ref: df27e89bd33848d26bf92b6a2db69058987e7995
dir: /dnn/torch/osce/losses/td_lowpass.py/
import torch
import scipy.signal
from utils.layers.fir import FIR
class TDLowpass(torch.nn.Module):
def __init__(self, numtaps, cutoff, power=2):
super().__init__()
self.b = scipy.signal.firwin(numtaps, cutoff)
self.weight = torch.nn.Parameter(torch.from_numpy(self.b).float().view(1, 1, -1), requires_grad=False)
self.power = power
def forward(self, y_true, y_pred):
if len(y_true.shape) < 3: y_true = y_true.unsqueeze(1)
if len(y_pred.shape) < 3: y_pred = y_pred.unsqueeze(1)
diff = y_true - y_pred
diff_lp = torch.nn.functional.conv1d(diff, self.weight)
loss = torch.mean(torch.abs(diff_lp) ** self.power) / (torch.mean(torch.abs(y_true) ** self.power) + 1e-6**self.power)
loss = loss ** 1/self.power
return loss
def get_freqz(self):
freq, response = scipy.signal.freqz(self.b)
return freq, response