ref: bf5f906a21121a00f6b264c90539392d4a68e3ba
dir: /QW/client/gl_rsurf.c/
/* Copyright (C) 1996-1997 Id Software, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ // r_surf.c: surface-related refresh code #include "quakedef.h" int skytexturenum; #ifndef GL_RGBA4 #define GL_RGBA4 0 #endif int lightmap_bytes; // 1, 2, or 4 int lightmap_textures; unsigned blocklights[18*18]; #define BLOCK_WIDTH 128 #define BLOCK_HEIGHT 128 #define MAX_LIGHTMAPS 64 int active_lightmaps; typedef struct glRect_s { unsigned char l,t,w,h; } glRect_t; glpoly_t *lightmap_polys[MAX_LIGHTMAPS]; qboolean lightmap_modified[MAX_LIGHTMAPS]; glRect_t lightmap_rectchange[MAX_LIGHTMAPS]; int allocated[MAX_LIGHTMAPS][BLOCK_WIDTH]; // the lightmap texture data needs to be kept in // main memory so texsubimage can update properly byte lightmaps[4*MAX_LIGHTMAPS*BLOCK_WIDTH*BLOCK_HEIGHT]; // For gl_texsort 0 msurface_t *skychain = NULL; msurface_t *waterchain = NULL; void R_RenderDynamicLightmaps (msurface_t *fa); /* =============== R_AddDynamicLights =============== */ void R_AddDynamicLights (msurface_t *surf) { int lnum; int sd, td; float dist, rad, minlight; vec3_t impact, local; int s, t; int i; int smax, tmax; mtexinfo_t *tex; smax = (surf->extents[0]>>4)+1; tmax = (surf->extents[1]>>4)+1; tex = surf->texinfo; for (lnum=0 ; lnum<MAX_DLIGHTS ; lnum++) { if ( !(surf->dlightbits & (1<<lnum) ) ) continue; // not lit by this light rad = cl_dlights[lnum].radius; dist = DotProduct (cl_dlights[lnum].origin, surf->plane->normal) - surf->plane->dist; rad -= fabs(dist); minlight = cl_dlights[lnum].minlight; if (rad < minlight) continue; minlight = rad - minlight; for (i=0 ; i<3 ; i++) { impact[i] = cl_dlights[lnum].origin[i] - surf->plane->normal[i]*dist; } local[0] = DotProduct (impact, tex->vecs[0]) + tex->vecs[0][3]; local[1] = DotProduct (impact, tex->vecs[1]) + tex->vecs[1][3]; local[0] -= surf->texturemins[0]; local[1] -= surf->texturemins[1]; for (t = 0 ; t<tmax ; t++) { td = local[1] - t*16; if (td < 0) td = -td; for (s=0 ; s<smax ; s++) { sd = local[0] - s*16; if (sd < 0) sd = -sd; if (sd > td) dist = sd + (td>>1); else dist = td + (sd>>1); if (dist < minlight) blocklights[t*smax + s] += (rad - dist)*256; } } } } /* =============== R_BuildLightMap Combine and scale multiple lightmaps into the 8.8 format in blocklights =============== */ void R_BuildLightMap (msurface_t *surf, byte *dest, int stride) { int smax, tmax; int t; int i, j, size; byte *lightmap; unsigned scale; int maps; unsigned *bl; surf->cached_dlight = (surf->dlightframe == r_framecount); smax = (surf->extents[0]>>4)+1; tmax = (surf->extents[1]>>4)+1; size = smax*tmax; lightmap = surf->samples; // set to full bright if no light data if (/* r_fullbright.value || */ !cl.worldmodel->lightdata) { for (i=0 ; i<size ; i++) blocklights[i] = 255*256; goto store; } // clear to no light for (i=0 ; i<size ; i++) blocklights[i] = 0; // add all the lightmaps if (lightmap) for (maps = 0 ; maps < MAXLIGHTMAPS && surf->styles[maps] != 255 ; maps++) { scale = d_lightstylevalue[surf->styles[maps]]; surf->cached_light[maps] = scale; // 8.8 fraction for (i=0 ; i<size ; i++) blocklights[i] += lightmap[i] * scale; lightmap += size; // skip to next lightmap } // add all the dynamic lights if (surf->dlightframe == r_framecount) R_AddDynamicLights (surf); // bound, invert, and shift store: switch (gl_lightmap_format) { case GL_RGBA: stride -= (smax<<2); bl = blocklights; for (i=0 ; i<tmax ; i++, dest += stride) { for (j=0 ; j<smax ; j++) { t = *bl++; t >>= 7; if (t > 255) t = 255; dest[3] = 255-t; dest += 4; } } break; case GL_ALPHA: case GL_LUMINANCE: case GL_INTENSITY: bl = blocklights; for (i=0 ; i<tmax ; i++, dest += stride) { for (j=0 ; j<smax ; j++) { t = *bl++; t >>= 7; if (t > 255) t = 255; dest[j] = 255-t; } } break; default: Sys_Error ("Bad lightmap format"); } } /* =============== R_TextureAnimation Returns the proper texture for a given time and base texture =============== */ texture_t *R_TextureAnimation (texture_t *base) { int reletive; int count; if (currententity->frame) { if (base->alternate_anims) base = base->alternate_anims; } if (!base->anim_total) return base; reletive = (int)(cl.time*10) % base->anim_total; count = 0; while (base->anim_min > reletive || base->anim_max <= reletive) { base = base->anim_next; if (!base) Sys_Error ("R_TextureAnimation: broken cycle"); if (++count > 100) Sys_Error ("R_TextureAnimation: infinite cycle"); } return base; } /* ============================================================= BRUSH MODELS ============================================================= */ extern int solidskytexture; extern int alphaskytexture; extern float speedscale; // for top sky and bottom sky void DrawGLWaterPoly (glpoly_t *p); void DrawGLWaterPolyLightmap (glpoly_t *p); #ifdef _WIN32 lpMTexFUNC qglMTexCoord2fSGIS = NULL; lpSelTexFUNC qglSelectTextureSGIS = NULL; #endif qboolean mtexenabled = false; void GL_SelectTexture (GLenum target); void GL_DisableMultitexture(void) { if (mtexenabled) { glDisable(GL_TEXTURE_2D); GL_SelectTexture(TEXTURE0_SGIS); mtexenabled = false; } } void GL_EnableMultitexture(void) { if (gl_mtexable) { GL_SelectTexture(TEXTURE1_SGIS); glEnable(GL_TEXTURE_2D); mtexenabled = true; } } #ifndef _WIN32 /* ================ R_DrawSequentialPoly Systems that have fast state and texture changes can just do everything as it passes with no need to sort ================ */ void R_DrawSequentialPoly (msurface_t *s) { glpoly_t *p; float *v; int i; texture_t *t; // // normal lightmaped poly // // if ((!(s->flags & (SURF_DRAWSKY|SURF_DRAWTURB))) // && ((r_viewleaf->contents!=CONTENTS_EMPTY && (s->flags & SURF_UNDERWATER)) || // (r_viewleaf->contents==CONTENTS_EMPTY && !(s->flags & SURF_UNDERWATER)))) if (0) { p = s->polys; t = R_TextureAnimation (s->texinfo->texture); GL_Bind (t->gl_texturenum); glBegin (GL_POLYGON); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { glTexCoord2f (v[3], v[4]); glVertex3fv (v); } glEnd (); GL_Bind (lightmap_textures + s->lightmaptexturenum); glEnable (GL_BLEND); glBegin (GL_POLYGON); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { glTexCoord2f (v[5], v[6]); glVertex3fv (v); } glEnd (); glDisable (GL_BLEND); return; } // // subdivided water surface warp // if (s->flags & SURF_DRAWTURB) { GL_Bind (s->texinfo->texture->gl_texturenum); EmitWaterPolys (s); return; } // // subdivided sky warp // if (s->flags & SURF_DRAWSKY) { GL_Bind (solidskytexture); speedscale = realtime*8; speedscale -= (int)speedscale; EmitSkyPolys (s); glEnable (GL_BLEND); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); GL_Bind (alphaskytexture); speedscale = realtime*16; speedscale -= (int)speedscale; EmitSkyPolys (s); if (gl_lightmap_format == GL_LUMINANCE) glBlendFunc (GL_ZERO, GL_ONE_MINUS_SRC_COLOR); glDisable (GL_BLEND); } // // underwater warped with lightmap // p = s->polys; t = R_TextureAnimation (s->texinfo->texture); GL_Bind (t->gl_texturenum); DrawGLWaterPoly (p); GL_Bind (lightmap_textures + s->lightmaptexturenum); glEnable (GL_BLEND); DrawGLWaterPolyLightmap (p); glDisable (GL_BLEND); } #else /* ================ R_DrawSequentialPoly Systems that have fast state and texture changes can just do everything as it passes with no need to sort ================ */ void R_DrawSequentialPoly (msurface_t *s) { glpoly_t *p; float *v; int i; texture_t *t; vec3_t nv, dir; float ss, ss2, length; float s1, t1; glRect_t *theRect; // // normal lightmaped poly // if (! (s->flags & (SURF_DRAWSKY|SURF_DRAWTURB|SURF_UNDERWATER) ) ) { R_RenderDynamicLightmaps (s); if (gl_mtexable) { p = s->polys; t = R_TextureAnimation (s->texinfo->texture); // Binds world to texture env 0 GL_SelectTexture(TEXTURE0_SGIS); GL_Bind (t->gl_texturenum); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); // Binds lightmap to texenv 1 GL_EnableMultitexture(); // Same as SelectTexture (TEXTURE1) GL_Bind (lightmap_textures + s->lightmaptexturenum); i = s->lightmaptexturenum; if (lightmap_modified[i]) { lightmap_modified[i] = false; theRect = &lightmap_rectchange[i]; glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t, BLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE, lightmaps+(i* BLOCK_HEIGHT + theRect->t) *BLOCK_WIDTH*lightmap_bytes); theRect->l = BLOCK_WIDTH; theRect->t = BLOCK_HEIGHT; theRect->h = 0; theRect->w = 0; } glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_BLEND); glBegin(GL_POLYGON); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { qglMTexCoord2fSGIS (TEXTURE0_SGIS, v[3], v[4]); qglMTexCoord2fSGIS (TEXTURE1_SGIS, v[5], v[6]); glVertex3fv (v); } glEnd (); return; } else { p = s->polys; t = R_TextureAnimation (s->texinfo->texture); GL_Bind (t->gl_texturenum); glBegin (GL_POLYGON); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { glTexCoord2f (v[3], v[4]); glVertex3fv (v); } glEnd (); GL_Bind (lightmap_textures + s->lightmaptexturenum); glEnable (GL_BLEND); glBegin (GL_POLYGON); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { glTexCoord2f (v[5], v[6]); glVertex3fv (v); } glEnd (); glDisable (GL_BLEND); } return; } // // subdivided water surface warp // if (s->flags & SURF_DRAWTURB) { GL_DisableMultitexture(); GL_Bind (s->texinfo->texture->gl_texturenum); EmitWaterPolys (s); return; } // // subdivided sky warp // if (s->flags & SURF_DRAWSKY) { GL_DisableMultitexture(); GL_Bind (solidskytexture); speedscale = realtime*8; speedscale -= (int)speedscale & ~127; EmitSkyPolys (s); glEnable (GL_BLEND); GL_Bind (alphaskytexture); speedscale = realtime*16; speedscale -= (int)speedscale & ~127; EmitSkyPolys (s); glDisable (GL_BLEND); return; } // // underwater warped with lightmap // R_RenderDynamicLightmaps (s); if (gl_mtexable) { p = s->polys; t = R_TextureAnimation (s->texinfo->texture); GL_SelectTexture(TEXTURE0_SGIS); GL_Bind (t->gl_texturenum); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); GL_EnableMultitexture(); GL_Bind (lightmap_textures + s->lightmaptexturenum); i = s->lightmaptexturenum; if (lightmap_modified[i]) { lightmap_modified[i] = false; theRect = &lightmap_rectchange[i]; glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t, BLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE, lightmaps+(i* BLOCK_HEIGHT + theRect->t) *BLOCK_WIDTH*lightmap_bytes); theRect->l = BLOCK_WIDTH; theRect->t = BLOCK_HEIGHT; theRect->h = 0; theRect->w = 0; } glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_BLEND); glBegin (GL_TRIANGLE_FAN); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { qglMTexCoord2fSGIS (TEXTURE0_SGIS, v[3], v[4]); qglMTexCoord2fSGIS (TEXTURE1_SGIS, v[5], v[6]); nv[0] = v[0] + 8*sin(v[1]*0.05+realtime)*sin(v[2]*0.05+realtime); nv[1] = v[1] + 8*sin(v[0]*0.05+realtime)*sin(v[2]*0.05+realtime); nv[2] = v[2]; glVertex3fv (nv); } glEnd (); } else { p = s->polys; t = R_TextureAnimation (s->texinfo->texture); GL_Bind (t->gl_texturenum); DrawGLWaterPoly (p); GL_Bind (lightmap_textures + s->lightmaptexturenum); glEnable (GL_BLEND); DrawGLWaterPolyLightmap (p); glDisable (GL_BLEND); } } #endif /* ================ DrawGLWaterPoly Warp the vertex coordinates ================ */ void DrawGLWaterPoly (glpoly_t *p) { int i; float *v; vec3_t nv; GL_DisableMultitexture(); glBegin (GL_TRIANGLE_FAN); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { glTexCoord2f (v[3], v[4]); nv[0] = v[0] + 8*sin(v[1]*0.05+realtime)*sin(v[2]*0.05+realtime); nv[1] = v[1] + 8*sin(v[0]*0.05+realtime)*sin(v[2]*0.05+realtime); nv[2] = v[2]; glVertex3fv (nv); } glEnd (); } void DrawGLWaterPolyLightmap (glpoly_t *p) { int i; float *v; vec3_t nv; GL_DisableMultitexture(); glBegin (GL_TRIANGLE_FAN); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { glTexCoord2f (v[5], v[6]); nv[0] = v[0] + 8*sin(v[1]*0.05+realtime)*sin(v[2]*0.05+realtime); nv[1] = v[1] + 8*sin(v[0]*0.05+realtime)*sin(v[2]*0.05+realtime); nv[2] = v[2]; glVertex3fv (nv); } glEnd (); } /* ================ DrawGLPoly ================ */ void DrawGLPoly (glpoly_t *p) { int i; float *v; glBegin (GL_POLYGON); v = p->verts[0]; for (i=0 ; i<p->numverts ; i++, v+= VERTEXSIZE) { glTexCoord2f (v[3], v[4]); glVertex3fv (v); } glEnd (); } /* ================ R_BlendLightmaps ================ */ void R_BlendLightmaps (void) { int i, j; glpoly_t *p; float *v; glRect_t *theRect; #if 0 if (r_fullbright.value) return; #endif if (!gl_texsort.value) return; glDepthMask (0); // don't bother writing Z if (gl_lightmap_format == GL_LUMINANCE) glBlendFunc (GL_ZERO, GL_ONE_MINUS_SRC_COLOR); else if (gl_lightmap_format == GL_INTENSITY) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); glColor4f (0,0,0,1); glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); } if (!r_lightmap.value) { glEnable (GL_BLEND); } for (i=0 ; i<MAX_LIGHTMAPS ; i++) { p = lightmap_polys[i]; if (!p) continue; GL_Bind(lightmap_textures+i); if (lightmap_modified[i]) { lightmap_modified[i] = false; theRect = &lightmap_rectchange[i]; // theRect->l = 0; // theRect->t = 0; // theRect->w = BLOCK_WIDTH; // theRect->h = BLOCK_HEIGHT; // glTexImage2D (GL_TEXTURE_2D, 0, lightmap_bytes // , BLOCK_WIDTH, BLOCK_HEIGHT, 0, // gl_lightmap_format, GL_UNSIGNED_BYTE, lightmaps+i*BLOCK_WIDTH*BLOCK_HEIGHT*lightmap_bytes); // glTexImage2D (GL_TEXTURE_2D, 0, lightmap_bytes // , BLOCK_WIDTH, theRect->h, 0, // gl_lightmap_format, GL_UNSIGNED_BYTE, lightmaps+(i*BLOCK_HEIGHT+theRect->t)*BLOCK_WIDTH*lightmap_bytes); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, theRect->t, BLOCK_WIDTH, theRect->h, gl_lightmap_format, GL_UNSIGNED_BYTE, lightmaps+(i* BLOCK_HEIGHT + theRect->t) *BLOCK_WIDTH*lightmap_bytes); theRect->l = BLOCK_WIDTH; theRect->t = BLOCK_HEIGHT; theRect->h = 0; theRect->w = 0; } for ( ; p ; p=p->chain) { // if (p->flags & SURF_UNDERWATER) // DrawGLWaterPolyLightmap (p); if (((r_viewleaf->contents==CONTENTS_EMPTY && (p->flags & SURF_UNDERWATER)) || (r_viewleaf->contents!=CONTENTS_EMPTY && !(p->flags & SURF_UNDERWATER))) && !(p->flags & SURF_DONTWARP)) DrawGLWaterPolyLightmap (p); else { glBegin (GL_POLYGON); v = p->verts[0]; for (j=0 ; j<p->numverts ; j++, v+= VERTEXSIZE) { glTexCoord2f (v[5], v[6]); glVertex3fv (v); } glEnd (); } } } glDisable (GL_BLEND); if (gl_lightmap_format == GL_LUMINANCE) glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); else if (gl_lightmap_format == GL_INTENSITY) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glColor4f (1,1,1,1); } glDepthMask (1); // back to normal Z buffering } /* ================ R_RenderBrushPoly ================ */ void R_RenderBrushPoly (msurface_t *fa) { texture_t *t; byte *base; int maps; glRect_t *theRect; int smax, tmax; c_brush_polys++; if (fa->flags & SURF_DRAWSKY) { // warp texture, no lightmaps EmitBothSkyLayers (fa); return; } t = R_TextureAnimation (fa->texinfo->texture); GL_Bind (t->gl_texturenum); if (fa->flags & SURF_DRAWTURB) { // warp texture, no lightmaps EmitWaterPolys (fa); return; } if (((r_viewleaf->contents==CONTENTS_EMPTY && (fa->flags & SURF_UNDERWATER)) || (r_viewleaf->contents!=CONTENTS_EMPTY && !(fa->flags & SURF_UNDERWATER))) && !(fa->flags & SURF_DONTWARP)) DrawGLWaterPoly (fa->polys); else DrawGLPoly (fa->polys); // add the poly to the proper lightmap chain fa->polys->chain = lightmap_polys[fa->lightmaptexturenum]; lightmap_polys[fa->lightmaptexturenum] = fa->polys; // check for lightmap modification for (maps = 0 ; maps < MAXLIGHTMAPS && fa->styles[maps] != 255 ; maps++) if (d_lightstylevalue[fa->styles[maps]] != fa->cached_light[maps]) goto dynamic; if (fa->dlightframe == r_framecount // dynamic this frame || fa->cached_dlight) // dynamic previously { dynamic: if (r_dynamic.value) { lightmap_modified[fa->lightmaptexturenum] = true; theRect = &lightmap_rectchange[fa->lightmaptexturenum]; if (fa->light_t < theRect->t) { if (theRect->h) theRect->h += theRect->t - fa->light_t; theRect->t = fa->light_t; } if (fa->light_s < theRect->l) { if (theRect->w) theRect->w += theRect->l - fa->light_s; theRect->l = fa->light_s; } smax = (fa->extents[0]>>4)+1; tmax = (fa->extents[1]>>4)+1; if ((theRect->w + theRect->l) < (fa->light_s + smax)) theRect->w = (fa->light_s-theRect->l)+smax; if ((theRect->h + theRect->t) < (fa->light_t + tmax)) theRect->h = (fa->light_t-theRect->t)+tmax; base = lightmaps + fa->lightmaptexturenum*lightmap_bytes*BLOCK_WIDTH*BLOCK_HEIGHT; base += fa->light_t * BLOCK_WIDTH * lightmap_bytes + fa->light_s * lightmap_bytes; R_BuildLightMap (fa, base, BLOCK_WIDTH*lightmap_bytes); } } } /* ================ R_RenderDynamicLightmaps Multitexture ================ */ void R_RenderDynamicLightmaps (msurface_t *fa) { byte *base; int maps; glRect_t *theRect; int smax, tmax; c_brush_polys++; if (fa->flags & ( SURF_DRAWSKY | SURF_DRAWTURB) ) return; fa->polys->chain = lightmap_polys[fa->lightmaptexturenum]; lightmap_polys[fa->lightmaptexturenum] = fa->polys; // check for lightmap modification for (maps = 0 ; maps < MAXLIGHTMAPS && fa->styles[maps] != 255 ; maps++) if (d_lightstylevalue[fa->styles[maps]] != fa->cached_light[maps]) goto dynamic; if (fa->dlightframe == r_framecount // dynamic this frame || fa->cached_dlight) // dynamic previously { dynamic: if (r_dynamic.value) { lightmap_modified[fa->lightmaptexturenum] = true; theRect = &lightmap_rectchange[fa->lightmaptexturenum]; if (fa->light_t < theRect->t) { if (theRect->h) theRect->h += theRect->t - fa->light_t; theRect->t = fa->light_t; } if (fa->light_s < theRect->l) { if (theRect->w) theRect->w += theRect->l - fa->light_s; theRect->l = fa->light_s; } smax = (fa->extents[0]>>4)+1; tmax = (fa->extents[1]>>4)+1; if ((theRect->w + theRect->l) < (fa->light_s + smax)) theRect->w = (fa->light_s-theRect->l)+smax; if ((theRect->h + theRect->t) < (fa->light_t + tmax)) theRect->h = (fa->light_t-theRect->t)+tmax; base = lightmaps + fa->lightmaptexturenum*lightmap_bytes*BLOCK_WIDTH*BLOCK_HEIGHT; base += fa->light_t * BLOCK_WIDTH * lightmap_bytes + fa->light_s * lightmap_bytes; R_BuildLightMap (fa, base, BLOCK_WIDTH*lightmap_bytes); } } } /* ================ R_MirrorChain ================ */ void R_MirrorChain (msurface_t *s) { if (mirror) return; mirror = true; mirror_plane = s->plane; } #if 0 /* ================ R_DrawWaterSurfaces ================ */ void R_DrawWaterSurfaces (void) { int i; msurface_t *s; texture_t *t; if (r_wateralpha.value == 1.0) return; // // go back to the world matrix // glLoadMatrixf (r_world_matrix); glEnable (GL_BLEND); glColor4f (1,1,1,r_wateralpha.value); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); for (i=0 ; i<cl.worldmodel->numtextures ; i++) { t = cl.worldmodel->textures[i]; if (!t) continue; s = t->texturechain; if (!s) continue; if ( !(s->flags & SURF_DRAWTURB) ) continue; // set modulate mode explicitly GL_Bind (t->gl_texturenum); for ( ; s ; s=s->texturechain) R_RenderBrushPoly (s); t->texturechain = NULL; } glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glColor4f (1,1,1,1); glDisable (GL_BLEND); } #else /* ================ R_DrawWaterSurfaces ================ */ void R_DrawWaterSurfaces (void) { int i; msurface_t *s; texture_t *t; if (r_wateralpha.value == 1.0 && gl_texsort.value) return; // // go back to the world matrix // glLoadMatrixf (r_world_matrix); if (r_wateralpha.value < 1.0) { glEnable (GL_BLEND); glColor4f (1,1,1,r_wateralpha.value); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } if (!gl_texsort.value) { if (!waterchain) return; for ( s = waterchain ; s ; s=s->texturechain) { GL_Bind (s->texinfo->texture->gl_texturenum); EmitWaterPolys (s); } waterchain = NULL; } else { for (i=0 ; i<cl.worldmodel->numtextures ; i++) { t = cl.worldmodel->textures[i]; if (!t) continue; s = t->texturechain; if (!s) continue; if ( !(s->flags & SURF_DRAWTURB ) ) continue; // set modulate mode explicitly GL_Bind (t->gl_texturenum); for ( ; s ; s=s->texturechain) EmitWaterPolys (s); t->texturechain = NULL; } } if (r_wateralpha.value < 1.0) { glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE); glColor4f (1,1,1,1); glDisable (GL_BLEND); } } #endif /* ================ DrawTextureChains ================ */ void DrawTextureChains (void) { int i; msurface_t *s; texture_t *t; if (!gl_texsort.value) { GL_DisableMultitexture(); if (skychain) { R_DrawSkyChain(skychain); skychain = NULL; } return; } for (i=0 ; i<cl.worldmodel->numtextures ; i++) { t = cl.worldmodel->textures[i]; if (!t) continue; s = t->texturechain; if (!s) continue; if (i == skytexturenum) R_DrawSkyChain (s); else if (i == mirrortexturenum && r_mirroralpha.value != 1.0) { R_MirrorChain (s); continue; } else { if ((s->flags & SURF_DRAWTURB) && r_wateralpha.value != 1.0) continue; // draw translucent water later for ( ; s ; s=s->texturechain) R_RenderBrushPoly (s); } t->texturechain = NULL; } } /* ================= R_DrawBrushModel ================= */ void R_DrawBrushModel (entity_t *e) { int i; int k; vec3_t mins, maxs; msurface_t *psurf; float dot; mplane_t *pplane; model_t *clmodel; qboolean rotated; currententity = e; currenttexture = -1; clmodel = e->model; if (e->angles[0] || e->angles[1] || e->angles[2]) { rotated = true; for (i=0 ; i<3 ; i++) { mins[i] = e->origin[i] - clmodel->radius; maxs[i] = e->origin[i] + clmodel->radius; } } else { rotated = false; VectorAdd (e->origin, clmodel->mins, mins); VectorAdd (e->origin, clmodel->maxs, maxs); } if (R_CullBox (mins, maxs)) return; glColor3f (1,1,1); memset (lightmap_polys, 0, sizeof(lightmap_polys)); VectorSubtract (r_refdef.vieworg, e->origin, modelorg); if (rotated) { vec3_t temp; vec3_t forward, right, up; VectorCopy (modelorg, temp); AngleVectors (e->angles, forward, right, up); modelorg[0] = DotProduct (temp, forward); modelorg[1] = -DotProduct (temp, right); modelorg[2] = DotProduct (temp, up); } psurf = &clmodel->surfaces[clmodel->firstmodelsurface]; // calculate dynamic lighting for bmodel if it's not an // instanced model if (clmodel->firstmodelsurface != 0 && !gl_flashblend.value) { for (k=0 ; k<MAX_DLIGHTS ; k++) { if ((cl_dlights[k].die < cl.time) || (!cl_dlights[k].radius)) continue; R_MarkLights (&cl_dlights[k], 1<<k, clmodel->nodes + clmodel->hulls[0].firstclipnode); } } glPushMatrix (); e->angles[0] = -e->angles[0]; // stupid quake bug R_RotateForEntity (e); e->angles[0] = -e->angles[0]; // stupid quake bug // // draw texture // for (i=0 ; i<clmodel->nummodelsurfaces ; i++, psurf++) { // find which side of the node we are on pplane = psurf->plane; dot = DotProduct (modelorg, pplane->normal) - pplane->dist; // draw the polygon if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) || (!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) { if (gl_texsort.value) R_RenderBrushPoly (psurf); else R_DrawSequentialPoly (psurf); } } R_BlendLightmaps (); glPopMatrix (); } /* ============================================================= WORLD MODEL ============================================================= */ /* ================ R_RecursiveWorldNode ================ */ void R_RecursiveWorldNode (mnode_t *node) { int c, side; mplane_t *plane; msurface_t *surf, **mark; mleaf_t *pleaf; double dot; if (node->contents == CONTENTS_SOLID) return; // solid if (node->visframe != r_visframecount) return; if (R_CullBox (node->minmaxs, node->minmaxs+3)) return; // if a leaf node, draw stuff if (node->contents < 0) { pleaf = (mleaf_t *)node; mark = pleaf->firstmarksurface; c = pleaf->nummarksurfaces; if (c) { do { (*mark)->visframe = r_framecount; mark++; } while (--c); } // deal with model fragments in this leaf if (pleaf->efrags) R_StoreEfrags (&pleaf->efrags); return; } // node is just a decision point, so go down the apropriate sides // find which side of the node we are on plane = node->plane; switch (plane->type) { case PLANE_X: dot = modelorg[0] - plane->dist; break; case PLANE_Y: dot = modelorg[1] - plane->dist; break; case PLANE_Z: dot = modelorg[2] - plane->dist; break; default: dot = DotProduct (modelorg, plane->normal) - plane->dist; break; } if (dot >= 0) side = 0; else side = 1; // recurse down the children, front side first R_RecursiveWorldNode (node->children[side]); // draw stuff c = node->numsurfaces; if (c) { surf = cl.worldmodel->surfaces + node->firstsurface; if (dot < 0 -BACKFACE_EPSILON) side = SURF_PLANEBACK; else if (dot > BACKFACE_EPSILON) side = 0; { for ( ; c ; c--, surf++) { if (surf->visframe != r_framecount) continue; // don't backface underwater surfaces, because they warp // if ( !(surf->flags & SURF_UNDERWATER) && ( (dot < 0) ^ !!(surf->flags & SURF_PLANEBACK)) ) // continue; // wrong side if ( !(((r_viewleaf->contents==CONTENTS_EMPTY && (surf->flags & SURF_UNDERWATER)) || (r_viewleaf->contents!=CONTENTS_EMPTY && !(surf->flags & SURF_UNDERWATER))) && !(surf->flags & SURF_DONTWARP)) && ( (dot < 0) ^ !!(surf->flags & SURF_PLANEBACK)) ) continue; // wrong side // if sorting by texture, just store it out if (gl_texsort.value) { if (!mirror || surf->texinfo->texture != cl.worldmodel->textures[mirrortexturenum]) { surf->texturechain = surf->texinfo->texture->texturechain; surf->texinfo->texture->texturechain = surf; } } else if (surf->flags & SURF_DRAWSKY) { surf->texturechain = skychain; skychain = surf; } else if (surf->flags & SURF_DRAWTURB) { surf->texturechain = waterchain; waterchain = surf; } else R_DrawSequentialPoly (surf); } } } // recurse down the back side R_RecursiveWorldNode (node->children[!side]); } /* ============= R_DrawWorld ============= */ void R_DrawWorld (void) { entity_t ent; memset (&ent, 0, sizeof(ent)); ent.model = cl.worldmodel; VectorCopy (r_refdef.vieworg, modelorg); currententity = &ent; currenttexture = -1; glColor3f (1,1,1); memset (lightmap_polys, 0, sizeof(lightmap_polys)); #ifdef QUAKE2 R_ClearSkyBox (); #endif R_RecursiveWorldNode (cl.worldmodel->nodes); DrawTextureChains (); R_BlendLightmaps (); #ifdef QUAKE2 R_DrawSkyBox (); #endif } /* =============== R_MarkLeaves =============== */ void R_MarkLeaves (void) { byte *vis; mnode_t *node; int i; byte solid[4096]; if (r_oldviewleaf == r_viewleaf && !r_novis.value) return; if (mirror) return; r_visframecount++; r_oldviewleaf = r_viewleaf; if (r_novis.value) { vis = solid; memset (solid, 0xff, (cl.worldmodel->numleafs+7)>>3); } else vis = Mod_LeafPVS (r_viewleaf, cl.worldmodel); for (i=0 ; i<cl.worldmodel->numleafs ; i++) { if (vis[i>>3] & (1<<(i&7))) { node = (mnode_t *)&cl.worldmodel->leafs[i+1]; do { if (node->visframe == r_visframecount) break; node->visframe = r_visframecount; node = node->parent; } while (node); } } } /* ============================================================================= LIGHTMAP ALLOCATION ============================================================================= */ // returns a texture number and the position inside it int AllocBlock (int w, int h, int *x, int *y) { int i, j; int best, best2; int texnum; for (texnum=0 ; texnum<MAX_LIGHTMAPS ; texnum++) { best = BLOCK_HEIGHT; for (i=0 ; i<BLOCK_WIDTH-w ; i++) { best2 = 0; for (j=0 ; j<w ; j++) { if (allocated[texnum][i+j] >= best) break; if (allocated[texnum][i+j] > best2) best2 = allocated[texnum][i+j]; } if (j == w) { // this is a valid spot *x = i; *y = best = best2; } } if (best + h > BLOCK_HEIGHT) continue; for (i=0 ; i<w ; i++) allocated[texnum][*x + i] = best + h; return texnum; } Sys_Error ("AllocBlock: full"); return 0; } mvertex_t *r_pcurrentvertbase; model_t *currentmodel; int nColinElim; /* ================ BuildSurfaceDisplayList ================ */ void BuildSurfaceDisplayList (msurface_t *fa) { int i, lindex, lnumverts; medge_t *pedges, *r_pedge; int vertpage; float *vec; float s, t; glpoly_t *poly; // reconstruct the polygon pedges = currentmodel->edges; lnumverts = fa->numedges; vertpage = 0; // // draw texture // poly = Hunk_Alloc (sizeof(glpoly_t) + (lnumverts-4) * VERTEXSIZE*sizeof(float)); poly->next = fa->polys; poly->flags = fa->flags; fa->polys = poly; poly->numverts = lnumverts; for (i=0 ; i<lnumverts ; i++) { lindex = currentmodel->surfedges[fa->firstedge + i]; if (lindex > 0) { r_pedge = &pedges[lindex]; vec = r_pcurrentvertbase[r_pedge->v[0]].position; } else { r_pedge = &pedges[-lindex]; vec = r_pcurrentvertbase[r_pedge->v[1]].position; } s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3]; s /= fa->texinfo->texture->width; t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3]; t /= fa->texinfo->texture->height; VectorCopy (vec, poly->verts[i]); poly->verts[i][3] = s; poly->verts[i][4] = t; // // lightmap texture coordinates // s = DotProduct (vec, fa->texinfo->vecs[0]) + fa->texinfo->vecs[0][3]; s -= fa->texturemins[0]; s += fa->light_s*16; s += 8; s /= BLOCK_WIDTH*16; //fa->texinfo->texture->width; t = DotProduct (vec, fa->texinfo->vecs[1]) + fa->texinfo->vecs[1][3]; t -= fa->texturemins[1]; t += fa->light_t*16; t += 8; t /= BLOCK_HEIGHT*16; //fa->texinfo->texture->height; poly->verts[i][5] = s; poly->verts[i][6] = t; } // // remove co-linear points - Ed // if (!gl_keeptjunctions.value && !(fa->flags & SURF_UNDERWATER) ) { for (i = 0 ; i < lnumverts ; ++i) { vec3_t v1, v2; float *prev, *this, *next; prev = poly->verts[(i + lnumverts - 1) % lnumverts]; this = poly->verts[i]; next = poly->verts[(i + 1) % lnumverts]; VectorSubtract( this, prev, v1 ); VectorNormalize( v1 ); VectorSubtract( next, prev, v2 ); VectorNormalize( v2 ); // skip co-linear points #define COLINEAR_EPSILON 0.001 if ((fabs( v1[0] - v2[0] ) <= COLINEAR_EPSILON) && (fabs( v1[1] - v2[1] ) <= COLINEAR_EPSILON) && (fabs( v1[2] - v2[2] ) <= COLINEAR_EPSILON)) { int j; for (j = i + 1; j < lnumverts; ++j) { int k; for (k = 0; k < VERTEXSIZE; ++k) poly->verts[j - 1][k] = poly->verts[j][k]; } --lnumverts; ++nColinElim; // retry next vertex next time, which is now current vertex --i; } } } poly->numverts = lnumverts; } /* ======================== GL_CreateSurfaceLightmap ======================== */ void GL_CreateSurfaceLightmap (msurface_t *surf) { int smax, tmax; byte *base; if (surf->flags & (SURF_DRAWSKY|SURF_DRAWTURB)) return; smax = (surf->extents[0]>>4)+1; tmax = (surf->extents[1]>>4)+1; surf->lightmaptexturenum = AllocBlock (smax, tmax, &surf->light_s, &surf->light_t); base = lightmaps + surf->lightmaptexturenum*lightmap_bytes*BLOCK_WIDTH*BLOCK_HEIGHT; base += (surf->light_t * BLOCK_WIDTH + surf->light_s) * lightmap_bytes; R_BuildLightMap (surf, base, BLOCK_WIDTH*lightmap_bytes); } /* ================== GL_BuildLightmaps Builds the lightmap texture with all the surfaces from all brush models ================== */ void GL_BuildLightmaps (void) { int i, j; model_t *m; memset (allocated, 0, sizeof(allocated)); r_framecount = 1; // no dlightcache if (!lightmap_textures) { lightmap_textures = texture_extension_number; texture_extension_number += MAX_LIGHTMAPS; } gl_lightmap_format = GL_LUMINANCE; if (COM_CheckParm ("-lm_1")) gl_lightmap_format = GL_LUMINANCE; if (COM_CheckParm ("-lm_a")) gl_lightmap_format = GL_ALPHA; if (COM_CheckParm ("-lm_i")) gl_lightmap_format = GL_INTENSITY; if (COM_CheckParm ("-lm_2")) gl_lightmap_format = GL_RGBA4; if (COM_CheckParm ("-lm_4")) gl_lightmap_format = GL_RGBA; switch (gl_lightmap_format) { case GL_RGBA: lightmap_bytes = 4; break; case GL_RGBA4: lightmap_bytes = 2; break; case GL_LUMINANCE: case GL_INTENSITY: case GL_ALPHA: lightmap_bytes = 1; break; } for (j=1 ; j<MAX_MODELS ; j++) { m = cl.model_precache[j]; if (!m) break; if (m->name[0] == '*') continue; r_pcurrentvertbase = m->vertexes; currentmodel = m; for (i=0 ; i<m->numsurfaces ; i++) { GL_CreateSurfaceLightmap (m->surfaces + i); if ( m->surfaces[i].flags & SURF_DRAWTURB ) continue; #ifndef QUAKE2 if ( m->surfaces[i].flags & SURF_DRAWSKY ) continue; #endif BuildSurfaceDisplayList (m->surfaces + i); } } if (!gl_texsort.value) GL_SelectTexture(TEXTURE1_SGIS); // // upload all lightmaps that were filled // for (i=0 ; i<MAX_LIGHTMAPS ; i++) { if (!allocated[i][0]) break; // no more used lightmap_modified[i] = false; lightmap_rectchange[i].l = BLOCK_WIDTH; lightmap_rectchange[i].t = BLOCK_HEIGHT; lightmap_rectchange[i].w = 0; lightmap_rectchange[i].h = 0; GL_Bind(lightmap_textures + i); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexImage2D (GL_TEXTURE_2D, 0, lightmap_bytes , BLOCK_WIDTH, BLOCK_HEIGHT, 0, gl_lightmap_format, GL_UNSIGNED_BYTE, lightmaps+i*BLOCK_WIDTH*BLOCK_HEIGHT*lightmap_bytes); } if (!gl_texsort.value) GL_SelectTexture(TEXTURE0_SGIS); }