ref: 10f8c4729d6fc47a061f08ee2741e33fd672dc9e
dir: /ref/r_bsp.c/
#include <u.h> #include <libc.h> #include <stdio.h> #include "../q_shared.h" // // current entity info // qboolean insubmodel; entity_t *currententity; vec3_t modelorg; // modelorg is the viewpoint reletive to // the currently rendering entity vec3_t r_entorigin; // the currently rendering entity in world // coordinates float entity_rotation[3][3]; int r_currentbkey; typedef enum {touchessolid, drawnode, nodrawnode} solidstate_t; #define MAX_BMODEL_VERTS 500 // 6K #define MAX_BMODEL_EDGES 1000 // 12K static mvertex_t *pbverts; static bedge_t *pbedges; static int numbverts, numbedges; static mvertex_t *pfrontenter, *pfrontexit; static qboolean makeclippededge; //=========================================================================== /* ================ R_EntityRotate ================ */ void R_EntityRotate (vec3_t vec) { vec3_t tvec; VectorCopy (vec, tvec); vec[0] = DotProduct (entity_rotation[0], tvec); vec[1] = DotProduct (entity_rotation[1], tvec); vec[2] = DotProduct (entity_rotation[2], tvec); } /* ================ R_RotateBmodel ================ */ void R_RotateBmodel (void) { float angle, s, c, temp1[3][3], temp2[3][3], temp3[3][3]; // TODO: should use a look-up table // TODO: should really be stored with the entity instead of being reconstructed // TODO: could cache lazily, stored in the entity // TODO: share work with R_SetUpAliasTransform // yaw angle = currententity->angles[YAW]; angle = angle * M_PI*2 / 360; s = sin(angle); c = cos(angle); temp1[0][0] = c; temp1[0][1] = s; temp1[0][2] = 0; temp1[1][0] = -s; temp1[1][1] = c; temp1[1][2] = 0; temp1[2][0] = 0; temp1[2][1] = 0; temp1[2][2] = 1; // pitch angle = currententity->angles[PITCH]; angle = angle * M_PI*2 / 360; s = sin(angle); c = cos(angle); temp2[0][0] = c; temp2[0][1] = 0; temp2[0][2] = -s; temp2[1][0] = 0; temp2[1][1] = 1; temp2[1][2] = 0; temp2[2][0] = s; temp2[2][1] = 0; temp2[2][2] = c; R_ConcatRotations (temp2, temp1, temp3); // roll angle = currententity->angles[ROLL]; angle = angle * M_PI*2 / 360; s = sin(angle); c = cos(angle); temp1[0][0] = 1; temp1[0][1] = 0; temp1[0][2] = 0; temp1[1][0] = 0; temp1[1][1] = c; temp1[1][2] = s; temp1[2][0] = 0; temp1[2][1] = -s; temp1[2][2] = c; R_ConcatRotations (temp1, temp3, entity_rotation); // // rotate modelorg and the transformation matrix // R_EntityRotate (modelorg); R_EntityRotate (vpn); R_EntityRotate (vright); R_EntityRotate (vup); R_TransformFrustum (); } /* ================ R_RecursiveClipBPoly Clip a bmodel poly down the world bsp tree ================ */ void R_RecursiveClipBPoly (bedge_t *pedges, mnode_t *pnode, msurface_t *psurf) { bedge_t *psideedges[2], *pnextedge, *ptedge; int i, side, lastside; float dist, frac, lastdist; mplane_t *splitplane, tplane; mvertex_t *pvert, *plastvert, *ptvert; mnode_t *pn; int area; psideedges[0] = psideedges[1] = NULL; makeclippededge = false; // transform the BSP plane into model space // FIXME: cache these? splitplane = pnode->plane; tplane.dist = splitplane->dist - DotProduct(r_entorigin, splitplane->normal); tplane.normal[0] = DotProduct (entity_rotation[0], splitplane->normal); tplane.normal[1] = DotProduct (entity_rotation[1], splitplane->normal); tplane.normal[2] = DotProduct (entity_rotation[2], splitplane->normal); // clip edges to BSP plane for ( ; pedges ; pedges = pnextedge) { pnextedge = pedges->pnext; // set the status for the last point as the previous point // FIXME: cache this stuff somehow? plastvert = pedges->v[0]; lastdist = DotProduct (plastvert->position, tplane.normal) - tplane.dist; if (lastdist > 0) lastside = 0; else lastside = 1; pvert = pedges->v[1]; dist = DotProduct (pvert->position, tplane.normal) - tplane.dist; if (dist > 0) side = 0; else side = 1; if (side != lastside) { // clipped if (numbverts >= MAX_BMODEL_VERTS) return; // generate the clipped vertex frac = lastdist / (lastdist - dist); ptvert = &pbverts[numbverts++]; ptvert->position[0] = plastvert->position[0] + frac * (pvert->position[0] - plastvert->position[0]); ptvert->position[1] = plastvert->position[1] + frac * (pvert->position[1] - plastvert->position[1]); ptvert->position[2] = plastvert->position[2] + frac * (pvert->position[2] - plastvert->position[2]); // split into two edges, one on each side, and remember entering // and exiting points // FIXME: share the clip edge by having a winding direction flag? if (numbedges >= (MAX_BMODEL_EDGES - 1)) { ri.Con_Printf (PRINT_ALL,"Out of edges for bmodel\n"); return; } ptedge = &pbedges[numbedges]; ptedge->pnext = psideedges[lastside]; psideedges[lastside] = ptedge; ptedge->v[0] = plastvert; ptedge->v[1] = ptvert; ptedge = &pbedges[numbedges + 1]; ptedge->pnext = psideedges[side]; psideedges[side] = ptedge; ptedge->v[0] = ptvert; ptedge->v[1] = pvert; numbedges += 2; if (side == 0) { // entering for front, exiting for back pfrontenter = ptvert; makeclippededge = true; } else { pfrontexit = ptvert; makeclippededge = true; } } else { // add the edge to the appropriate side pedges->pnext = psideedges[side]; psideedges[side] = pedges; } } // if anything was clipped, reconstitute and add the edges along the clip // plane to both sides (but in opposite directions) if (makeclippededge) { if (numbedges >= (MAX_BMODEL_EDGES - 2)) { ri.Con_Printf (PRINT_ALL,"Out of edges for bmodel\n"); return; } ptedge = &pbedges[numbedges]; ptedge->pnext = psideedges[0]; psideedges[0] = ptedge; ptedge->v[0] = pfrontexit; ptedge->v[1] = pfrontenter; ptedge = &pbedges[numbedges + 1]; ptedge->pnext = psideedges[1]; psideedges[1] = ptedge; ptedge->v[0] = pfrontenter; ptedge->v[1] = pfrontexit; numbedges += 2; } // draw or recurse further for (i=0 ; i<2 ; i++) { if (psideedges[i]) { // draw if we've reached a non-solid leaf, done if all that's left is a // solid leaf, and continue down the tree if it's not a leaf pn = pnode->children[i]; // we're done with this branch if the node or leaf isn't in the PVS if (pn->visframe == r_visframecount) { if (pn->contents != CONTENTS_NODE) { if (pn->contents != CONTENTS_SOLID) { if (r_newrefdef.areabits) { area = ((mleaf_t *)pn)->area; if (! (r_newrefdef.areabits[area>>3] & (1<<(area&7)) ) ) continue; // not visible } r_currentbkey = ((mleaf_t *)pn)->key; R_RenderBmodelFace (psideedges[i], psurf); } } else { R_RecursiveClipBPoly (psideedges[i], pnode->children[i], psurf); } } } } } /* ================ R_DrawSolidClippedSubmodelPolygons Bmodel crosses multiple leafs ================ */ void R_DrawSolidClippedSubmodelPolygons (model_t *pmodel, mnode_t *topnode) { int i, j, lindex; vec_t dot; msurface_t *psurf; int numsurfaces; mplane_t *pplane; mvertex_t bverts[MAX_BMODEL_VERTS]; bedge_t bedges[MAX_BMODEL_EDGES], *pbedge; medge_t *pedge, *pedges; // FIXME: use bounding-box-based frustum clipping info? psurf = &pmodel->surfaces[pmodel->firstmodelsurface]; numsurfaces = pmodel->nummodelsurfaces; pedges = pmodel->edges; for (i=0 ; i<numsurfaces ; i++, psurf++) { // find which side of the node we are on pplane = psurf->plane; dot = DotProduct (modelorg, pplane->normal) - pplane->dist; // draw the polygon if (( !(psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) || ((psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) continue; // FIXME: use bounding-box-based frustum clipping info? // copy the edges to bedges, flipping if necessary so always // clockwise winding // FIXME: if edges and vertices get caches, these assignments must move // outside the loop, and overflow checking must be done here pbverts = bverts; pbedges = bedges; numbverts = numbedges = 0; pbedge = &bedges[numbedges]; numbedges += psurf->numedges; for (j=0 ; j<psurf->numedges ; j++) { lindex = pmodel->surfedges[psurf->firstedge+j]; if (lindex > 0) { pedge = &pedges[lindex]; pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[0]]; pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[1]]; } else { lindex = -lindex; pedge = &pedges[lindex]; pbedge[j].v[0] = &r_pcurrentvertbase[pedge->v[1]]; pbedge[j].v[1] = &r_pcurrentvertbase[pedge->v[0]]; } pbedge[j].pnext = &pbedge[j+1]; } pbedge[j-1].pnext = NULL; // mark end of edges if ( !( psurf->texinfo->flags & ( SURF_TRANS66 | SURF_TRANS33 ) ) ) R_RecursiveClipBPoly (pbedge, topnode, psurf); else R_RenderBmodelFace( pbedge, psurf ); } } /* ================ R_DrawSubmodelPolygons All in one leaf ================ */ void R_DrawSubmodelPolygons (model_t *pmodel, int clipflags, mnode_t *topnode) { int i; vec_t dot; msurface_t *psurf; int numsurfaces; mplane_t *pplane; // FIXME: use bounding-box-based frustum clipping info? psurf = &pmodel->surfaces[pmodel->firstmodelsurface]; numsurfaces = pmodel->nummodelsurfaces; for (i=0 ; i<numsurfaces ; i++, psurf++) { // find which side of the node we are on pplane = psurf->plane; dot = DotProduct (modelorg, pplane->normal) - pplane->dist; // draw the polygon if (((psurf->flags & SURF_PLANEBACK) && (dot < -BACKFACE_EPSILON)) || (!(psurf->flags & SURF_PLANEBACK) && (dot > BACKFACE_EPSILON))) { r_currentkey = ((mleaf_t *)topnode)->key; // FIXME: use bounding-box-based frustum clipping info? R_RenderFace (psurf, clipflags); } } } int c_drawnode; /* ================ R_RecursiveWorldNode ================ */ void R_RecursiveWorldNode (mnode_t *node, int clipflags) { int i, c, side, *pindex; vec3_t acceptpt, rejectpt; mplane_t *plane; msurface_t *surf, **mark; float d, dot; mleaf_t *pleaf; if (node->contents == CONTENTS_SOLID) return; // solid if (node->visframe != r_visframecount) return; // cull the clipping planes if not trivial accept // FIXME: the compiler is doing a lousy job of optimizing here; it could be // twice as fast in ASM if (clipflags) { for (i=0 ; i<4 ; i++) { if (! (clipflags & (1<<i)) ) continue; // don't need to clip against it // generate accept and reject points // FIXME: do with fast look-ups or integer tests based on the sign bit // of the floating point values pindex = pfrustum_indexes[i]; rejectpt[0] = (float)node->minmaxs[pindex[0]]; rejectpt[1] = (float)node->minmaxs[pindex[1]]; rejectpt[2] = (float)node->minmaxs[pindex[2]]; d = DotProduct (rejectpt, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d <= 0) return; acceptpt[0] = (float)node->minmaxs[pindex[3+0]]; acceptpt[1] = (float)node->minmaxs[pindex[3+1]]; acceptpt[2] = (float)node->minmaxs[pindex[3+2]]; d = DotProduct (acceptpt, view_clipplanes[i].normal); d -= view_clipplanes[i].dist; if (d >= 0) clipflags &= ~(1<<i); // node is entirely on screen } } c_drawnode++; // if a leaf node, draw stuff if (node->contents != -1) { pleaf = (mleaf_t *)node; // check for door connected areas if (r_newrefdef.areabits) { if (! (r_newrefdef.areabits[pleaf->area>>3] & (1<<(pleaf->area&7)) ) ) return; // not visible } mark = pleaf->firstmarksurface; c = pleaf->nummarksurfaces; if (c) { do { (*mark)->visframe = r_framecount; mark++; } while (--c); } pleaf->key = r_currentkey; r_currentkey++; // all bmodels in a leaf share the same key } else { // node is just a decision point, so go down the apropriate sides // find which side of the node we are on plane = node->plane; switch (plane->type) { case PLANE_X: dot = modelorg[0] - plane->dist; break; case PLANE_Y: dot = modelorg[1] - plane->dist; break; case PLANE_Z: dot = modelorg[2] - plane->dist; break; default: dot = DotProduct (modelorg, plane->normal) - plane->dist; break; } if (dot >= 0) side = 0; else side = 1; // recurse down the children, front side first R_RecursiveWorldNode (node->children[side], clipflags); // draw stuff c = node->numsurfaces; if (c) { surf = r_worldmodel->surfaces + node->firstsurface; if (dot < -BACKFACE_EPSILON) { do { if ((surf->flags & SURF_PLANEBACK) && (surf->visframe == r_framecount)) { R_RenderFace (surf, clipflags); } surf++; } while (--c); } else if (dot > BACKFACE_EPSILON) { do { if (!(surf->flags & SURF_PLANEBACK) && (surf->visframe == r_framecount)) { R_RenderFace (surf, clipflags); } surf++; } while (--c); } // all surfaces on the same node share the same sequence number r_currentkey++; } // recurse down the back side R_RecursiveWorldNode (node->children[!side], clipflags); } } /* ================ R_RenderWorld ================ */ void R_RenderWorld (void) { if (!r_drawworld->value) return; if ( r_newrefdef.rdflags & RDF_NOWORLDMODEL ) return; c_drawnode=0; // auto cycle the world frame for texture animation r_worldentity.frame = (int)(r_newrefdef.time*2); currententity = &r_worldentity; VectorCopy (r_origin, modelorg); currentmodel = r_worldmodel; r_pcurrentvertbase = currentmodel->vertexes; R_RecursiveWorldNode (currentmodel->nodes, 15); }