sum(a2, a3) (a1, a2) = fast2sum(a1, a2) (a4, a5) = slow2sum(a4, a5) (a3, a4) = slow2sum(a3, a4) (a2, a3) = slow2sum(a2, a3) (a4, a5) = slow2sum(a4, a5) -> (a1, a2, a3 + a4) }