ref: c6db01d2a6c2fa7d8f062af3311b1fa47aeac7f4
dir: /dnn/training_tf2/dump_plc.py/
#!/usr/bin/python3
'''Copyright (c) 2021-2022 Amazon
   Copyright (c) 2017-2018 Mozilla
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:
   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.
   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.
   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
'''
import lpcnet_plc
import io
import sys
import numpy as np
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Layer, GRU, Dense, Conv1D, Embedding
import h5py
import re
# Flag for dumping e2e (differentiable lpc) network weights
flag_e2e = False
max_rnn_neurons = 1
max_conv_inputs = 1
def printVector(f, vector, name, dtype='float', dotp=False):
    global array_list
    if dotp:
        vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8))
        vector = vector.transpose((2, 0, 3, 1))
    v = np.reshape(vector, (-1));
    #print('static const float ', name, '[', len(v), '] = \n', file=f)
    if name not in array_list:
        array_list.append(name)
    f.write('#ifndef USE_WEIGHTS_FILE\n')
    f.write('#define WEIGHTS_{}_DEFINED\n'.format(name))
    f.write('#define WEIGHTS_{}_TYPE WEIGHT_TYPE_{}\n'.format(name, dtype))
    f.write('static const {} {}[{}] = {{\n   '.format(dtype, name, len(v)))
    for i in range(0, len(v)):
        f.write('{}'.format(v[i]))
        if (i!=len(v)-1):
            f.write(',')
        else:
            break;
        if (i%8==7):
            f.write("\n   ")
        else:
            f.write(" ")
    #print(v, file=f)
    f.write('\n};\n')
    f.write('#endif\n\n')
    return;
def printSparseVector(f, A, name, have_diag=True):
    N = A.shape[0]
    M = A.shape[1]
    W = np.zeros((0,), dtype='int')
    W0 = np.zeros((0,))
    if have_diag:
        diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])])
        A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
        A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
        A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
        printVector(f, diag, name + '_diag')
    AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int')
    idx = np.zeros((0,), dtype='int')
    for i in range(M//8):
        pos = idx.shape[0]
        idx = np.append(idx, -1)
        nb_nonzero = 0
        for j in range(N//4):
            block = A[j*4:(j+1)*4, i*8:(i+1)*8]
            qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8]
            if np.sum(np.abs(block)) > 1e-10:
                nb_nonzero = nb_nonzero + 1
                idx = np.append(idx, j*4)
                vblock = qblock.transpose((1,0)).reshape((-1,))
                W0 = np.concatenate([W0, block.reshape((-1,))])
                W = np.concatenate([W, vblock])
        idx[pos] = nb_nonzero
    f.write('#ifdef DOT_PROD\n')
    printVector(f, W, name, dtype='qweight')
    f.write('#else /*DOT_PROD*/\n')
    printVector(f, W0, name, dtype='qweight')
    f.write('#endif /*DOT_PROD*/\n')
    #idx = np.tile(np.concatenate([np.array([N]), np.arange(N)]), 3*N//16)
    printVector(f, idx, name + '_idx', dtype='int')
    return AQ
def dump_layer_ignore(self, f, hf):
    print("ignoring layer " + self.name + " of type " + self.__class__.__name__)
    return False
Layer.dump_layer = dump_layer_ignore
def dump_sparse_gru(self, f, hf):
    global max_rnn_neurons
    name = 'sparse_' + self.name
    print("printing layer " + name + " of type sparse " + self.__class__.__name__)
    weights = self.get_weights()
    qweights = printSparseVector(f, weights[1], name + '_recurrent_weights')
    printVector(f, weights[-1], name + '_bias')
    subias = weights[-1].copy()
    subias[1,:] = subias[1,:] - np.sum(qweights*(1./128),axis=0)
    printVector(f, subias, name + '_subias')
    if hasattr(self, 'activation'):
        activation = self.activation.__name__.upper()
    else:
        activation = 'TANH'
    if hasattr(self, 'reset_after') and not self.reset_after:
        reset_after = 0
    else:
        reset_after = 1
    neurons = weights[0].shape[1]//3
    max_rnn_neurons = max(max_rnn_neurons, neurons)
    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
    hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
    model_struct.write('  SparseGRULayer {};\n'.format(name));
    model_init.write('  if (sparse_gru_init(&model->{}, arrays, "{}_bias", "{}_subias", "{}_recurrent_weights_diag", "{}_recurrent_weights", "{}_recurrent_weights_idx",  {}, ACTIVATION_{}, {})) return 1;\n'
            .format(name, name, name, name, name, name, weights[0].shape[1]//3, activation, reset_after))
    return True
def dump_gru_layer(self, f, hf):
    global max_rnn_neurons
    name = self.name
    print("printing layer " + name + " of type " + self.__class__.__name__)
    weights = self.get_weights()
    qweight = printSparseVector(f, weights[0], name + '_weights', have_diag=False)
    f.write('#ifdef DOT_PROD\n')
    qweight2 = np.clip(np.round(128.*weights[1]).astype('int'), -128, 127)
    printVector(f, qweight2, name + '_recurrent_weights', dotp=True, dtype='qweight')
    f.write('#else /*DOT_PROD*/\n')
    printVector(f, weights[1], name + '_recurrent_weights')
    f.write('#endif /*DOT_PROD*/\n')
    printVector(f, weights[-1], name + '_bias')
    subias = weights[-1].copy()
    subias[0,:] = subias[0,:] - np.sum(qweight*(1./128.),axis=0)
    subias[1,:] = subias[1,:] - np.sum(qweight2*(1./128.),axis=0)
    printVector(f, subias, name + '_subias')
    if hasattr(self, 'activation'):
        activation = self.activation.__name__.upper()
    else:
        activation = 'TANH'
    if hasattr(self, 'reset_after') and not self.reset_after:
        reset_after = 0
    else:
        reset_after = 1
    neurons = weights[0].shape[1]//3
    max_rnn_neurons = max(max_rnn_neurons, neurons)
    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
    hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
    model_struct.write('  GRULayer {};\n'.format(name));
    model_init.write('  if (gru_init(&model->{}, arrays, "{}_bias", "{}_subias", "{}_weights", "{}_weights_idx", "{}_recurrent_weights", {}, {}, ACTIVATION_{}, {})) return 1;\n'
             .format(name, name, name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after))
    return True
GRU.dump_layer = dump_gru_layer
def dump_gru_layer_dummy(self, f, hf):
    name = self.name
    weights = self.get_weights()
    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
    hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3))
    return True;
#GRU.dump_layer = dump_gru_layer_dummy
def dump_dense_layer_impl(name, weights, bias, activation, f, hf):
    printVector(f, weights, name + '_weights')
    printVector(f, bias, name + '_bias')
    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights.shape[1]))
    model_struct.write('  DenseLayer {};\n'.format(name));
    model_init.write('  if (dense_init(&model->{}, arrays, "{}_bias", "{}_weights", {}, {}, ACTIVATION_{})) return 1;\n'
            .format(name, name, name, weights.shape[0], weights.shape[1], activation))
def dump_dense_layer(self, f, hf):
    name = self.name
    print("printing layer " + name + " of type " + self.__class__.__name__)
    weights = self.get_weights()
    activation = self.activation.__name__.upper()
    dump_dense_layer_impl(name, weights[0], weights[1], activation, f, hf)
    return False
Dense.dump_layer = dump_dense_layer
def dump_conv1d_layer(self, f, hf):
    global max_conv_inputs
    name = self.name
    print("printing layer " + name + " of type " + self.__class__.__name__)
    weights = self.get_weights()
    printVector(f, weights[0], name + '_weights')
    printVector(f, weights[-1], name + '_bias')
    activation = self.activation.__name__.upper()
    max_conv_inputs = max(max_conv_inputs, weights[0].shape[1]*weights[0].shape[0])
    hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2]))
    hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1)))
    hf.write('#define {}_DELAY {}\n'.format(name.upper(), (weights[0].shape[0]-1)//2))
    model_struct.write('  Conv1DLayer {};\n'.format(name));
    model_init.write('  if (conv1d_init(&model->{}, arrays, "{}_bias", "{}_weights", {}, {}, {}, ACTIVATION_{})) return 1;\n'
            .format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation))
    return True
Conv1D.dump_layer = dump_conv1d_layer
filename = sys.argv[1]
with h5py.File(filename, "r") as f:
    units = min(f['model_weights']['plc_gru1']['plc_gru1']['recurrent_kernel:0'].shape)
    units2 = min(f['model_weights']['plc_gru2']['plc_gru2']['recurrent_kernel:0'].shape)
    cond_size = f['model_weights']['plc_dense1']['plc_dense1']['kernel:0'].shape[1]
model = lpcnet_plc.new_lpcnet_plc_model(rnn_units=units, cond_size=cond_size)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
#model.summary()
model.load_weights(filename, by_name=True)
if len(sys.argv) > 2:
    cfile = sys.argv[2];
    hfile = sys.argv[3];
else:
    cfile = 'plc_data.c'
    hfile = 'plc_data.h'
f = open(cfile, 'w')
hf = open(hfile, 'w')
model_struct = io.StringIO()
model_init = io.StringIO()
model_struct.write('typedef struct {\n')
model_init.write('#ifndef DUMP_BINARY_WEIGHTS\n')
model_init.write('int init_plc_model(PLCModel *model, const WeightArray *arrays) {\n')
array_list = []
f.write('/*This file is automatically generated from a Keras model*/\n')
f.write('/*based on model {}*/\n\n'.format(sys.argv[1]))
f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "nnet.h"\n#include "{}"\n\n'.format(hfile))
hf.write('/*This file is automatically generated from a Keras model*/\n\n')
hf.write('#ifndef PLC_DATA_H\n#define PLC_DATA_H\n\n#include "nnet.h"\n\n')
layer_list = []
for i, layer in enumerate(model.layers):
    if layer.dump_layer(f, hf):
        layer_list.append(layer.name)
#dump_sparse_gru(model.get_layer('gru_a'), f, hf)
f.write('#ifndef USE_WEIGHTS_FILE\n')
f.write('const WeightArray lpcnet_plc_arrays[] = {\n')
for name in array_list:
    f.write('#ifdef WEIGHTS_{}_DEFINED\n'.format(name))
    f.write('  {{"{}", WEIGHTS_{}_TYPE, sizeof({}), {}}},\n'.format(name, name, name, name))
    f.write('#endif\n')
f.write('  {NULL, 0, 0, NULL}\n};\n')
f.write('#endif\n')
model_init.write('  return 0;\n}\n')
model_init.write('#endif\n')
f.write(model_init.getvalue())
hf.write('#define PLC_MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons))
#hf.write('#define PLC_MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs))
hf.write('typedef struct {\n')
for i, name in enumerate(layer_list):
    hf.write('  float {}_state[{}_STATE_SIZE];\n'.format(name, name.upper())) 
hf.write('} PLCNetState;\n\n')
model_struct.write('} PLCModel;\n\n')
hf.write(model_struct.getvalue())
hf.write('int init_plc_model(PLCModel *model, const WeightArray *arrays);\n\n')
hf.write('\n\n#endif\n')
f.close()
hf.close()