ref: e24656bb54b092b936c28ba5c5147d2e91fd0169
dir: /lib/crypto/x25519.myr/
/* Copyright 2008, Google Inc.
* Translated to Myrddin by Ori Bernstein in 2018
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* curve25519: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation.
*/
use std
pkg crypto =
const x25519 : (out : byte[:], inu : byte[:], inpt : byte[:] -> void)
;;
type felem = uint64
/* Sum two numbers: out += in */
const fsum = {out, in
for var i = 0; i < 10; i += 2
out[0 + i] = out[0 + i] + in[0 + i]
out[1 + i] = out[1 + i] + in[1 + i]
;;
}
/* Find the difference of two numbers: out = in - out
* (note the order of the arguments!)
*/
const fdiff = {out, in
for var i = 0; i < 10; i++
out[i] = (in[i] - out[i])
;;
}
/* Multiply a number my a scalar: out = in * scalar */
const fscalarproduct = {out, in, scalar
for var i = 0; i < 10; i++
out[i] = in[i] * scalar
;;
}
/* Multiply two numbers: out = in2 * in
*
* out must be distinct to both ins. The ins are reduced coefficient
* form, the out is not.
*/
const fproduct = {out, in, in2
out[0] = in2[0] * in[0]
out[1] = in2[0] * in[1] + \
in2[1] * in[0]
out[2] = 2 * in2[1] * in[1] + \
in2[0] * in[2] + \
in2[2] * in[0]
out[3] = in2[1] * in[2] + \
in2[2] * in[1] + \
in2[0] * in[3] + \
in2[3] * in[0]
out[4] = in2[2] * in[2] + \
2 * (in2[1] * in[3] + \
in2[3] * in[1]) + \
in2[0] * in[4] + \
in2[4] * in[0]
out[5] = in2[2] * in[3] + \
in2[3] * in[2] + \
in2[1] * in[4] + \
in2[4] * in[1] + \
in2[0] * in[5] + \
in2[5] * in[0]
out[6] = 2 * (in2[3] * in[3] + \
in2[1] * in[5] + \
in2[5] * in[1]) + \
in2[2] * in[4] + \
in2[4] * in[2] + \
in2[0] * in[6] + \
in2[6] * in[0]
out[7] = in2[3] * in[4] + \
in2[4] * in[3] + \
in2[2] * in[5] + \
in2[5] * in[2] + \
in2[1] * in[6] + \
in2[6] * in[1] + \
in2[0] * in[7] + \
in2[7] * in[0]
out[8] = in2[4] * in[4] + \
2 * (in2[3] * in[5] + \
in2[5] * in[3] + \
in2[1] * in[7] + \
in2[7] * in[1]) + \
in2[2] * in[6] + \
in2[6] * in[2] + \
in2[0] * in[8] + \
in2[8] * in[0]
out[9] = in2[4] * in[5] + \
in2[5] * in[4] + \
in2[3] * in[6] + \
in2[6] * in[3] + \
in2[2] * in[7] + \
in2[7] * in[2] + \
in2[1] * in[8] + \
in2[8] * in[1] + \
in2[0] * in[9] + \
in2[9] * in[0]
out[10] = 2 * (in2[5] * in[5] + \
in2[3] * in[7] + \
in2[7] * in[3] + \
in2[1] * in[9] + \
in2[9] * in[1]) + \
in2[4] * in[6] + \
in2[6] * in[4] + \
in2[2] * in[8] + \
in2[8] * in[2]
out[11] = in2[5] * in[6] + \
in2[6] * in[5] + \
in2[4] * in[7] + \
in2[7] * in[4] + \
in2[3] * in[8] + \
in2[8] * in[3] + \
in2[2] * in[9] + \
in2[9] * in[2]
out[12] = in2[6] * in[6] + \
2 * (in2[5] * in[7] + \
in2[7] * in[5] + \
in2[3] * in[9] + \
in2[9] * in[3]) + \
in2[4] * in[8] + \
in2[8] * in[4]
out[13] = in2[6] * in[7] + \
in2[7] * in[6] + \
in2[5] * in[8] + \
in2[8] * in[5] + \
in2[4] * in[9] + \
in2[9] * in[4]
out[14] = 2 * (in2[7] * in[7] + \
in2[5] * in[9] + \
in2[9] * in[5]) + \
in2[6] * in[8] + \
in2[8] * in[6]
out[15] = in2[7] * in[8] + \
in2[8] * in[7] + \
in2[6] * in[9] + \
in2[9] * in[6]
out[16] = in2[8] * in[8] + \
2 * (in2[7] * in[9] + \
in2[9] * in[7])
out[17] = in2[8] * in[9] + \
in2[9] * in[8]
out[18] = 2 * in2[9] * in[9]
}
/* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
const freducedegree= {out
out[8] += 19 * out[18];
out[7] += 19 * out[17];
out[6] += 19 * out[16];
out[5] += 19 * out[15];
out[4] += 19 * out[14];
out[3] += 19 * out[13];
out[2] += 19 * out[12];
out[1] += 19 * out[11];
out[0] += 19 * out[10];
}
/* Reduce all coeff of the short form in to be -2**25 <= x <= 2**25
*/
const freducecoeff = {out
var over, over2
while true
out[10] = 0
for var i = 0; i < 10; i += 2
over = out[i] / (0x2000000l : felem)
over2 = (over + ((over >> 63) * 2) + 1) / 2
out[i+1] += over2
out[i] -= over2 * (0x4000000l : felem)
over = out[i+1] / 0x2000000
out[i+2] += over
out[i+1] -= over * 0x2000000
;;
out[0] += 19 * out[10]
if out[10] == 0
break
;;
;;
}
/* A helpful wrapper around fproduct: out = in * in2.
*
* out must be distinct to both ins. The out is reduced degree and
* reduced coefficient.
*/
const fmul = {out, in, in2
var t : felem[19]
fproduct(t[:], in, in2)
freducedegree(t[:])
freducecoeff(t[:])
std.slcp(out, t[:10])
}
const fsquareinner = {out, in
var tmp : felem
out[0] = in[0] * in[0]
out[1] = 2 * in[0] * in[1]
out[2] = 2 * (in[1] * in[1] + \
in[0] * in[2])
out[3] = 2 * (in[1] * in[2] + \
in[0] * in[3])
out[4] = in[2] * in[2] + \
4 * in[1] * in[3] + \
2 * in[0] * in[4]
out[5] = 2 * (in[2] * in[3] + \
in[1] * in[4] + \
in[0] * in[5])
out[6] = 2 * (in[3] * in[3] + \
in[2] * in[4] + \
in[0] * in[6] + \
2 * in[1] * in[5])
out[7] = 2 * (in[3] * in[4] + \
in[2] * in[5] + \
in[1] * in[6] + \
in[0] * in[7])
tmp = in[1] * in[7] + in[3] * in[5]
out[8] = in[4] * in[4] + \
2 * (in[2] * in[6] + \
in[0] * in[8] + \
2 * tmp)
out[9] = 2 * (in[4] * in[5] + \
in[3] * in[6] + \
in[2] * in[7] + \
in[1] * in[8] + \
in[0] * in[9])
tmp = in[3] * in[7] + in[1] * in[9]
out[10] = 2 * (in[5] * in[5] + \
in[4] * in[6] + \
in[2] * in[8] + \
2 * tmp)
out[11] = 2 * (in[5] * in[6] + \
in[4] * in[7] + \
in[3] * in[8] + \
in[2] * in[9])
out[12] = in[6] * in[6] + \
2 * (in[4] * in[8] + \
2 * (in[5] * in[7] + \
in[3] * in[9]))
out[13] = 2 * (in[6] * in[7] + \
in[5] * in[8] + \
in[4] * in[9])
out[14] = 2 * (in[7] * in[7] + \
in[6] * in[8] + \
2 * in[5] * in[9])
out[15] = 2 * (in[7] * in[8] + \
in[6] * in[9])
out[16] = in[8] * in[8] + \
4 * in[7] * in[9]
out[17] = 2 * in[8] * in[9]
out[18] = 2 * in[9] * in[9]
}
const fsquare = {out, in
var t : felem[19]
fsquareinner(t[:], in)
freducedegree(t[:])
freducecoeff(t[:])
std.slcp(out, t[:10])
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
const fexpand = {out, in
/*
* #define F(n,start,shift,mask) \
* out[n] = (((in[start + 0] : felem) | \
* (in[start + 1] : felem) << 8 | \
* (in[start + 2] : felem) << 16 | \
* (in[start + 3] : felem) << 24) >> shift) & mask
* F(0, 0, 0, 0x3ffffff)
* F(1, 3, 2, 0x1ffffff)
* F(2, 6, 3, 0x3ffffff)
* F(3, 9, 5, 0x1ffffff)
* F(4, 12, 6, 0x3ffffff)
* F(5, 16, 0, 0x1ffffff)
* F(6, 19, 1, 0x3ffffff)
* F(7, 22, 3, 0x1ffffff)
* F(8, 25, 4, 0x3ffffff)
* F(9, 28, 6, 0x1ffffff)
* #undef F
*/
out[0] = (((in[0 + 0] : felem) | (in[0 + 1] : felem) << 8 | (in[0 + 2] : felem) << 16 | (in[0 + 3] : felem) << 24) >> 0) & 0x3ffffff
out[1] = (((in[3 + 0] : felem) | (in[3 + 1] : felem) << 8 | (in[3 + 2] : felem) << 16 | (in[3 + 3] : felem) << 24) >> 2) & 0x1ffffff
out[2] = (((in[6 + 0] : felem) | (in[6 + 1] : felem) << 8 | (in[6 + 2] : felem) << 16 | (in[6 + 3] : felem) << 24) >> 3) & 0x3ffffff
out[3] = (((in[9 + 0] : felem) | (in[9 + 1] : felem) << 8 | (in[9 + 2] : felem) << 16 | (in[9 + 3] : felem) << 24) >> 5) & 0x1ffffff
out[4] = (((in[12 + 0] : felem) | (in[12 + 1] : felem) << 8 | (in[12 + 2] : felem) << 16 | (in[12 + 3] : felem) << 24) >> 6) & 0x3ffffff
out[5] = (((in[16 + 0] : felem) | (in[16 + 1] : felem) << 8 | (in[16 + 2] : felem) << 16 | (in[16 + 3] : felem) << 24) >> 0) & 0x1ffffff
out[6] = (((in[19 + 0] : felem) | (in[19 + 1] : felem) << 8 | (in[19 + 2] : felem) << 16 | (in[19 + 3] : felem) << 24) >> 1) & 0x3ffffff
out[7] = (((in[22 + 0] : felem) | (in[22 + 1] : felem) << 8 | (in[22 + 2] : felem) << 16 | (in[22 + 3] : felem) << 24) >> 3) & 0x1ffffff
out[8] = (((in[25 + 0] : felem) | (in[25 + 1] : felem) << 8 | (in[25 + 2] : felem) << 16 | (in[25 + 3] : felem) << 24) >> 4) & 0x3ffffff
out[9] = (((in[28 + 0] : felem) | (in[28 + 1] : felem) << 8 | (in[28 + 2] : felem) << 16 | (in[28 + 3] : felem) << 24) >> 6) & 0x1ffffff
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
const fcontract = {out, in
while true
for var i = 0; i < 9; ++i
if (i & 1) == 1
while in[i] < 0
in[i] += 0x2000000
in[i + 1]--
;;
else
while in[i] < 0
in[i] += 0x4000000
in[i + 1]--
;;
;;
;;
while in[9] < 0
in[9] += 0x2000000
in[0] -= 19
;;
if in[0] >= 0
break
;;
;;
in[1] <<= 2
in[2] <<= 3
in[3] <<= 5
in[4] <<= 6
in[6] <<= 1
in[7] <<= 3
in[8] <<= 4
in[9] <<= 6
/*
* #define F(i, s) \
* out[s+0] |= in[i] & 0xff; \
* out[s+1] = (in[i] >> 8) & 0xff; \
* out[s+2] = (in[i] >> 16) & 0xff; \
* out[s+3] = (in[i] >> 24) & 0xff
* out[0] = 0
* out[16] = 0
* F(0,0)
* F(1,3)
* F(2,6)
* F(3,9)
* F(4,12)
* F(5,16)
* F(6,19)
* F(7,22)
* F(8,25)
* F(9,28)
* #undef F
*/
out[0] = 0
out[16] = 0
out[ 0 + 0] |= (in[0] : byte); out[ 0 +1] = (in[0] >> 8 : byte); out[ 0 +2] = (in[0] >> 16 : byte); out[ 0 +3] = (in[0] >> 24 : byte)
out[ 3 + 0] |= (in[1] : byte); out[ 3 +1] = (in[1] >> 8 : byte); out[ 3 +2] = (in[1] >> 16 : byte); out[ 3 +3] = (in[1] >> 24 : byte)
out[ 6 + 0] |= (in[2] : byte); out[ 6 +1] = (in[2] >> 8 : byte); out[ 6 +2] = (in[2] >> 16 : byte); out[ 6 +3] = (in[2] >> 24 : byte)
out[ 9 + 0] |= (in[3] : byte); out[ 9 +1] = (in[3] >> 8 : byte); out[ 9 +2] = (in[3] >> 16 : byte); out[ 9 +3] = (in[3] >> 24 : byte)
out[12 + 0] |= (in[4] : byte); out[12 +1] = (in[4] >> 8 : byte); out[12 +2] = (in[4] >> 16 : byte); out[12 +3] = (in[4] >> 24 : byte)
out[16 + 0] |= (in[5] : byte); out[16 +1] = (in[5] >> 8 : byte); out[16 +2] = (in[5] >> 16 : byte); out[16 +3] = (in[5] >> 24 : byte)
out[19 + 0] |= (in[6] : byte); out[19 +1] = (in[6] >> 8 : byte); out[19 +2] = (in[6] >> 16 : byte); out[19 +3] = (in[6] >> 24 : byte)
out[22 + 0] |= (in[7] : byte); out[22 +1] = (in[7] >> 8 : byte); out[22 +2] = (in[7] >> 16 : byte); out[22 +3] = (in[7] >> 24 : byte)
out[25 + 0] |= (in[8] : byte); out[25 +1] = (in[8] >> 8 : byte); out[25 +2] = (in[8] >> 16 : byte); out[25 +3] = (in[8] >> 24 : byte)
out[28 + 0] |= (in[9] : byte); out[28 +1] = (in[9] >> 8 : byte); out[28 +2] = (in[9] >> 16 : byte); out[28 +3] = (in[9] >> 24 : byte)
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form, out 2Q
* x3 z3: long form, out Q + Q'
* x z: short form, destroyed, in Q
* xprime zprime: short form, destroyed, in Q'
* qmqp: short form, preserved, in Q - Q'
*/
const fmonty = {x2, z2, x3, z3, x, z, xprime, zprime, qmqp
var origx : felem[10]
var origxprime : felem[10]
var zzz : felem [19]
var xx : felem[19]
var zz : felem[19]
var xxprime : felem[19]
var zzprime : felem[19]
var zzzprime : felem[19]
var xxxprime : felem[19]
std.slcp(origx[:], x[:10])
fsum(x, z)
fdiff(z, origx[:]); // does x - z
std.slcp(origxprime[:], xprime[:10])
fsum(xprime, zprime)
fdiff(zprime, origxprime[:])
fproduct(xxprime[:], xprime, z)
fproduct(zzprime[:], x, zprime)
freducedegree(xxprime[:])
freducecoeff(xxprime[:])
freducedegree(zzprime[:])
freducecoeff(zzprime[:])
std.slcp(origxprime[:], xxprime[:10])
fsum(xxprime[:], zzprime[:])
fdiff(zzprime[:], origxprime[:])
fsquare(xxxprime[:], xxprime[:])
fsquare(zzzprime[:], zzprime[:])
fproduct(zzprime[:], zzzprime[:], qmqp)
freducedegree(zzprime[:])
freducecoeff(zzprime[:])
std.slcp(x3, xxxprime[:10])
std.slcp(z3, zzprime[:10])
fsquare(xx[:], x)
fsquare(zz[:], z)
fproduct(x2, xx[:], zz[:])
freducedegree(x2)
freducecoeff(x2)
fdiff(zz[:], xx[:]); // does zz = xx - zz
std.slfill(zzz[10:], 0)
fscalarproduct(zzz, zz, 121665)
freducedegree(zzz[:])
freducecoeff(zzz[:])
fsum(zzz[:], xx[:])
fproduct(z2, zz[:], zzz[:])
freducedegree(z2)
freducecoeff(z2)
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
const cmult = {resultx, resultz, n, q
var a : felem[19] = [.[0] = 0, .[18] = 0]
var b : felem[19] = [.[0] = 1, .[18] = 0]
var c : felem[19] = [.[0] = 1, .[18] = 0]
var d : felem[19] = [.[0] = 0, .[18] = 0]
var e : felem[19] = [.[0] = 0, .[18] = 0]
var f : felem[19] = [.[0] = 1, .[18] = 0]
var g : felem[19] = [.[0] = 0, .[18] = 0]
var h : felem[19] = [.[0] = 1, .[18] = 0]
var nqpqx = a[:]
var nqpqz = b[:]
var nqx = c[:]
var nqz = d[:]
var nqpqx2 = e[:]
var nqpqz2 = f[:]
var nqx2 = g[:]
var nqz2 = h[:]
var t
std.slcp(nqpqx[:10], q[:10])
for var i = 0; i < 32; ++i
var byte = n[31 - i]
for var j = 0; j < 8; ++j
if byte & 0x80 != 0
fmonty(nqpqx2, nqpqz2,
nqx2, nqz2,
nqpqx, nqpqz,
nqx, nqz,
q)
else
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q)
;;
t = nqx
nqx = nqx2
nqx2 = t
t = nqz
nqz = nqz2
nqz2 = t
t = nqpqx
nqpqx = nqpqx2
nqpqx2 = t
t = nqpqz
nqpqz = nqpqz2
nqpqz2 = t
byte <<= 1
;;
;;
std.slcp(resultx, nqx[:10])
std.slcp(resultz, nqz[:10])
}
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code
// -----------------------------------------------------------------------------
const crecip = {out, z
var z2 : felem[10]
var z9 : felem[10]
var z11 : felem[10]
var z2_5_0 : felem[10]
var z2_10_0 : felem[10]
var z2_20_0 : felem[10]
var z2_50_0 : felem[10]
var z2_100_0 : felem[10]
var t0 : felem[10]
var t1 : felem[10]
var i
/* 2 */ fsquare(z2[:], z[:])
/* 4 */ fsquare(t1[:], z2[:])
/* 8 */ fsquare(t0[:], t1[:])
/* 9 */ fmul(z9[:] ,t0[:], z[:])
/* 11 */ fmul(z11[:], z9[:], z2[:])
/* 22 */ fsquare(t0[:], z11[:])
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0[:], t0[:], z9[:])
/* 2^6 - 2^1 */ fsquare(t0[:], z2_5_0[:])
/* 2^7 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^8 - 2^3 */ fsquare(t0[:], t1[:])
/* 2^9 - 2^4 */ fsquare(t1[:], t0[:])
/* 2^10 - 2^5 */ fsquare(t0[:],t1[:])
/* 2^10 - 2^0 */ fmul(z2_10_0[:], t0[:], z2_5_0[:])
/* 2^11 - 2^1 */ fsquare(t0[:], z2_10_0[:])
/* 2^12 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^20 - 2^10 */
for i = 2;i < 10;i += 2
fsquare(t0[:],t1[:])
fsquare(t1[:],t0[:])
;;
/* 2^20 - 2^0 */ fmul(z2_20_0[:], t1[:], z2_10_0[:])
/* 2^21 - 2^1 */ fsquare(t0[:], z2_20_0[:])
/* 2^22 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^40 - 2^20 */
for var i = 2;i < 20;i += 2
fsquare(t0[:], t1[:])
fsquare(t1[:], t0[:])
;;
/* 2^40 - 2^0 */ fmul(t0[:], t1[:], z2_20_0[:])
/* 2^41 - 2^1 */ fsquare(t1[:],t0[:])
/* 2^42 - 2^2 */ fsquare(t0[:],t1[:])
/* 2^50 - 2^10 */
for var i = 2;i < 10;i += 2
fsquare(t1[:],t0[:])
fsquare(t0[:],t1[:])
;;
/* 2^50 - 2^0 */ fmul(z2_50_0[:], t0[:], z2_10_0[:])
/* 2^51 - 2^1 */ fsquare(t0[:], z2_50_0[:])
/* 2^52 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^100 - 2^50 */
for i = 2;i < 50;i += 2
fsquare(t0[:],t1[:])
fsquare(t1[:],t0[:])
;;
/* 2^100 - 2^0 */ fmul(z2_100_0[:], t1[:], z2_50_0[:])
/* 2^101 - 2^1 */ fsquare(t1[:], z2_100_0[:])
/* 2^102 - 2^2 */ fsquare(t0[:], t1[:])
/* 2^200 - 2^100 */
for i = 2;i < 100;i += 2
fsquare(t1[:],t0[:])
fsquare(t0[:],t1[:])
;;
/* 2^200 - 2^0 */ fmul(t1[:],t0[:], z2_100_0[:])
/* 2^201 - 2^1 */ fsquare(t0[:], t1[:])
/* 2^202 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^250 - 2^50 */
for i = 2;i < 50;i += 2
fsquare(t0[:], t1[:])
fsquare(t1[:], t0[:])
;;
/* 2^250 - 2^0 */ fmul(t0[:], t1[:], z2_50_0[:])
/* 2^251 - 2^1 */ fsquare(t1[:], t0[:])
/* 2^252 - 2^2 */ fsquare(t0[:], t1[:])
/* 2^253 - 2^3 */ fsquare(t1[:], t0[:])
/* 2^254 - 2^4 */ fsquare(t0[:], t1[:])
/* 2^255 - 2^5 */ fsquare(t1[:], t0[:])
/* 2^255 - 21 */ fmul(out,t1[:], z11[:])
}
const curve25519 = {pub : byte[:/*32*/], secret : byte[:/*32*/], basepoint : byte[:/*32*/]
var bp : felem[10]
var x : felem[10]
var z : felem[10]
var zmone : felem[10]
std.assert(pub.len == 32 && secret.len == 32 && basepoint.len == 32, "wrong key sizes")
fexpand(bp[:], basepoint[:])
cmult(x[:], z[:], secret[:], bp[:])
crecip(zmone[:], z[:])
fmul(z[:], x[:], zmone[:])
fcontract(pub[:], z[:])
}
const x25519 = {out, inu, inscalar
}