ref: 606cc10f2f7d76046a25fde5ec5e0a35dafdaae6
dir: /src_SigProc_FIX/SKP_Silk_MacroDebug.h/
#ifndef _SIGPROCFIX_API_DEBUG_H_
#define _SIGPROCFIX_API_DEBUG_H_
// Redefine macro functions with extensive assertion in Win32_DEBUG mode.
// As function can't be undefined, this file can't work with SigProcFIX_MacroCount.h
#if 0 && defined (_WIN32) && defined (_DEBUG) && !defined (SKP_MACRO_COUNT)
#undef SKP_ADD16
SKP_INLINE SKP_int16 SKP_ADD16(SKP_int16 a, SKP_int16 b){
SKP_int16 ret;
ret = a + b;
SKP_assert( ret == SKP_ADD_SAT16( a, b ));
return ret;
}
#undef SKP_ADD32
SKP_INLINE SKP_int32 SKP_ADD32(SKP_int32 a, SKP_int32 b){
SKP_int32 ret;
ret = a + b;
SKP_assert( ret == SKP_ADD_SAT32( a, b ));
return ret;
}
#undef SKP_ADD64
SKP_INLINE SKP_int64 SKP_ADD64(SKP_int64 a, SKP_int64 b){
SKP_int64 ret;
ret = a + b;
SKP_assert( ret == SKP_ADD_SAT64( a, b ));
return ret;
}
#undef SKP_SUB16
SKP_INLINE SKP_int16 SKP_SUB16(SKP_int16 a, SKP_int16 b){
SKP_int16 ret;
ret = a - b;
SKP_assert( ret == SKP_SUB_SAT16( a, b ));
return ret;
}
#undef SKP_SUB32
SKP_INLINE SKP_int32 SKP_SUB32(SKP_int32 a, SKP_int32 b){
SKP_int32 ret;
ret = a - b;
SKP_assert( ret == SKP_SUB_SAT32( a, b ));
return ret;
}
#undef SKP_SUB64
SKP_INLINE SKP_int64 SKP_SUB64(SKP_int64 a, SKP_int64 b){
SKP_int64 ret;
ret = a - b;
SKP_assert( ret == SKP_SUB_SAT64( a, b ));
return ret;
}
#undef SKP_ADD_SAT16
SKP_INLINE SKP_int16 SKP_ADD_SAT16( SKP_int16 a16, SKP_int16 b16 ) {
SKP_int16 res;
res = (SKP_int16)SKP_SAT16( SKP_ADD32( (SKP_int32)(a16), (b16) ) );
SKP_assert( res == SKP_SAT16( ( SKP_int32 )a16 + ( SKP_int32 )b16 ) );
return res;
}
#undef SKP_ADD_SAT32
SKP_INLINE SKP_int32 SKP_ADD_SAT32(SKP_int32 a32, SKP_int32 b32){
SKP_int32 res;
res = ((((a32) + (b32)) & 0x80000000) == 0 ? \
((((a32) & (b32)) & 0x80000000) != 0 ? SKP_int32_MIN : (a32)+(b32)) : \
((((a32) | (b32)) & 0x80000000) == 0 ? SKP_int32_MAX : (a32)+(b32)) );
SKP_assert( res == SKP_SAT32( ( SKP_int64 )a32 + ( SKP_int64 )b32 ) );
return res;
}
#undef SKP_ADD_SAT64
SKP_INLINE SKP_int64 SKP_ADD_SAT64( SKP_int64 a64, SKP_int64 b64 ) {
SKP_int64 res;
res = ((((a64) + (b64)) & 0x8000000000000000LL) == 0 ? \
((((a64) & (b64)) & 0x8000000000000000LL) != 0 ? SKP_int64_MIN : (a64)+(b64)) : \
((((a64) | (b64)) & 0x8000000000000000LL) == 0 ? SKP_int64_MAX : (a64)+(b64)) );
if( res != a64 + b64 ) {
// Check that we saturated to the correct extreme value
SKP_assert( ( res == SKP_int64_MAX && ( ( a64 >> 1 ) + ( b64 >> 1 ) > ( SKP_int64_MAX >> 3 ) ) ) ||
( res == SKP_int64_MIN && ( ( a64 >> 1 ) + ( b64 >> 1 ) < ( SKP_int64_MIN >> 3 ) ) ) );
} else {
// Saturation not necessary
SKP_assert( res == a64 + b64 );
}
return res;
}
#undef SKP_SUB_SAT16
SKP_INLINE SKP_int16 SKP_SUB_SAT16( SKP_int16 a16, SKP_int16 b16 ) {
SKP_int16 res;
res = (SKP_int16)SKP_SAT16( SKP_SUB32( (SKP_int32)(a16), (b16) ) );
SKP_assert( res == SKP_SAT16( ( SKP_int32 )a16 - ( SKP_int32 )b16 ) );
return res;
}
#undef SKP_SUB_SAT32
SKP_INLINE SKP_int32 SKP_SUB_SAT32( SKP_int32 a32, SKP_int32 b32 ) {
SKP_int32 res;
res = ((((a32)-(b32)) & 0x80000000) == 0 ? \
(( (a32) & ((b32)^0x80000000) & 0x80000000) ? SKP_int32_MIN : (a32)-(b32)) : \
((((a32)^0x80000000) & (b32) & 0x80000000) ? SKP_int32_MAX : (a32)-(b32)) );
SKP_assert( res == SKP_SAT32( ( SKP_int64 )a32 - ( SKP_int64 )b32 ) );
return res;
}
#undef SKP_SUB_SAT64
SKP_INLINE SKP_int64 SKP_SUB_SAT64( SKP_int64 a64, SKP_int64 b64 ) {
SKP_int64 res;
res = ((((a64)-(b64)) & 0x8000000000000000LL) == 0 ? \
(( (a64) & ((b64)^0x8000000000000000LL) & 0x8000000000000000LL) ? SKP_int64_MIN : (a64)-(b64)) : \
((((a64)^0x8000000000000000LL) & (b64) & 0x8000000000000000LL) ? SKP_int64_MAX : (a64)-(b64)) );
if( res != a64 - b64 ) {
// Check that we saturated to the correct extreme value
SKP_assert( ( res == SKP_int64_MAX && ( ( a64 >> 1 ) + ( b64 >> 1 ) > ( SKP_int64_MAX >> 3 ) ) ) ||
( res == SKP_int64_MIN && ( ( a64 >> 1 ) + ( b64 >> 1 ) < ( SKP_int64_MIN >> 3 ) ) ) );
} else {
// Saturation not necessary
SKP_assert( res == a64 - b64 );
}
return res;
}
#undef SKP_MUL
SKP_INLINE SKP_int32 SKP_MUL(SKP_int32 a32, SKP_int32 b32){
SKP_int32 ret;
SKP_int64 ret64; // Will easily show how many bits that are needed
ret = a32 * b32;
ret64 = (SKP_int64)a32 * (SKP_int64)b32;
SKP_assert((SKP_int64)ret == ret64 ); //Check output overflow
return ret;
}
#undef SKP_MUL_uint
SKP_INLINE SKP_uint32 SKP_MUL_uint(SKP_uint32 a32, SKP_uint32 b32){
SKP_uint32 ret;
ret = a32 * b32;
SKP_assert((SKP_uint64)ret == (SKP_uint64)a32 * (SKP_uint64)b32); //Check output overflow
return ret;
}
#undef SKP_MLA
SKP_INLINE SKP_int32 SKP_MLA(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + b32 * c32;
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (SKP_int64)b32 * (SKP_int64)c32); //Check output overflow
return ret;
}
#undef SKP_MLA_uint
SKP_INLINE SKP_int32 SKP_MLA_uint(SKP_uint32 a32, SKP_uint32 b32, SKP_uint32 c32){
SKP_uint32 ret;
ret = a32 + b32 * c32;
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (SKP_int64)b32 * (SKP_int64)c32); //Check output overflow
return ret;
}
#undef SKP_SMULWB
SKP_INLINE SKP_int32 SKP_SMULWB(SKP_int32 a32, SKP_int32 b32){
SKP_int32 ret;
ret = (a32 >> 16) * (SKP_int32)((SKP_int16)b32) + (((a32 & 0x0000FFFF) * (SKP_int32)((SKP_int16)b32)) >> 16);
SKP_assert((SKP_int64)ret == ((SKP_int64)a32 * (SKP_int16)b32) >> 16);
return ret;
}
#undef SKP_SMLAWB
SKP_INLINE SKP_int32 SKP_SMLAWB(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = SKP_ADD32( a32, SKP_SMULWB( b32, c32 ) );
SKP_assert(SKP_ADD32( a32, SKP_SMULWB( b32, c32 ) ) == SKP_ADD_SAT32( a32, SKP_SMULWB( b32, c32 ) ));
return ret;
}
#undef SKP_SMULWT
SKP_INLINE SKP_int32 SKP_SMULWT(SKP_int32 a32, SKP_int32 b32){
SKP_int32 ret;
ret = (a32 >> 16) * (b32 >> 16) + (((a32 & 0x0000FFFF) * (b32 >> 16)) >> 16);
SKP_assert((SKP_int64)ret == ((SKP_int64)a32 * (b32 >> 16)) >> 16);
return ret;
}
#undef SKP_SMLAWT
SKP_INLINE SKP_int32 SKP_SMLAWT(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + ((b32 >> 16) * (c32 >> 16)) + (((b32 & 0x0000FFFF) * ((c32 >> 16)) >> 16));
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (((SKP_int64)b32 * (c32 >> 16)) >> 16));
return ret;
}
#undef SKP_SMULL
SKP_INLINE SKP_int64 SKP_SMULL(SKP_int64 a64, SKP_int64 b64){
SKP_int64 ret64;
ret64 = a64 * b64;
if( b64 != 0 ) {
SKP_assert( a64 == (ret64 / b64) );
} else if( a64 != 0 ) {
SKP_assert( b64 == (ret64 / a64) );
}
return ret64;
}
// no checking needed for SKP_SMULBB
#undef SKP_SMLABB
SKP_INLINE SKP_int32 SKP_SMLABB(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + (SKP_int32)((SKP_int16)b32) * (SKP_int32)((SKP_int16)c32);
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (SKP_int64)b32 * (SKP_int16)c32);
return ret;
}
// no checking needed for SKP_SMULBT
#undef SKP_SMLABT
SKP_INLINE SKP_int32 SKP_SMLABT(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + ((SKP_int32)((SKP_int16)b32)) * (c32 >> 16);
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (SKP_int64)b32 * (c32 >> 16));
return ret;
}
// no checking needed for SKP_SMULTT
#undef SKP_SMLATT
SKP_INLINE SKP_int32 SKP_SMLATT(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret;
ret = a32 + (b32 >> 16) * (c32 >> 16);
SKP_assert((SKP_int64)ret == (SKP_int64)a32 + (b32 >> 16) * (c32 >> 16));
return ret;
}
#undef SKP_SMULWW
SKP_INLINE SKP_int32 SKP_SMULWW(SKP_int32 a32, SKP_int32 b32){
SKP_int32 ret, tmp1, tmp2;
SKP_int64 ret64;
ret = SKP_SMULWB( a32, b32 );
tmp1 = SKP_RSHIFT_ROUND( b32, 16 );
tmp2 = SKP_MUL( a32, tmp1 );
SKP_assert( (SKP_int64)tmp2 == (SKP_int64) a32 * (SKP_int64) tmp1 );
tmp1 = ret;
ret = SKP_ADD32( tmp1, tmp2 );
SKP_assert( SKP_ADD32( tmp1, tmp2 ) == SKP_ADD_SAT32( tmp1, tmp2 ) );
ret64 = SKP_RSHIFT64( SKP_SMULL( a32, b32 ), 16 );
SKP_assert( (SKP_int64)ret == ret64 );
return ret;
}
#undef SKP_SMLAWW
SKP_INLINE SKP_int32 SKP_SMLAWW(SKP_int32 a32, SKP_int32 b32, SKP_int32 c32){
SKP_int32 ret, tmp;
tmp = SKP_SMULWW( b32, c32 );
ret = SKP_ADD32( a32, tmp );
SKP_assert( ret == SKP_ADD_SAT32( a32, tmp ) );
return ret;
}
// multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode)
#undef SKP_MLA_ovflw
#define SKP_MLA_ovflw(a32, b32, c32) ((a32) + ((b32) * (c32)))
#undef SKP_SMLABB_ovflw
#define SKP_SMLABB_ovflw(a32, b32, c32) ((a32) + ((SKP_int32)((SKP_int16)(b32))) * (SKP_int32)((SKP_int16)(c32)))
#undef SKP_SMLABT_ovflw
#define SKP_SMLABT_ovflw(a32, b32, c32) ((a32) + ((SKP_int32)((SKP_int16)(b32))) * ((c32) >> 16))
#undef SKP_SMLATT_ovflw
#define SKP_SMLATT_ovflw(a32, b32, c32) ((a32) + ((b32) >> 16) * ((c32) >> 16))
#undef SKP_SMLAWB_ovflw
#define SKP_SMLAWB_ovflw(a32, b32, c32) ((a32) + ((((b32) >> 16) * (SKP_int32)((SKP_int16)(c32))) + ((((b32) & 0x0000FFFF) * (SKP_int32)((SKP_int16)(c32))) >> 16)))
#undef SKP_SMLAWT_ovflw
#define SKP_SMLAWT_ovflw(a32, b32, c32) ((a32) + (((b32) >> 16) * ((c32) >> 16)) + ((((b32) & 0x0000FFFF) * ((c32) >> 16)) >> 16))
// no checking needed for SKP_SMULL
// no checking needed for SKP_SMLAL
// no checking needed for SKP_SMLALBB
// no checking needed for SigProcFIX_CLZ16
// no checking needed for SigProcFIX_CLZ32
#undef SKP_DIV32
SKP_INLINE SKP_int32 SKP_DIV32(SKP_int32 a32, SKP_int32 b32){
SKP_assert( b32 != 0 );
return a32 / b32;
}
#undef SKP_DIV32_16
SKP_INLINE SKP_int32 SKP_DIV32_16(SKP_int32 a32, SKP_int32 b32){
SKP_assert( b32 != 0 );
SKP_assert( b32 <= SKP_int16_MAX );
SKP_assert( b32 >= SKP_int16_MIN );
return a32 / b32;
}
// no checking needed for SKP_SAT8
// no checking needed for SKP_SAT16
// no checking needed for SKP_SAT32
// no checking needed for SKP_POS_SAT32
// no checking needed for SKP_ADD_POS_SAT8
// no checking needed for SKP_ADD_POS_SAT16
// no checking needed for SKP_ADD_POS_SAT32
// no checking needed for SKP_ADD_POS_SAT64
#undef SKP_LSHIFT8
SKP_INLINE SKP_int8 SKP_LSHIFT8(SKP_int8 a, SKP_int32 shift){
SKP_int8 ret;
ret = a << shift;
SKP_assert(shift >= 0);
SKP_assert(shift < 8);
SKP_assert((SKP_int64)ret == ((SKP_int64)a) << shift);
return ret;
}
#undef SKP_LSHIFT16
SKP_INLINE SKP_int16 SKP_LSHIFT16(SKP_int16 a, SKP_int32 shift){
SKP_int16 ret;
ret = a << shift;
SKP_assert(shift >= 0);
SKP_assert(shift < 16);
SKP_assert((SKP_int64)ret == ((SKP_int64)a) << shift);
return ret;
}
#undef SKP_LSHIFT32
SKP_INLINE SKP_int32 SKP_LSHIFT32(SKP_int32 a, SKP_int32 shift){
SKP_int32 ret;
ret = a << shift;
SKP_assert(shift >= 0);
SKP_assert(shift < 32);
SKP_assert((SKP_int64)ret == ((SKP_int64)a) << shift);
return ret;
}
#undef SKP_LSHIFT64
SKP_INLINE SKP_int64 SKP_LSHIFT64(SKP_int64 a, SKP_int shift){
SKP_assert(shift >= 0);
SKP_assert(shift < 64);
return a << shift;
}
#undef SKP_LSHIFT_ovflw
SKP_INLINE SKP_int32 SKP_LSHIFT_ovflw(SKP_int32 a, SKP_int32 shift){
SKP_assert(shift >= 0); /* no check for overflow */
return a << shift;
}
#undef SKP_LSHIFT_uint
SKP_INLINE SKP_uint32 SKP_LSHIFT_uint(SKP_uint32 a, SKP_int32 shift){
SKP_uint32 ret;
ret = a << shift;
SKP_assert(shift >= 0);
SKP_assert((SKP_int64)ret == ((SKP_int64)a) << shift);
return ret;
}
#undef SKP_RSHIFT8
SKP_INLINE SKP_int8 SKP_RSHIFT8(SKP_int8 a, SKP_int32 shift){
SKP_assert(shift >= 0);
SKP_assert(shift < 8);
return a >> shift;
}
#undef SKP_RSHIFT16
SKP_INLINE SKP_int16 SKP_RSHIFT16(SKP_int16 a, SKP_int32 shift){
SKP_assert(shift >= 0);
SKP_assert(shift < 16);
return a >> shift;
}
#undef SKP_RSHIFT32
SKP_INLINE SKP_int32 SKP_RSHIFT32(SKP_int32 a, SKP_int32 shift){
SKP_assert(shift >= 0);
SKP_assert(shift < 32);
return a >> shift;
}
#undef SKP_RSHIFT64
SKP_INLINE SKP_int64 SKP_RSHIFT64(SKP_int64 a, SKP_int64 shift){
SKP_assert(shift >= 0);
SKP_assert(shift <= 63);
return a >> shift;
}
#undef SKP_RSHIFT_uint
SKP_INLINE SKP_uint32 SKP_RSHIFT_uint(SKP_uint32 a, SKP_int32 shift){
SKP_assert(shift >= 0);
SKP_assert(shift <= 32);
return a >> shift;
}
#undef SKP_ADD_LSHIFT
SKP_INLINE SKP_int32 SKP_ADD_LSHIFT(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a + (b << shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) << shift));
return ret; // shift >= 0
}
#undef SKP_ADD_LSHIFT32
SKP_INLINE SKP_int32 SKP_ADD_LSHIFT32(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a + (b << shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) << shift));
return ret; // shift >= 0
}
#undef SKP_ADD_LSHIFT_uint
SKP_INLINE SKP_uint32 SKP_ADD_LSHIFT_uint(SKP_uint32 a, SKP_uint32 b, SKP_int32 shift){
SKP_uint32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 32);
ret = a + (b << shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) << shift));
return ret; // shift >= 0
}
#undef SKP_ADD_RSHIFT
SKP_INLINE SKP_int32 SKP_ADD_RSHIFT(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a + (b >> shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) >> shift));
return ret; // shift > 0
}
#undef SKP_ADD_RSHIFT32
SKP_INLINE SKP_int32 SKP_ADD_RSHIFT32(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a + (b >> shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) >> shift));
return ret; // shift > 0
}
#undef SKP_ADD_RSHIFT_uint
SKP_INLINE SKP_uint32 SKP_ADD_RSHIFT_uint(SKP_uint32 a, SKP_uint32 b, SKP_int32 shift){
SKP_uint32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 32);
ret = a + (b >> shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a + (((SKP_int64)b) >> shift));
return ret; // shift > 0
}
#undef SKP_SUB_LSHIFT32
SKP_INLINE SKP_int32 SKP_SUB_LSHIFT32(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a - (b << shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a - (((SKP_int64)b) << shift));
return ret; // shift >= 0
}
#undef SKP_SUB_RSHIFT32
SKP_INLINE SKP_int32 SKP_SUB_RSHIFT32(SKP_int32 a, SKP_int32 b, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift >= 0);
SKP_assert(shift <= 31);
ret = a - (b >> shift);
SKP_assert((SKP_int64)ret == (SKP_int64)a - (((SKP_int64)b) >> shift));
return ret; // shift > 0
}
#undef SKP_RSHIFT_ROUND
SKP_INLINE SKP_int32 SKP_RSHIFT_ROUND(SKP_int32 a, SKP_int32 shift){
SKP_int32 ret;
SKP_assert(shift > 0); /* the marco definition can't handle a shift of zero */
SKP_assert(shift < 32);
ret = shift == 1 ? (a >> 1) + (a & 1) : ((a >> (shift - 1)) + 1) >> 1;
SKP_assert((SKP_int64)ret == ((SKP_int64)a + ((SKP_int64)1 << (shift - 1))) >> shift);
return ret;
}
#undef SKP_RSHIFT_ROUND64
SKP_INLINE SKP_int64 SKP_RSHIFT_ROUND64(SKP_int64 a, SKP_int32 shift){
SKP_int64 ret;
SKP_assert(shift > 0); /* the marco definition can't handle a shift of zero */
SKP_assert(shift < 64);
ret = shift == 1 ? (a >> 1) + (a & 1) : ((a >> (shift - 1)) + 1) >> 1;
return ret;
}
// SKP_abs is used on floats also, so doesn't work...
//#undef SKP_abs
//SKP_INLINE SKP_int32 SKP_abs(SKP_int32 a){
// SKP_assert(a != 0x80000000);
// return (((a) > 0) ? (a) : -(a)); // Be careful, SKP_abs returns wrong when input equals to SKP_intXX_MIN
//}
#undef SKP_abs_int64
SKP_INLINE SKP_int64 SKP_abs_int64(SKP_int64 a){
SKP_assert(a != 0x8000000000000000);
return (((a) > 0) ? (a) : -(a)); // Be careful, SKP_abs returns wrong when input equals to SKP_intXX_MIN
}
#undef SKP_abs_int32
SKP_INLINE SKP_int32 SKP_abs_int32(SKP_int32 a){
SKP_assert(a != 0x80000000);
return abs(a);
}
#undef SKP_CHECK_FIT8
SKP_INLINE SKP_int8 SKP_CHECK_FIT8( SKP_int64 a ){
SKP_int8 ret;
ret = (SKP_int8)a;
SKP_assert( (SKP_int64)ret == a );
return( ret );
}
#undef SKP_CHECK_FIT16
SKP_INLINE SKP_int16 SKP_CHECK_FIT16( SKP_int64 a ){
SKP_int16 ret;
ret = (SKP_int16)a;
SKP_assert( (SKP_int64)ret == a );
return( ret );
}
#undef SKP_CHECK_FIT32
SKP_INLINE SKP_int32 SKP_CHECK_FIT32( SKP_int64 a ){
SKP_int32 ret;
ret = (SKP_int32)a;
SKP_assert( (SKP_int64)ret == a );
return( ret );
}
// no checking for SKP_NSHIFT_MUL_32_32
// no checking for SKP_NSHIFT_MUL_16_16
// no checking needed for SKP_min
// no checking needed for SKP_max
// no checking needed for SKP_sign
#endif
#endif