ref: d9df94947de8a754af8ab35b9ca1808d43a26f9e
dir: /celt/mini_kfft.c/
/*
* Copyright (c) 2003-2010, Mark Borgerding. All rights reserved.
* This file is part of KISS FFT - https://github.com/mborgerding/kissfft
*
* SPDX-License-Identifier: BSD-3-Clause
* See COPYING file for more information.
*/
/* This is a minimalist, concatenated version of kiss-fft just to compute real scalar FFTs. */
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#define kiss_fft_scalar float
typedef struct {
kiss_fft_scalar r;
kiss_fft_scalar i;
}kiss_fft_cpx;
typedef struct kiss_fft_state* kiss_fft_cfg;
/* If kiss_fft_alloc allocated a buffer, it is one contiguous
buffer and can be simply free()d when no longer needed*/
#define kiss_fft_free KISS_FFT_FREE
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned
4*4*4*2
*/
struct kiss_fft_state{
int nfft;
int inverse;
int factors[2*MAXFACTORS];
kiss_fft_cpx twiddles[1];
};
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
# define S_MUL(a,b) ( (a)*(b) )
#define C_MUL(m,a,b) \
do{ (m).r = (a).r*(b).r - (a).i*(b).i;\
(m).i = (a).r*(b).i + (a).i*(b).r; }while(0)
# define C_FIXDIV(c,div) /* NOOP */
# define C_MULBYSCALAR( c, s ) \
do{ (c).r *= (s);\
(c).i *= (s); }while(0)
#define CHECK_OVERFLOW_OP(a,op,b) /* noop */
#define C_ADD( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,+,(b).r)\
CHECK_OVERFLOW_OP((a).i,+,(b).i)\
(res).r=(a).r+(b).r; (res).i=(a).i+(b).i; \
}while(0)
#define C_SUB( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).r,-,(b).r)\
CHECK_OVERFLOW_OP((a).i,-,(b).i)\
(res).r=(a).r-(b).r; (res).i=(a).i-(b).i; \
}while(0)
#define C_ADDTO( res , a)\
do { \
CHECK_OVERFLOW_OP((res).r,+,(a).r)\
CHECK_OVERFLOW_OP((res).i,+,(a).i)\
(res).r += (a).r; (res).i += (a).i;\
}while(0)
#define C_SUBFROM( res , a)\
do {\
CHECK_OVERFLOW_OP((res).r,-,(a).r)\
CHECK_OVERFLOW_OP((res).i,-,(a).i)\
(res).r -= (a).r; (res).i -= (a).i; \
}while(0)
# define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase)
# define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase)
# define HALF_OF(x) ((x)*((kiss_fft_scalar).5))
#define kf_cexp(x,phase) \
do{ \
(x)->r = KISS_FFT_COS(phase);\
(x)->i = KISS_FFT_SIN(phase);\
}while(0)
static void kf_bfly2(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx * Fout2;
kiss_fft_cpx * tw1 = st->twiddles;
kiss_fft_cpx t;
Fout2 = Fout + m;
do{
C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2);
C_MUL (t, *Fout2 , *tw1);
tw1 += fstride;
C_SUB( *Fout2 , *Fout , t );
C_ADDTO( *Fout , t );
++Fout2;
++Fout;
}while (--m);
}
static void kf_bfly4(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
const size_t m
)
{
kiss_fft_cpx *tw1,*tw2,*tw3;
kiss_fft_cpx scratch[6];
size_t k=m;
const size_t m2=2*m;
const size_t m3=3*m;
tw3 = tw2 = tw1 = st->twiddles;
do {
C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4);
C_MUL(scratch[0],Fout[m] , *tw1 );
C_MUL(scratch[1],Fout[m2] , *tw2 );
C_MUL(scratch[2],Fout[m3] , *tw3 );
C_SUB( scratch[5] , *Fout, scratch[1] );
C_ADDTO(*Fout, scratch[1]);
C_ADD( scratch[3] , scratch[0] , scratch[2] );
C_SUB( scratch[4] , scratch[0] , scratch[2] );
C_SUB( Fout[m2], *Fout, scratch[3] );
tw1 += fstride;
tw2 += fstride*2;
tw3 += fstride*3;
C_ADDTO( *Fout , scratch[3] );
if(st->inverse) {
Fout[m].r = scratch[5].r - scratch[4].i;
Fout[m].i = scratch[5].i + scratch[4].r;
Fout[m3].r = scratch[5].r + scratch[4].i;
Fout[m3].i = scratch[5].i - scratch[4].r;
}else{
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
}
++Fout;
}while(--k);
}
static void kf_bfly3(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
size_t m
)
{
size_t k=m;
const size_t m2 = 2*m;
kiss_fft_cpx *tw1,*tw2;
kiss_fft_cpx scratch[5];
kiss_fft_cpx epi3;
epi3 = st->twiddles[fstride*m];
tw1=tw2=st->twiddles;
do{
C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3);
C_MUL(scratch[1],Fout[m] , *tw1);
C_MUL(scratch[2],Fout[m2] , *tw2);
C_ADD(scratch[3],scratch[1],scratch[2]);
C_SUB(scratch[0],scratch[1],scratch[2]);
tw1 += fstride;
tw2 += fstride*2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
C_MULBYSCALAR( scratch[0] , epi3.i );
C_ADDTO(*Fout,scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
++Fout;
}while(--k);
}
static void kf_bfly5(
kiss_fft_cpx * Fout,
const size_t fstride,
const kiss_fft_cfg st,
int m
)
{
kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
int u;
kiss_fft_cpx scratch[13];
kiss_fft_cpx * twiddles = st->twiddles;
kiss_fft_cpx *tw;
kiss_fft_cpx ya,yb;
ya = twiddles[fstride*m];
yb = twiddles[fstride*2*m];
Fout0=Fout;
Fout1=Fout0+m;
Fout2=Fout0+2*m;
Fout3=Fout0+3*m;
Fout4=Fout0+4*m;
tw=st->twiddles;
for ( u=0; u<m; ++u ) {
C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5);
scratch[0] = *Fout0;
C_MUL(scratch[1] ,*Fout1, tw[u*fstride]);
C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]);
C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]);
C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]);
C_ADD( scratch[7],scratch[1],scratch[4]);
C_SUB( scratch[10],scratch[1],scratch[4]);
C_ADD( scratch[8],scratch[2],scratch[3]);
C_SUB( scratch[9],scratch[2],scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r);
scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r);
scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i);
scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i);
C_SUB(*Fout1,scratch[5],scratch[6]);
C_ADD(*Fout4,scratch[5],scratch[6]);
scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r);
scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r);
scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i);
scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i);
C_ADD(*Fout2,scratch[11],scratch[12]);
C_SUB(*Fout3,scratch[11],scratch[12]);
++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
}
static
void kf_work(
kiss_fft_cpx * Fout,
const kiss_fft_cpx * f,
const size_t fstride,
int in_stride,
int * factors,
const kiss_fft_cfg st
)
{
kiss_fft_cpx * Fout_beg=Fout;
const int p=*factors++; /* the radix */
const int m=*factors++; /* stage's fft length/p */
const kiss_fft_cpx * Fout_end = Fout + p*m;
if (m==1) {
do{
*Fout = *f;
f += fstride*in_stride;
}while(++Fout != Fout_end );
}else{
do{
/* recursive call:
DFT of size m*p performed by doing
p instances of smaller DFTs of size m,
each one takes a decimated version of the input */
kf_work( Fout , f, fstride*p, in_stride, factors,st);
f += fstride*in_stride;
}while( (Fout += m) != Fout_end );
}
Fout=Fout_beg;
/* recombine the p smaller DFTs*/
switch (p) {
case 2: kf_bfly2(Fout,fstride,st,m); break;
case 3: kf_bfly3(Fout,fstride,st,m); break;
case 4: kf_bfly4(Fout,fstride,st,m); break;
case 5: kf_bfly5(Fout,fstride,st,m); break;
default: assert(0);
}
}
/* facbuf is populated by p1,m1,p2,m2, ...
where
p[i] * m[i] = m[i-1]
m0 = n */
static
void kf_factor(int n,int * facbuf)
{
int p=4;
double floor_sqrt;
floor_sqrt = floor( sqrt((double)n) );
/*factor out powers of 4, powers of 2, then any remaining primes */
do {
while (n % p) {
switch (p) {
case 4: p = 2; break;
case 2: p = 3; break;
default: p += 2; break;
}
if (p > floor_sqrt)
p = n; /* no more factors, skip to end */
}
n /= p;
*facbuf++ = p;
*facbuf++ = n;
} while (n > 1);
}
/*
*
* User-callable function to allocate all necessary storage space for the fft.
*
* The return value is a contiguous block of memory, allocated with malloc. As such,
* It can be freed with free(), rather than a kiss_fft-specific function.
* */
kiss_fft_cfg mini_kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem )
{
kiss_fft_cfg st=NULL;
size_t memneeded = (sizeof(struct kiss_fft_state)
+ sizeof(kiss_fft_cpx)*(nfft-1)); /* twiddle factors*/
if ( lenmem==NULL ) {
st = ( kiss_fft_cfg)malloc( memneeded );
}else{
if (mem != NULL && *lenmem >= memneeded)
st = (kiss_fft_cfg)mem;
*lenmem = memneeded;
}
if (st) {
int i;
st->nfft=nfft;
st->inverse = inverse_fft;
for (i=0;i<nfft;++i) {
const double pi=3.141592653589793238462643383279502884197169399375105820974944;
double phase = -2*pi*i / nfft;
if (st->inverse)
phase *= -1;
kf_cexp(st->twiddles+i, phase );
}
kf_factor(nfft,st->factors);
}
return st;
}
void mini_kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride)
{
assert(fin != fout);
kf_work( fout, fin, 1,in_stride, st->factors,st );
}
void mini_kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout)
{
mini_kiss_fft_stride(cfg,fin,fout,1);
}
typedef struct kiss_fftr_state *kiss_fftr_cfg;
struct kiss_fftr_state{
kiss_fft_cfg substate;
kiss_fft_cpx * tmpbuf;
kiss_fft_cpx * super_twiddles;
};
kiss_fftr_cfg mini_kiss_fftr_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem)
{
int i;
kiss_fftr_cfg st = NULL;
size_t subsize = 0, memneeded;
assert ((nfft & 1) == 0);
nfft >>= 1;
mini_kiss_fft_alloc (nfft, inverse_fft, NULL, &subsize);
memneeded = sizeof(struct kiss_fftr_state) + subsize + sizeof(kiss_fft_cpx) * ( nfft * 3 / 2);
if (lenmem == NULL) {
st = (kiss_fftr_cfg) malloc(memneeded);
} else {
if (*lenmem >= memneeded)
st = (kiss_fftr_cfg) mem;
*lenmem = memneeded;
}
if (!st)
return NULL;
st->substate = (kiss_fft_cfg) (st + 1); /*just beyond kiss_fftr_state struct */
st->tmpbuf = (kiss_fft_cpx *) (((char *) st->substate) + subsize);
st->super_twiddles = st->tmpbuf + nfft;
mini_kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
for (i = 0; i < nfft/2; ++i) {
double phase =
-3.14159265358979323846264338327 * ((double) (i+1) / nfft + .5);
if (inverse_fft)
phase *= -1;
kf_cexp (st->super_twiddles+i,phase);
}
return st;
}
void mini_kiss_fftr(kiss_fftr_cfg st,const kiss_fft_scalar *timedata,kiss_fft_cpx *freqdata)
{
/* input buffer timedata is stored row-wise */
int k,ncfft;
kiss_fft_cpx fpnk,fpk,f1k,f2k,tw,tdc;
assert ( !st->substate->inverse);
ncfft = st->substate->nfft;
/*perform the parallel fft of two real signals packed in real,imag*/
mini_kiss_fft( st->substate , (const kiss_fft_cpx*)timedata, st->tmpbuf );
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
* contains the sum of the even-numbered elements of the input time sequence
* The imag part is the sum of the odd-numbered elements
*
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
* yielding DC of input time sequence
* The difference of tdc.r - tdc.i is the sum of the input (dot product) [1,-1,1,-1...
* yielding Nyquist bin of input time sequence
*/
tdc.r = st->tmpbuf[0].r;
tdc.i = st->tmpbuf[0].i;
C_FIXDIV(tdc,2);
CHECK_OVERFLOW_OP(tdc.r ,+, tdc.i);
CHECK_OVERFLOW_OP(tdc.r ,-, tdc.i);
freqdata[0].r = tdc.r + tdc.i;
freqdata[ncfft].r = tdc.r - tdc.i;
freqdata[ncfft].i = freqdata[0].i = 0;
for ( k=1;k <= ncfft/2 ; ++k ) {
fpk = st->tmpbuf[k];
fpnk.r = st->tmpbuf[ncfft-k].r;
fpnk.i = - st->tmpbuf[ncfft-k].i;
C_FIXDIV(fpk,2);
C_FIXDIV(fpnk,2);
C_ADD( f1k, fpk , fpnk );
C_SUB( f2k, fpk , fpnk );
C_MUL( tw , f2k , st->super_twiddles[k-1]);
freqdata[k].r = HALF_OF(f1k.r + tw.r);
freqdata[k].i = HALF_OF(f1k.i + tw.i);
freqdata[ncfft-k].r = HALF_OF(f1k.r - tw.r);
freqdata[ncfft-k].i = HALF_OF(tw.i - f1k.i);
}
}