ref: d3ab6d19ae584c5b10d8d7391811f3f26880aa50
dir: /lib/std/alloc.myr/
use "die" use "extremum" use "memops" use "syswrap" use "threadhooks" use "types" use "units" /* The allocator implementation here is based on Bonwick's slab allocator. For small allocations (up to Bktmax), it works by requesting large, power of two aligned chunks from the operating system, and breaking them into a linked list of equal sized chunks. Allocations are then satisfied by taking the head of the list of chunks. Empty slabs are removed from the freelist. The data structure looks something like this: Bkts: [16 byte] -> [slab hdr | chunk -> chunk -> chunk] -> [slab hdr | chunk -> chunk -> chunk] [32 byte] -> Zslab [64 byte] -> [slab hdr | chunk -> chunk] ... [32k byte] -> ... Large allocations are simply satisfied by mmap(). */ pkg std = generic alloc : ( -> @a#) generic zalloc : ( -> @a#) generic free : (v:@a# -> void) generic slalloc : (len : size -> @a[:]) generic slzalloc : (len : size -> @a[:]) generic slgrow : (sl : @a[:]#, len : size -> @a[:]) generic slzgrow : (sl : @a[:]#, len : size -> @a[:]) generic slfree : (sl : @a[:] -> void) const bytealloc : (sz:size -> byte#) const zbytealloc : (sz:size -> byte#) const bytefree : (m:byte#, sz:size -> void) ;; /* null pointers. only used internally. */ const Zslab = (0 : slab#) const Zchunk = (0 : chunk#) const Zsliceptr = (0 : byte#) const Slabsz = 1*MiB /* 1 meg slabs */ const Cachemax = 16 /* maximum number of slabs in the cache */ const Bktmax = 32*KiB /* Slabsz / 8; a balance. */ const Pagesz = 4*KiB const Align = 16 /* minimum allocation alignment */ var buckets : bucket[32] /* excessive */ extern const put : (str : byte[:], args : ... -> void) type slheader = struct cap : size /* capacity in bytes */ magic : size /* magic check value */ ;; type bucket = struct sz : size /* aligned size */ nper : size /* max number of elements per slab */ slabs : slab# /* partially filled or free slabs */ cache : slab# /* cache of empty slabs, to prevent thrashing */ ncache : size /* size of cache */ ;; type slab = struct head : byte# /* head of virtual addresses, so we don't leak address space */ next : slab# /* the next slab on the chain */ freehd : chunk# /* the nodes we're allocating */ nfree : size /* the number of free nodes */ ;; type chunk = struct /* NB: must be smaller than sizeof(slab) */ next : chunk# /* the next chunk in the free list */ ;; const __init__ = { for var i = 0; i < buckets.len && (Align << i) <= Bktmax; i++ bktinit(&buckets[i], Align << i) ;; } /* Allocates an object of type @a, returning a pointer to it. */ generic alloc = {-> @a# -> (bytealloc(sizeof(@a)) : @a#) } generic zalloc = {-> @a# -> (zbytealloc(sizeof(@a)) : @a#) } /* Frees a value of type @a */ generic free = {v:@a# -> void bytefree((v : byte#), sizeof(@a)) } /* allocates a slice of 'len' elements. */ generic slalloc = {len var p, sz if len == 0 -> [][:] ;; sz = len*sizeof(@a) + align(sizeof(slheader), Align) p = bytealloc(sz) p = inithdr(p, sz) -> (p : @a#)[0:len] } generic slzalloc = {len var p, sz if len == 0 -> [][:] ;; sz = len*sizeof(@a) + align(sizeof(slheader), Align) p = zbytealloc(sz) p = inithdr(p, sz) -> (p : @a#)[0:len] } const inithdr = {p, sz var phdr, prest phdr = (p : slheader#) phdr.cap = allocsz(sz) - align(sizeof(slheader), Align) phdr.magic = (0xdeadbeefbadf00d : size) prest = (p : size) + align(sizeof(slheader), Align) -> (prest : byte#) } const checkhdr = {p var phdr, addr addr = (p : size) addr -= align(sizeof(slheader), Align) phdr = (addr : slheader#) iassert(phdr.magic == (0xdeadbeefbadf00d : size), "corrupt memory\n") } /* Frees a slice */ generic slfree = {sl var head if (sl : byte#) == Zsliceptr -> void ;; checkhdr((sl : byte#)) head = ((sl : byte#) : size) head -= align(sizeof(slheader), Align) bytefree((head : byte#), slcap((sl : byte#))) } /* Grows a slice */ generic slgrow = {sl : @a[:]#, len var cap var new var n /* if the slice doesn't need a bigger bucket, we don't need to realloc. */ cap = 0 if (sl# : byte#) != Zsliceptr cap = slcap((sl# : byte#)) ;; if cap >= allocsz(len*sizeof(@a)) sl# = (sl# : @a#)[:len] -> sl# ;; /* grow in factors of 1.5 */ cap = max(Align, cap) while cap < len cap += (cap >> 1) ;; new = slalloc(cap) n = min(len, sl#.len) for var i = 0; i < n; i++ new[i] = sl#[i] ;; if sl#.len > 0 slfree(sl#) ;; sl# = new[:len] -> sl# } /* Grows a slice, filling new entries with zero bytes */ generic slzgrow = {sl : @a[:]#, len var oldlen var base oldlen = sl#.len slgrow(sl, len) base = ((sl# : byte#) : intptr) if oldlen < len memfill((sl#[oldlen:] : byte#), 0, (len - oldlen)*sizeof(@a)) ;; -> sl# } const slcap = {p var phdr phdr = ((p : size) - align(sizeof(slheader), Align) : slheader#) -> phdr.cap } const zbytealloc = {sz var p p = bytealloc(sz) memfill(p, 0, sz) -> p } /* Allocates a blob that is 'sz' bytes long. Dies if the allocation fails */ const bytealloc = {sz var bkt, p if (sz <= Bktmax) bkt = &buckets[bktnum(sz)] lock(memlck) p = bktalloc(bkt) unlock(memlck) else p = getmem(sz) if p == Failmem die("could not get memory\n") ;; ;; -> p } /* frees a blob that is 'sz' bytes long. */ const bytefree = {p, sz var bkt memfill(p, 0xa8, sz) if (sz < Bktmax) bkt = &buckets[bktnum(sz)] lock(memlck) bktfree(bkt, p) unlock(memlck) else freemem(p, sz) ;; } /* Sets up a single empty bucket */ const bktinit = {b, sz b.sz = align(sz, Align) b.nper = (Slabsz - sizeof(slab))/b.sz b.slabs = Zslab b.cache = Zslab b.ncache = 0 } /* Creates a slab for bucket 'bkt', and fills the chunk list */ const mkslab = {bkt var p, s var b, bnext var off /* offset of chunk head */ if bkt.ncache > 0 s = bkt.cache bkt.cache = s.next bkt.ncache-- ;; /* tricky: we need power of two alignment, so we allocate double the needed size, chop off the unaligned ends, and waste the address space. Since the OS is "smart enough", this shouldn't actually cost us memory, and 64 bits of address space means that we're not going to have issues with running out of address space for a while. On a 32 bit system this would be a bad idea. */ p = getmem(Slabsz*2) if p == Failmem die("Unable to get memory") ;; s = (align((p : size), Slabsz) : slab#) s.head = p s.nfree = bkt.nper /* skip past the slab header */ off = align(sizeof(slab), Align) bnext = nextchunk((s : chunk#), off) s.freehd = bnext for var i = 0; i < bkt.nper; i++ b = bnext bnext = nextchunk(b, bkt.sz) b.next = bnext ;; b.next = Zchunk -> s } /* Allocates a node from bucket 'bkt', crashing if the allocation cannot be satisfied. Will create a new slab if there are no slabs on the freelist. */ const bktalloc = {bkt var s var b /* find a slab */ s = bkt.slabs if s == Zslab s = mkslab(bkt) if s == Zslab die("No memory left") ;; bkt.slabs = s ;; /* grab the first chunk on the slab */ b = s.freehd s.freehd = b.next s.nfree-- if s.nfree == 0 bkt.slabs = s.next s.next = Zslab ;; -> (b : byte#) } /* Frees a chunk of memory 'm' into bucket 'bkt'. Assumes that the memory already came from a slab that was created for bucket 'bkt'. Will crash if this is not the case. */ const bktfree = {bkt, m var s, b s = (mtrunc(m, Slabsz) : slab#) b = (m : chunk#) if s.nfree == 0 s.next = bkt.slabs bkt.slabs = s elif s.nfree == bkt.nper /* HACK HACK HACK: if we can't unmap, keep an infinite cache per slab size. We should solve this better somehow. */ if bkt.ncache < Cachemax || !Canunmap s.next = bkt.cache bkt.cache = s else /* we mapped 2*Slabsz so we could align it, so we need to unmap the same */ freemem(s.head, Slabsz*2) ;; ;; s.nfree++ b.next = s.freehd s.freehd = b } /* Finds the correct bucket index to allocate from for allocations of size 'sz' */ const bktnum = {sz var bktsz bktsz = Align for var i = 0; bktsz <= Bktmax; i++ if bktsz >= sz -> i ;; bktsz *= 2 ;; die("Size does not match any buckets") } /* returns the actual size we allocated for a given size request */ const allocsz = {sz var bktsz if sz <= Bktmax bktsz = Align for var i = 0; bktsz <= Bktmax; i++ if bktsz >= sz -> bktsz ;; bktsz *= 2 ;; else -> align(sz, Pagesz) ;; die("Size does not match any buckets") } /* aligns a size to a requested alignment. 'align' must be a power of two */ const align = {v, align -> (v + align - 1) & ~(align - 1) } /* chunks are variable sizes, so we can't just index to get to the next one */ const nextchunk = {b, sz : size -> ((b : intptr) + (sz : intptr) : chunk#) } /* truncates a pointer to 'align'. 'align' must be a power of two. */ const mtrunc = {m, align -> ((m : intptr) & ~((align : intptr) - 1) : byte#) }