ref: 0b7b60511d71e3c80deb8d1900e1ec778d964c0c
dir: /fmopl.c/
#include <u.h> #include <libc.h> #include <stdio.h> #include "dat.h" #include "fns.h" /* output final shift */ #define FINAL_SH (0) #define MAXOUT (+32767) #define MINOUT (-32768) #define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */ #define EG_SH 16 /* 16.16 fixed point (EG timing) */ #define LFO_SH 24 /* 8.24 fixed point (LFO calculations) */ #define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */ #define FREQ_MASK ((1<<FREQ_SH)-1) /* envelope output entries */ #define ENV_BITS 10 #define ENV_LEN (1<<ENV_BITS) #define ENV_STEP (128.0/ENV_LEN) #define MAX_ATT_INDEX ((1<<(ENV_BITS-1))-1) /*511*/ #define MIN_ATT_INDEX (0) /* sinwave entries */ #define SIN_BITS 10 #define SIN_LEN (1<<SIN_BITS) #define SIN_MASK (SIN_LEN-1) #define TL_RES_LEN (256) /* 8 bits addressing (real chip) */ /* register number to channel number , slot offset */ #define SLOT1 0 #define SLOT2 1 /* Envelope Generator phases */ #define EG_ATT 4 #define EG_DEC 3 #define EG_SUS 2 #define EG_REL 1 #define EG_OFF 0 int acc_calc(signed int value) { if (value>=0) { if (value < 0x0200) return (value & ~0); if (value < 0x0400) return (value & ~1); if (value < 0x0800) return (value & ~3); if (value < 0x1000) return (value & ~7); if (value < 0x2000) return (value & ~15); if (value < 0x4000) return (value & ~31); return (value & ~63); } if (value > -0x0200) return (~abs(value) & ~0); if (value > -0x0400) return (~abs(value) & ~1); if (value > -0x0800) return (~abs(value) & ~3); if (value > -0x1000) return (~abs(value) & ~7); if (value > -0x2000) return (~abs(value) & ~15); if (value > -0x4000) return (~abs(value) & ~31); return (~abs(value) & ~63); } #define OPL_TYPE_WAVESEL 0x01 /* waveform select */ /* ---------- Generic interface section ---------- */ #define OPL_TYPE_YM3812 (OPL_TYPE_WAVESEL) /* mapping of register number (offset) to slot number used by the emulator */ static int slot_array[32]= { 0, 2, 4, 1, 3, 5,-1,-1, 6, 8,10, 7, 9,11,-1,-1, 12,14,16,13,15,17,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1 }; /* key scale level */ /* table is 3dB/octave , DV converts this into 6dB/octave */ /* 0.1875 is bit 0 weight of the envelope counter (volume) expressed in the 'decibel' scale */ #define DV (0.1875/2.0) static u32int ksl_tab[8*16]= { /* OCT 0 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, /* OCT 1 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV, 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV, /* OCT 2 */ 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV, 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV, 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV, /* OCT 3 */ 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV, 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV, 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV, 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV, /* OCT 4 */ 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV, 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV, 9.000/DV, 9.750/DV,10.125/DV,10.500/DV, 10.875/DV,11.250/DV,11.625/DV,12.000/DV, /* OCT 5 */ 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV, 9.000/DV,10.125/DV,10.875/DV,11.625/DV, 12.000/DV,12.750/DV,13.125/DV,13.500/DV, 13.875/DV,14.250/DV,14.625/DV,15.000/DV, /* OCT 6 */ 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV, 12.000/DV,13.125/DV,13.875/DV,14.625/DV, 15.000/DV,15.750/DV,16.125/DV,16.500/DV, 16.875/DV,17.250/DV,17.625/DV,18.000/DV, /* OCT 7 */ 0.000/DV, 9.000/DV,12.000/DV,13.875/DV, 15.000/DV,16.125/DV,16.875/DV,17.625/DV, 18.000/DV,18.750/DV,19.125/DV,19.500/DV, 19.875/DV,20.250/DV,20.625/DV,21.000/DV }; #undef DV /* 0 / 3.0 / 1.5 / 6.0 dB/OCT */ static u32int ksl_shift[4] = { 31, 1, 2, 0 }; /* sustain level table (3dB per step) */ /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/ #define SC(db) (u32int) ( db * (2.0/ENV_STEP) ) static u32int sl_tab[16]={ SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7), SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31) }; #undef SC #define RATE_STEPS (8) static uchar eg_inc[15*RATE_STEPS]={ /*cycle:0 1 2 3 4 5 6 7*/ /* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..12 0 (increment by 0 or 1) */ /* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..12 1 */ /* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..12 2 */ /* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..12 3 */ /* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 13 0 (increment by 1) */ /* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 13 1 */ /* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 13 2 */ /* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 13 3 */ /* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 14 0 (increment by 2) */ /* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 14 1 */ /*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 14 2 */ /*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 14 3 */ /*12 */ 4,4, 4,4, 4,4, 4,4, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 4) */ /*13 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 2, 15 3 for attack */ /*14 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */ }; #define O(a) (a*RATE_STEPS) /*note that there is no O(13) in this table - it's directly in the code */ static uchar eg_rate_select[16+64+16]={ /* Envelope Generator rates (16 + 64 rates + 16 RKS) */ /* 16 infinite time rates */ O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), O(14),O(14),O(14),O(14),O(14),O(14),O(14),O(14), /* rates 00-12 */ O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), O( 0),O( 1),O( 2),O( 3), /* rate 13 */ O( 4),O( 5),O( 6),O( 7), /* rate 14 */ O( 8),O( 9),O(10),O(11), /* rate 15 */ O(12),O(12),O(12),O(12), /* 16 dummy rates (same as 15 3) */ O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), O(12),O(12),O(12),O(12),O(12),O(12),O(12),O(12), }; #undef O /*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 */ /*shift 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0 */ /*mask 4095, 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0 */ #define O(a) (a*1) static uchar eg_rate_shift[16+64+16]={ /* Envelope Generator counter shifts (16 + 64 rates + 16 RKS) */ /* 16 infinite time rates */ O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0), /* rates 00-12 */ O(12),O(12),O(12),O(12), O(11),O(11),O(11),O(11), O(10),O(10),O(10),O(10), O( 9),O( 9),O( 9),O( 9), O( 8),O( 8),O( 8),O( 8), O( 7),O( 7),O( 7),O( 7), O( 6),O( 6),O( 6),O( 6), O( 5),O( 5),O( 5),O( 5), O( 4),O( 4),O( 4),O( 4), O( 3),O( 3),O( 3),O( 3), O( 2),O( 2),O( 2),O( 2), O( 1),O( 1),O( 1),O( 1), O( 0),O( 0),O( 0),O( 0), /* rate 13 */ O( 0),O( 0),O( 0),O( 0), /* rate 14 */ O( 0),O( 0),O( 0),O( 0), /* rate 15 */ O( 0),O( 0),O( 0),O( 0), /* 16 dummy rates (same as 15 3) */ O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0), }; #undef O /* multiple table */ #define ML 2 static u8int mul_tab[16]= { /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,10,12,12,15,15 */ ML/2, 1*ML, 2*ML, 3*ML, 4*ML, 5*ML, 6*ML, 7*ML, 8*ML, 9*ML,10*ML,10*ML,12*ML,12*ML,15*ML,15*ML }; #undef ML /* TL_TAB_LEN is calculated as: * 12 - sinus amplitude bits (Y axis) * 2 - sinus sign bit (Y axis) * TL_RES_LEN - sinus resolution (X axis) */ #define TL_TAB_LEN (12*2*TL_RES_LEN) static signed int tl_tab[TL_TAB_LEN]; #define ENV_QUIET (TL_TAB_LEN>>4) /* sin waveform table in 'decibel' scale */ /* four waveforms on OPL2 type chips */ static unsigned int sin_tab[SIN_LEN * 4]; /* LFO Amplitude Modulation table (verified on real YM3812) 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples Length: 210 elements. Each of the elements has to be repeated exactly 64 times (on 64 consecutive samples). The whole table takes: 64 * 210 = 13440 samples. When AM = 1 data is used directly When AM = 0 data is divided by 4 before being used (losing precision is important) */ #define LFO_AM_TAB_ELEMENTS 210U static u8int lfo_am_table[LFO_AM_TAB_ELEMENTS] = { 0,0,0,0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8, 9,9,9,9, 10,10,10,10, 11,11,11,11, 12,12,12,12, 13,13,13,13, 14,14,14,14, 15,15,15,15, 16,16,16,16, 17,17,17,17, 18,18,18,18, 19,19,19,19, 20,20,20,20, 21,21,21,21, 22,22,22,22, 23,23,23,23, 24,24,24,24, 25,25,25,25, 26,26,26, 25,25,25,25, 24,24,24,24, 23,23,23,23, 22,22,22,22, 21,21,21,21, 20,20,20,20, 19,19,19,19, 18,18,18,18, 17,17,17,17, 16,16,16,16, 15,15,15,15, 14,14,14,14, 13,13,13,13, 12,12,12,12, 11,11,11,11, 10,10,10,10, 9,9,9,9, 8,8,8,8, 7,7,7,7, 6,6,6,6, 5,5,5,5, 4,4,4,4, 3,3,3,3, 2,2,2,2, 1,1,1,1 }; /* LFO Phase Modulation table (verified on real YM3812) */ static s8int lfo_pm_table[8*8*2] = { /* FNUM2/FNUM = 00 0xxxxxxx (0x0000) */ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 00 1xxxxxxx (0x0080) */ 0, 0, 0, 0, 0, 0, 0, 0, /*LFO PM depth = 0*/ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 01 0xxxxxxx (0x0100) */ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 01 1xxxxxxx (0x0180) */ 1, 0, 0, 0,-1, 0, 0, 0, /*LFO PM depth = 0*/ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 10 0xxxxxxx (0x0200) */ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ 4, 2, 0,-2,-4,-2, 0, 2, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 10 1xxxxxxx (0x0280) */ 2, 1, 0,-1,-2,-1, 0, 1, /*LFO PM depth = 0*/ 5, 2, 0,-2,-5,-2, 0, 2, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 11 0xxxxxxx (0x0300) */ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ 6, 3, 0,-3,-6,-3, 0, 3, /*LFO PM depth = 1*/ /* FNUM2/FNUM = 11 1xxxxxxx (0x0380) */ 3, 1, 0,-1,-3,-1, 0, 1, /*LFO PM depth = 0*/ 7, 3, 0,-3,-7,-3, 0, 3 /*LFO PM depth = 1*/ }; /* lock level of common table */ static int num_lock = 0; #define SLOT7_1 (&OPL->P_CH[7].SLOT[SLOT1]) #define SLOT7_2 (&OPL->P_CH[7].SLOT[SLOT2]) #define SLOT8_1 (&OPL->P_CH[8].SLOT[SLOT1]) #define SLOT8_2 (&OPL->P_CH[8].SLOT[SLOT2]) static int limit( int val, int max, int min ) { if ( val > max ) val = max; else if ( val < min ) val = min; return val; } /* status set and IRQ handling */ static void OPL_STATUS_SET(FM_OPL *OPL,int flag) { /* set status flag */ OPL->status |= flag; if(!(OPL->status & 0x80)) { if(OPL->status & OPL->statusmask) { /* IRQ on */ OPL->status |= 0x80; /* callback user interrupt handler (IRQ is OFF to ON) */ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1); } } } /* status reset and IRQ handling */ static void OPL_STATUS_RESET(FM_OPL *OPL,int flag) { /* reset status flag */ OPL->status &=~flag; if((OPL->status & 0x80)) { if (!(OPL->status & OPL->statusmask) ) { OPL->status &= 0x7f; /* callback user interrupt handler (IRQ is ON to OFF) */ if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0); } } } /* IRQ mask set */ static void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag) { OPL->statusmask = flag; /* IRQ handling check */ OPL_STATUS_SET(OPL,0); OPL_STATUS_RESET(OPL,0); } /* advance LFO to next sample */ static void advance_lfo(FM_OPL *OPL) { u8int tmp; /* LFO */ OPL->lfo_am_cnt += OPL->lfo_am_inc; if (OPL->lfo_am_cnt >= ((u32int)LFO_AM_TAB_ELEMENTS<<LFO_SH) ) /* lfo_am_table is 210 elements long */ OPL->lfo_am_cnt -= ((u32int)LFO_AM_TAB_ELEMENTS<<LFO_SH); tmp = lfo_am_table[ OPL->lfo_am_cnt >> LFO_SH ]; if (OPL->lfo_am_depth) OPL->LFO_AM = tmp; else OPL->LFO_AM = tmp>>2; OPL->lfo_pm_cnt += OPL->lfo_pm_inc; OPL->LFO_PM = ((OPL->lfo_pm_cnt>>LFO_SH) & 7) | OPL->lfo_pm_depth_range; } /* advance to next sample */ static void advance(FM_OPL *OPL) { OPL_CH *CH; OPL_SLOT *op; int i; OPL->eg_timer += OPL->eg_timer_add; while (OPL->eg_timer >= OPL->eg_timer_overflow) { OPL->eg_timer -= OPL->eg_timer_overflow; OPL->eg_cnt++; for (i=0; i<9*2; i++) { CH = &OPL->P_CH[i/2]; op = &CH->SLOT[i&1]; /* Envelope Generator */ switch(op->state) { case EG_ATT: /* attack phase */ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_ar)-1) ) ) { /* we want sign extension here */ op->volume += (s32int)(~op->volume * (eg_inc[op->eg_sel_ar + ((OPL->eg_cnt>>op->eg_sh_ar)&7)]) ) >>3; if (op->volume <= MIN_ATT_INDEX) { op->volume = MIN_ATT_INDEX; op->state = EG_DEC; } } break; case EG_DEC: /* decay phase */ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_dr)-1) ) ) { op->volume += eg_inc[op->eg_sel_dr + ((OPL->eg_cnt>>op->eg_sh_dr)&7)]; if ( op->volume >= op->sl ) op->state = EG_SUS; } break; case EG_SUS: /* sustain phase */ /* this is important behaviour: one can change percusive/non-percussive modes on the fly and the chip will remain in sustain phase - verified on real YM3812 */ if(op->eg_type) /* non-percussive mode */ { /* do nothing */ } else /* percussive mode */ { /* during sustain phase chip adds Release Rate (in percussive mode) */ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) ) { op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)]; if ( op->volume >= MAX_ATT_INDEX ) op->volume = MAX_ATT_INDEX; } /* else do nothing in sustain phase */ } break; case EG_REL: /* release phase */ if ( !(OPL->eg_cnt & ((1<<op->eg_sh_rr)-1) ) ) { op->volume += eg_inc[op->eg_sel_rr + ((OPL->eg_cnt>>op->eg_sh_rr)&7)]; if ( op->volume >= MAX_ATT_INDEX ) { op->volume = MAX_ATT_INDEX; op->state = EG_OFF; } } break; default: break; } } } for (i=0; i<9*2; i++) { CH = &OPL->P_CH[i/2]; op = &CH->SLOT[i&1]; /* Phase Generator */ if(op->vib) { u8int block; unsigned int block_fnum = CH->block_fnum; unsigned int fnum_lfo = (block_fnum&0x0380) >> 7; signed int lfo_fn_table_index_offset = lfo_pm_table[OPL->LFO_PM + 16*fnum_lfo ]; if (lfo_fn_table_index_offset) /* LFO phase modulation active */ { block_fnum += lfo_fn_table_index_offset; block = (block_fnum&0x1c00) >> 10; op->Cnt += (OPL->fn_tab[block_fnum&0x03ff] >> (7-block)) * op->mul; } else /* LFO phase modulation = zero */ { op->Cnt += op->Incr; } } else /* LFO phase modulation disabled for this operator */ { op->Cnt += op->Incr; } } /* The Noise Generator of the YM3812 is 23-bit shift register. * Period is equal to 2^23-2 samples. * Register works at sampling frequency of the chip, so output * can change on every sample. * * Output of the register and input to the bit 22 is: * bit0 XOR bit14 XOR bit15 XOR bit22 * * Simply use bit 22 as the noise output. */ OPL->noise_p += OPL->noise_f; i = OPL->noise_p >> FREQ_SH; /* number of events (shifts of the shift register) */ OPL->noise_p &= FREQ_MASK; while (i) { /* u32int j; j = ( (OPL->noise_rng) ^ (OPL->noise_rng>>14) ^ (OPL->noise_rng>>15) ^ (OPL->noise_rng>>22) ) & 1; OPL->noise_rng = (j<<22) | (OPL->noise_rng>>1); */ /* Instead of doing all the logic operations above, we use a trick here (and use bit 0 as the noise output). The difference is only that the noise bit changes one step ahead. This doesn't matter since we don't know what is real state of the noise_rng after the reset. */ if (OPL->noise_rng & 1) OPL->noise_rng ^= 0x800302; OPL->noise_rng >>= 1; i--; } } static signed int op_calc(u32int phase, unsigned int env, signed int pm, unsigned int wave_tab) { u32int p; p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + (pm<<16))) >> FREQ_SH ) & SIN_MASK) ]; if (p >= TL_TAB_LEN) return 0; return tl_tab[p]; } static signed int op_calc1(u32int phase, unsigned int env, signed int pm, unsigned int wave_tab) { u32int p; p = (env<<4) + sin_tab[wave_tab + ((((signed int)((phase & ~FREQ_MASK) + pm )) >> FREQ_SH ) & SIN_MASK) ]; if (p >= TL_TAB_LEN) return 0; return tl_tab[p]; } #define volume_calc(OP) ((OP)->TLL + ((u32int)(OP)->volume) + (OPL->LFO_AM & (OP)->AMmask)) /* calculate output */ static void OPL_CALC_CH( FM_OPL *OPL, OPL_CH *CH ) { OPL_SLOT *SLOT; unsigned int env; signed int out; OPL->phase_modulation = 0; /* SLOT 1 */ SLOT = &CH->SLOT[SLOT1]; env = volume_calc(SLOT); out = SLOT->op1_out[0] + SLOT->op1_out[1]; SLOT->op1_out[0] = SLOT->op1_out[1]; *SLOT->connect1 += SLOT->op1_out[0]; SLOT->op1_out[1] = 0; if( env < ENV_QUIET ) { if (!SLOT->FB) out = 0; SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable ); } /* SLOT 2 */ SLOT++; env = volume_calc(SLOT); if( env < ENV_QUIET ) OPL->output[0] += op_calc(SLOT->Cnt, env, OPL->phase_modulation, SLOT->wavetable); } /* operators used in the rhythm sounds generation process: Envelope Generator: channel operator register number Bass High Snare Tom Top / slot number TL ARDR SLRR Wave Drum Hat Drum Tom Cymbal 6 / 0 12 50 70 90 f0 + 6 / 1 15 53 73 93 f3 + 7 / 0 13 51 71 91 f1 + 7 / 1 16 54 74 94 f4 + 8 / 0 14 52 72 92 f2 + 8 / 1 17 55 75 95 f5 + Phase Generator: channel operator register number Bass High Snare Tom Top / slot number MULTIPLE Drum Hat Drum Tom Cymbal 6 / 0 12 30 + 6 / 1 15 33 + 7 / 0 13 31 + + + 7 / 1 16 34 ----- n o t u s e d ----- 8 / 0 14 32 + 8 / 1 17 35 + + channel operator register number Bass High Snare Tom Top number number BLK/FNUM2 FNUM Drum Hat Drum Tom Cymbal 6 12,15 B6 A6 + 7 13,16 B7 A7 + + + 8 14,17 B8 A8 + + + */ /* calculate rhythm */ static void OPL_CALC_RH( FM_OPL *OPL, OPL_CH *CH, unsigned int noise ) { OPL_SLOT *SLOT; signed int out; unsigned int env; /* Bass Drum (verified on real YM3812): - depends on the channel 6 'connect' register: when connect = 0 it works the same as in normal (non-rhythm) mode (op1->op2->out) when connect = 1 _only_ operator 2 is present on output (op2->out), operator 1 is ignored - output sample always is multiplied by 2 */ OPL->phase_modulation = 0; /* SLOT 1 */ SLOT = &CH[6].SLOT[SLOT1]; env = volume_calc(SLOT); out = SLOT->op1_out[0] + SLOT->op1_out[1]; SLOT->op1_out[0] = SLOT->op1_out[1]; if (!SLOT->CON) OPL->phase_modulation = SLOT->op1_out[0]; /* else ignore output of operator 1 */ SLOT->op1_out[1] = 0; if( env < ENV_QUIET ) { if (!SLOT->FB) out = 0; SLOT->op1_out[1] = op_calc1(SLOT->Cnt, env, (out<<SLOT->FB), SLOT->wavetable ); } /* SLOT 2 */ SLOT++; env = volume_calc(SLOT); if( env < ENV_QUIET ) OPL->output[0] += op_calc(SLOT->Cnt, env, OPL->phase_modulation, SLOT->wavetable) * 2; /* Phase generation is based on: */ /* HH (13) channel 7->slot 1 combined with channel 8->slot 2 (same combination as TOP CYMBAL but different output phases) */ /* SD (16) channel 7->slot 1 */ /* TOM (14) channel 8->slot 1 */ /* TOP (17) channel 7->slot 1 combined with channel 8->slot 2 (same combination as HIGH HAT but different output phases) */ /* Envelope generation based on: */ /* HH channel 7->slot1 */ /* SD channel 7->slot2 */ /* TOM channel 8->slot1 */ /* TOP channel 8->slot2 */ /* The following formulas can be well optimized. I leave them in direct form for now (in case I've missed something). */ /* High Hat (verified on real YM3812) */ env = volume_calc(SLOT7_1); if( env < ENV_QUIET ) { /* high hat phase generation: phase = d0 or 234 (based on frequency only) phase = 34 or 2d0 (based on noise) */ /* base frequency derived from operator 1 in channel 7 */ unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; unsigned char res1 = (bit2 ^ bit7) | bit3; /* when res1 = 0 phase = 0x000 | 0xd0; */ /* when res1 = 1 phase = 0x200 | (0xd0>>2); */ u32int phase = res1 ? (0x200|(0xd0>>2)) : 0xd0; /* enable gate based on frequency of operator 2 in channel 8 */ unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; unsigned char res2 = (bit3e ^ bit5e); /* when res2 = 0 pass the phase from calculation above (res1); */ /* when res2 = 1 phase = 0x200 | (0xd0>>2); */ if (res2) phase = (0x200|(0xd0>>2)); /* when phase & 0x200 is set and noise=1 then phase = 0x200|0xd0 */ /* when phase & 0x200 is set and noise=0 then phase = 0x200|(0xd0>>2), ie no change */ if (phase&0x200) { if (noise) phase = 0x200|0xd0; } else /* when phase & 0x200 is clear and noise=1 then phase = 0xd0>>2 */ /* when phase & 0x200 is clear and noise=0 then phase = 0xd0, ie no change */ { if (noise) phase = 0xd0>>2; } OPL->output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_1->wavetable) * 2; } /* Snare Drum (verified on real YM3812) */ env = volume_calc(SLOT7_2); if( env < ENV_QUIET ) { /* base frequency derived from operator 1 in channel 7 */ unsigned char bit8 = ((SLOT7_1->Cnt>>FREQ_SH)>>8)&1; /* when bit8 = 0 phase = 0x100; */ /* when bit8 = 1 phase = 0x200; */ u32int phase = bit8 ? 0x200 : 0x100; /* Noise bit XOR'es phase by 0x100 */ /* when noisebit = 0 pass the phase from calculation above */ /* when noisebit = 1 phase ^= 0x100; */ /* in other words: phase ^= (noisebit<<8); */ if (noise) phase ^= 0x100; OPL->output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT7_2->wavetable) * 2; } /* Tom Tom (verified on real YM3812) */ env = volume_calc(SLOT8_1); if( env < ENV_QUIET ) OPL->output[0] += op_calc(SLOT8_1->Cnt, env, 0, SLOT8_1->wavetable) * 2; /* Top Cymbal (verified on real YM3812) */ env = volume_calc(SLOT8_2); if( env < ENV_QUIET ) { /* base frequency derived from operator 1 in channel 7 */ unsigned char bit7 = ((SLOT7_1->Cnt>>FREQ_SH)>>7)&1; unsigned char bit3 = ((SLOT7_1->Cnt>>FREQ_SH)>>3)&1; unsigned char bit2 = ((SLOT7_1->Cnt>>FREQ_SH)>>2)&1; unsigned char res1 = (bit2 ^ bit7) | bit3; /* when res1 = 0 phase = 0x000 | 0x100; */ /* when res1 = 1 phase = 0x200 | 0x100; */ u32int phase = res1 ? 0x300 : 0x100; /* enable gate based on frequency of operator 2 in channel 8 */ unsigned char bit5e= ((SLOT8_2->Cnt>>FREQ_SH)>>5)&1; unsigned char bit3e= ((SLOT8_2->Cnt>>FREQ_SH)>>3)&1; unsigned char res2 = (bit3e ^ bit5e); /* when res2 = 0 pass the phase from calculation above (res1); */ /* when res2 = 1 phase = 0x200 | 0x100; */ if (res2) phase = 0x300; OPL->output[0] += op_calc(phase<<FREQ_SH, env, 0, SLOT8_2->wavetable) * 2; } } /* generic table initialize */ static int init_tables(void) { signed int i,x; signed int n; double o,m; for (x=0; x<TL_RES_LEN; x++) { m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0); m = floor(m); /* we never reach (1<<16) here due to the (x+1) */ /* result fits within 16 bits at maximum */ n = (int)m; /* 16 bits here */ n >>= 4; /* 12 bits here */ if (n&1) /* round to nearest */ n = (n>>1)+1; else n = n>>1; /* 11 bits here (rounded) */ n <<= 1; /* 12 bits here (as in real chip) */ tl_tab[ x*2 + 0 ] = n; tl_tab[ x*2 + 1 ] = -tl_tab[ x*2 + 0 ]; for (i=1; i<12; i++) { tl_tab[ x*2+0 + i*2*TL_RES_LEN ] = tl_tab[ x*2+0 ]>>i; tl_tab[ x*2+1 + i*2*TL_RES_LEN ] = -tl_tab[ x*2+0 + i*2*TL_RES_LEN ]; } } for (i=0; i<SIN_LEN; i++) { /* non-standard sinus */ m = sin( ((i*2)+1) * PI / SIN_LEN ); /* checked against the real chip */ /* we never reach zero here due to ((i*2)+1) */ if (m>0.0) o = 8*log(1.0/m)/log(2.0); /* convert to 'decibels' */ else o = 8*log(-1.0/m)/log(2.0); /* convert to 'decibels' */ o = o / (ENV_STEP/4); n = (int)(2.0*o); if (n&1) /* round to nearest */ n = (n>>1)+1; else n = n>>1; sin_tab[ i ] = n*2 + (m>=0.0? 0: 1 ); } for (i=0; i<SIN_LEN; i++) { /* waveform 1: __ __ */ /* / \____/ \____*/ /* output only first half of the sinus waveform (positive one) */ if (i & (1<<(SIN_BITS-1)) ) sin_tab[1*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[1*SIN_LEN+i] = sin_tab[i]; /* waveform 2: __ __ __ __ */ /* / \/ \/ \/ \*/ /* abs(sin) */ sin_tab[2*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>1) ]; /* waveform 3: _ _ _ _ */ /* / |_/ |_/ |_/ |_*/ /* abs(output only first quarter of the sinus waveform) */ if (i & (1<<(SIN_BITS-2)) ) sin_tab[3*SIN_LEN+i] = TL_TAB_LEN; else sin_tab[3*SIN_LEN+i] = sin_tab[i & (SIN_MASK>>2)]; } return 1; } static void OPL_initalize(FM_OPL *OPL) { int i; /* frequency base */ OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / 72.0) / OPL->rate : 0; /* OPL->rate = (double)OPL->clock / 72.0; OPL->freqbase = 1.0; */ /* Timer base time */ OPL->TimerBase = 1.0 / ((double)OPL->clock / 72.0); /* make fnumber -> increment counter table */ for( i=0 ; i < 1024 ; i++ ) { /* opn phase increment counter = 20bit */ OPL->fn_tab[i] = (u32int)( (double)i * 64 * OPL->freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */ } /* Amplitude modulation: 27 output levels (triangle waveform); 1 level takes one of: 192, 256 or 448 samples */ /* One entry from LFO_AM_TABLE lasts for 64 samples */ OPL->lfo_am_inc = (1.0 / 64.0 ) * (1<<LFO_SH) * OPL->freqbase; /* Vibrato: 8 output levels (triangle waveform); 1 level takes 1024 samples */ OPL->lfo_pm_inc = (1.0 / 1024.0) * (1<<LFO_SH) * OPL->freqbase; /* Noise generator: a step takes 1 sample */ OPL->noise_f = (1.0 / 1.0) * (1<<FREQ_SH) * OPL->freqbase; OPL->eg_timer_add = (1<<EG_SH) * OPL->freqbase; OPL->eg_timer_overflow = ( 1 ) * (1<<EG_SH); } static void FM_KEYON(OPL_SLOT *SLOT, u32int key_set) { if( !SLOT->key ) { /* restart Phase Generator */ SLOT->Cnt = 0; /* phase -> Attack */ SLOT->state = EG_ATT; } SLOT->key |= key_set; } static void FM_KEYOFF(OPL_SLOT *SLOT, u32int key_clr) { if( SLOT->key ) { SLOT->key &= key_clr; if( !SLOT->key ) { /* phase -> Release */ if (SLOT->state>EG_REL) SLOT->state = EG_REL; } } } /* update phase increment counter of operator (also update the EG rates if necessary) */ static void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT) { int ksr; /* (frequency) phase increment counter */ SLOT->Incr = CH->fc * SLOT->mul; ksr = CH->kcode >> SLOT->KSR; if( SLOT->ksr != ksr ) { SLOT->ksr = ksr; /* calculate envelope generator rates */ if ((SLOT->ar + SLOT->ksr) < 16+62) { SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; } else { SLOT->eg_sh_ar = 0; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; } } /* set multi,am,vib,EG-TYP,KSR,mul */ static void set_mul(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->mul = mul_tab[v&0x0f]; SLOT->KSR = (v&0x10) ? 0 : 2; SLOT->eg_type = (v&0x20); SLOT->vib = (v&0x40); SLOT->AMmask = (v&0x80) ? ~0 : 0; CALC_FCSLOT(CH,SLOT); } /* set ksl & tl */ static void set_ksl_tl(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->ksl = ksl_shift[v >> 6]; SLOT->TL = (v&0x3f)<<(ENV_BITS-1-7); /* 7 bits TL (bit 6 = always 0) */ SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl); } /* set attack rate & decay rate */ static void set_ar_dr(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->ar = (v>>4) ? 16 + ((v>>4) <<2) : 0; if ((SLOT->ar + SLOT->ksr) < 16+62) { SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; } else { SLOT->eg_sh_ar = 0; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->dr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; } /* set sustain level & release rate */ static void set_sl_rr(FM_OPL *OPL,int slot,int v) { OPL_CH *CH = &OPL->P_CH[slot/2]; OPL_SLOT *SLOT = &CH->SLOT[slot&1]; SLOT->sl = sl_tab[ v>>4 ]; SLOT->rr = (v&0x0f)? 16 + ((v&0x0f)<<2) : 0; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; } /* write a value v to register r on OPL chip */ static void OPLWriteReg(FM_OPL *OPL, int r, int v) { OPL_CH *CH; int slot; int block_fnum; /* adjust bus to 8 bits */ r &= 0xff; v &= 0xff; switch(r&0xe0) { case 0x00: /* 00-1f:control */ switch(r&0x1f) { case 0x01: /* waveform select enable */ if(OPL->type&OPL_TYPE_WAVESEL) { OPL->wavesel = v&0x20; /* do not change the waveform previously selected */ } break; case 0x02: /* Timer 1 */ OPL->T[0] = (256-v)*4; break; case 0x03: /* Timer 2 */ OPL->T[1] = (256-v)*16; break; case 0x04: /* IRQ clear / mask and Timer enable */ if(v&0x80) { /* IRQ flag clear */ OPL_STATUS_RESET(OPL,0x7f-0x08); /* don't reset BFRDY flag or we will have to call deltat module to set the flag */ } else { /* set IRQ mask ,timer enable*/ u8int st1 = v&1; u8int st2 = (v>>1)&1; /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */ OPL_STATUS_RESET(OPL, v & (0x78-0x08) ); OPL_STATUSMASK_SET(OPL, (~v) & 0x78 ); /* timer 2 */ if(OPL->st[1] != st2) { double period = st2 ? (OPL->TimerBase * OPL->T[1]) : 0; OPL->st[1] = st2; if (OPL->timer_handler) (OPL->timer_handler)(OPL->TimerParam,1,period); } /* timer 1 */ if(OPL->st[0] != st1) { double period = st1 ? (OPL->TimerBase * OPL->T[0]) : 0; OPL->st[0] = st1; if (OPL->timer_handler) (OPL->timer_handler)(OPL->TimerParam,0,period); } } break; case 0x08: /* MODE,DELTA-T control 2 : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */ OPL->mode = v; break; default: fprint(2, "write to unknown register: %02x\n",r); break; } break; case 0x20: /* am ON, vib ON, ksr, eg_type, mul */ slot = slot_array[r&0x1f]; if(slot < 0) return; set_mul(OPL,slot,v); break; case 0x40: slot = slot_array[r&0x1f]; if(slot < 0) return; set_ksl_tl(OPL,slot,v); break; case 0x60: slot = slot_array[r&0x1f]; if(slot < 0) return; set_ar_dr(OPL,slot,v); break; case 0x80: slot = slot_array[r&0x1f]; if(slot < 0) return; set_sl_rr(OPL,slot,v); break; case 0xa0: if (r == 0xbd) /* am depth, vibrato depth, r,bd,sd,tom,tc,hh */ { OPL->lfo_am_depth = v & 0x80; OPL->lfo_pm_depth_range = (v&0x40) ? 8 : 0; OPL->rhythm = v&0x3f; if(OPL->rhythm&0x20) { /* BD key on/off */ if(v&0x10) { FM_KEYON (&OPL->P_CH[6].SLOT[SLOT1], 2); FM_KEYON (&OPL->P_CH[6].SLOT[SLOT2], 2); } else { FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2); FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2); } /* HH key on/off */ if(v&0x01) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT1], 2); else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2); /* SD key on/off */ if(v&0x08) FM_KEYON (&OPL->P_CH[7].SLOT[SLOT2], 2); else FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2); /* TOM key on/off */ if(v&0x04) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT1], 2); else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2); /* TOP-CY key on/off */ if(v&0x02) FM_KEYON (&OPL->P_CH[8].SLOT[SLOT2], 2); else FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2); } else { /* BD key off */ FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1],~2); FM_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2],~2); /* HH key off */ FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1],~2); /* SD key off */ FM_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2],~2); /* TOM key off */ FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1],~2); /* TOP-CY off */ FM_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2],~2); } return; } /* keyon,block,fnum */ if( (r&0x0f) > 8) return; CH = &OPL->P_CH[r&0x0f]; if(!(r&0x10)) { /* a0-a8 */ block_fnum = (CH->block_fnum&0x1f00) | v; } else { /* b0-b8 */ block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff); if(v&0x20) { FM_KEYON (&CH->SLOT[SLOT1], 1); FM_KEYON (&CH->SLOT[SLOT2], 1); } else { FM_KEYOFF(&CH->SLOT[SLOT1],~1); FM_KEYOFF(&CH->SLOT[SLOT2],~1); } } /* update */ if(CH->block_fnum != block_fnum) { u8int block = block_fnum >> 10; CH->block_fnum = block_fnum; CH->ksl_base = ksl_tab[block_fnum>>6]; CH->fc = OPL->fn_tab[block_fnum&0x03ff] >> (7-block); /* BLK 2,1,0 bits -> bits 3,2,1 of kcode */ CH->kcode = (CH->block_fnum&0x1c00)>>9; /* the info below is actually opposite to what is stated in the Manuals (verifed on real YM3812) */ /* if notesel == 0 -> lsb of kcode is bit 10 (MSB) of fnum */ /* if notesel == 1 -> lsb of kcode is bit 9 (MSB-1) of fnum */ if (OPL->mode&0x40) CH->kcode |= (CH->block_fnum&0x100)>>8; /* notesel == 1 */ else CH->kcode |= (CH->block_fnum&0x200)>>9; /* notesel == 0 */ /* refresh Total Level in both SLOTs of this channel */ CH->SLOT[SLOT1].TLL = CH->SLOT[SLOT1].TL + (CH->ksl_base>>CH->SLOT[SLOT1].ksl); CH->SLOT[SLOT2].TLL = CH->SLOT[SLOT2].TL + (CH->ksl_base>>CH->SLOT[SLOT2].ksl); /* refresh frequency counter in both SLOTs of this channel */ CALC_FCSLOT(CH,&CH->SLOT[SLOT1]); CALC_FCSLOT(CH,&CH->SLOT[SLOT2]); } break; case 0xc0: /* FB,C */ if( (r&0x0f) > 8) return; CH = &OPL->P_CH[r&0x0f]; CH->SLOT[SLOT1].FB = (v>>1)&7 ? ((v>>1)&7) + 7 : 0; CH->SLOT[SLOT1].CON = v&1; CH->SLOT[SLOT1].connect1 = CH->SLOT[SLOT1].CON ? &OPL->output[0] : &OPL->phase_modulation; break; case 0xe0: /* waveform select */ /* simply ignore write to the waveform select register if selecting not enabled in test register */ if(OPL->wavesel) { slot = slot_array[r&0x1f]; if(slot < 0) return; CH = &OPL->P_CH[slot/2]; CH->SLOT[slot&1].wavetable = (v&0x03)*SIN_LEN; } break; } } /* lock/unlock for common table */ static int OPL_LockTable(void) { num_lock++; if(num_lock>1) return 0; /* first time */ /* allocate total level table (128kb space) */ if( !init_tables() ) { num_lock--; return -1; } return 0; } static void OPL_UnLockTable(void) { if(num_lock) num_lock--; if(num_lock) return; } static void OPLResetChip(FM_OPL *OPL) { int c,s; int i; OPL->eg_timer = 0; OPL->eg_cnt = 0; OPL->noise_rng = 1; /* noise shift register */ OPL->mode = 0; /* normal mode */ OPL_STATUS_RESET(OPL,0x7f); /* reset with register write */ OPLWriteReg(OPL,0x01,0); /* wavesel disable */ OPLWriteReg(OPL,0x02,0); /* Timer1 */ OPLWriteReg(OPL,0x03,0); /* Timer2 */ OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */ for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0); /* reset operator parameters */ for( c = 0 ; c < 9 ; c++ ) { OPL_CH *CH = &OPL->P_CH[c]; for(s = 0 ; s < 2 ; s++ ) { /* wave table */ CH->SLOT[s].wavetable = 0; CH->SLOT[s].state = EG_OFF; CH->SLOT[s].volume = MAX_ATT_INDEX; } } } static void OPL_postload(FM_OPL *OPL) { int slot, ch; for( ch=0 ; ch < 9 ; ch++ ) { OPL_CH *CH = &OPL->P_CH[ch]; /* Look up key scale level */ u32int block_fnum = CH->block_fnum; CH->ksl_base = ksl_tab[block_fnum >> 6]; CH->fc = OPL->fn_tab[block_fnum & 0x03ff] >> (7 - (block_fnum >> 10)); for( slot=0 ; slot < 2 ; slot++ ) { OPL_SLOT *SLOT = &CH->SLOT[slot]; /* Calculate key scale rate */ SLOT->ksr = CH->kcode >> SLOT->KSR; /* Calculate attack, decay and release rates */ if ((SLOT->ar + SLOT->ksr) < 16+62) { SLOT->eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ]; SLOT->eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ]; } else { SLOT->eg_sh_ar = 0; SLOT->eg_sel_ar = 13*RATE_STEPS; } SLOT->eg_sh_dr = eg_rate_shift [SLOT->dr + SLOT->ksr ]; SLOT->eg_sel_dr = eg_rate_select[SLOT->dr + SLOT->ksr ]; SLOT->eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr ]; SLOT->eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr ]; /* Calculate phase increment */ SLOT->Incr = CH->fc * SLOT->mul; /* Total level */ SLOT->TLL = SLOT->TL + (CH->ksl_base >> SLOT->ksl); /* Connect output */ SLOT->connect1 = SLOT->CON ? &OPL->output[0] : &OPL->phase_modulation; } } } static FM_OPL * OPLCreate(u32int clock, u32int rate, int type) { FM_OPL *p; if(OPL_LockTable() == -1) sysfatal("OPLCreate: locktable"); /* allocate memory block */ if((p = mallocz(sizeof *p, 1)) == nil) sysfatal("mallocz: %r"); p->type = type; p->clock = clock; /* Hz */ p->rate = rate; /* init global tables */ OPL_initalize(p); return p; } /* Destroy one of virtual YM3812 */ static void OPLDestroy(FM_OPL *OPL) { OPL_UnLockTable(); free(OPL); } /* Optional handlers */ static void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER timer_handler,void *param) { OPL->timer_handler = timer_handler; OPL->TimerParam = param; } static void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,void *param) { OPL->IRQHandler = IRQHandler; OPL->IRQParam = param; } static void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,void *param) { OPL->UpdateHandler = UpdateHandler; OPL->UpdateParam = param; } static int OPLWrite(FM_OPL *OPL,int a,int v) { if( !(a&1) ) { /* address port */ OPL->address = v & 0xff; } else { /* data port */ if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); OPLWriteReg(OPL,OPL->address,v); } return OPL->status>>7; } static unsigned char OPLRead(FM_OPL *OPL,int a) { if( !(a&1) ) { /* status port */ /* OPL and OPL2 */ return OPL->status & (OPL->statusmask|0x80); } return 0xff; } /* CSM Key Controll */ static void CSMKeyControll(OPL_CH *CH) { FM_KEYON (&CH->SLOT[SLOT1], 4); FM_KEYON (&CH->SLOT[SLOT2], 4); /* The key off should happen exactly one sample later - not implemented correctly yet */ FM_KEYOFF(&CH->SLOT[SLOT1], ~4); FM_KEYOFF(&CH->SLOT[SLOT2], ~4); } static int OPLTimerOver(FM_OPL *OPL,int c) { if( c ) { /* Timer B */ OPL_STATUS_SET(OPL,0x20); } else { /* Timer A */ OPL_STATUS_SET(OPL,0x40); /* CSM mode key,TL controll */ if( OPL->mode & 0x80 ) { /* CSM mode total level latch and auto key on */ int ch; if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0); for(ch=0; ch<9; ch++) CSMKeyControll( &OPL->P_CH[ch] ); } } /* reload timer */ if (OPL->timer_handler) (OPL->timer_handler)(OPL->TimerParam,c,OPL->TimerBase * OPL->T[c]); return OPL->status>>7; } FM_OPL * ym3812_init(u32int clock, u32int rate) { FM_OPL *p; if((p = OPLCreate(clock, rate, OPL_TYPE_YM3812)) == nil) sysfatal("OPLCreate: %r"); /* FIXME */ ym3812_reset_chip(p); return p; } /* FIXME: remove abstractions; this is now opl2 only */ void ym3812_shutdown(FM_OPL *p) { OPLDestroy(p); } void ym3812_reset_chip(FM_OPL *p) { OPLResetChip(p); } int ym3812_write(FM_OPL *p, int a, int v) { return OPLWrite(p, a, v); } uchar ym3812_read(FM_OPL *p, int a) { /* YM3812 always returns bit2 and bit1 in HIGH state */ return OPLRead(p, a) | 0x06 ; } int ym3812_timer_over(FM_OPL *p, int c) { return OPLTimerOver(p, c); } void ym3812_set_timer_handler(FM_OPL *p, OPL_TIMERHANDLER timer_handler, void *param) { OPLSetTimerHandler(p, timer_handler, param); } void ym3812_set_irq_handler(FM_OPL *p,OPL_IRQHANDLER IRQHandler, void *param) { OPLSetIRQHandler(p, IRQHandler, param); } void ym3812_set_update_handler(FM_OPL *p, OPL_UPDATEHANDLER UpdateHandler, void *param) { OPLSetUpdateHandler(p, UpdateHandler, param); } void ym3812_update_one(FM_OPL *p, OPLSAMPLE *buf, int n) { int i, lt; u8int rhythm; rhythm = p->rhythm & 0x20; for(i=0; i < n; i++){ p->output[0] = 0; advance_lfo(p); /* FM part */ OPL_CALC_CH(p, &p->P_CH[0]); OPL_CALC_CH(p, &p->P_CH[1]); OPL_CALC_CH(p, &p->P_CH[2]); OPL_CALC_CH(p, &p->P_CH[3]); OPL_CALC_CH(p, &p->P_CH[4]); OPL_CALC_CH(p, &p->P_CH[5]); if(!rhythm) { OPL_CALC_CH(p, &p->P_CH[6]); OPL_CALC_CH(p, &p->P_CH[7]); OPL_CALC_CH(p, &p->P_CH[8]); } else /* Rhythm part */ { OPL_CALC_RH(p, &p->P_CH[0], (p->noise_rng>>0)&1 ); } lt = p->output[0]; lt >>= FINAL_SH; /* limit check */ lt = limit( lt , MAXOUT, MINOUT ); /* store to sound buffer */ buf[i] = lt; advance(p); } }